ECE 374 B Language Theory: Cheatsheet

1 Languages and strings

Languoges Wi

- An alphabet 3 is a finite set of symbols. + The length of a string w (denoted by |w|) is the number of sym-

m A string in ©* is a finite sequence of symbols in X. Pols in w.
+ Forinteger n > 0, X" is set of all strings over X of length n.

m ¥* is the set of all strings over 3.

All languages represent mathematical problems. - X isthe set of all strings of all lengths including empty string.
Example: multiplication of two integers:

- Alanguage is L is a set of strings over some alphabet.

+ elisastring containing no symbols.
1x 11, 1 x 22, 1x3|3,... + @ is the empty set. It contains no strings.

LyurnTe = . . . D + If z and y are strings then zy denotes their concatena-
. . . tion. Recursively:

n X 1lln, nx22n, nXx3|3n,... .

- zy=yifz=c¢e

- zy = a(wy) ifz = aw
+ For languages A, B the concatenation of A, B is AB =

{zy |z € A,y € B} + v is substring of w <= there exist strings z, y such
’ i that w = zvy. -
+ For languages A, B, their union is A U B, intersection is Strln_g
A N B, and difference is A \ B (also writtenas A — B). - Ifz = e then v is a prefix of w operations
b;:gl:;gnes - Forlanguage A C ©* the complement of Ais A = ©* \ A. - Ify = e then v is a suffix of w
+ X" is the set of all strings of length n. - A subsequence of a string w = wiws . . . wy, IS either
- B* = U,>oX™ is the set of all strings over . a subsequence of ws . . . w,, or w; followed by a sub-

sequence of wa . .. w,.
- 1 = U,>1 2" is the set of non-empty strings over .

+ Ifwisastring then w™ is defined inductively as follows:

w” =eifn=00rw”™ = ww™ ifn >0

2 Overview of language complexity

Overview

recursively enumerable

context-sensitive

context-free

Grammar | Languages Production Rules  Automaton Examples
Type-0O recursively enumerable g\o_z:gnstraints) Turing machine L = {w|wisa TM which halts}

linear bounded

Type-1 context-sensitive aAB — ayf nondeterministic L ={a"b"c"|n > 0}
Turing machine
nondeterministic namn
pushdown automata L = {a™b%|n > 0}
Type-3 regular A — aB finite state machine L = {a"|n > 0}

Type-2 context-free A— «

Meaning of symbols:

- a - terminal

+ A, B - variables

+ a, B, -stringsin {a U A}* where a, 8 are maybe empty, ~ is never empty

9Table borrowed from Wikipedia: https://en.wikipedia.org/wiki/Chomsky_hierarchy



https://en.wikipedia.org/wiki/Chomsky_hierarchy

3 Regular languages

Regular language - overview

A language is regular if and only if it can be obtained from finite languages
by applying

*+ union,

+ concatenation or

+ Kleene star

finitely many times. All regular languages are representable by regular
grammars, DFAs, NFAs and regular expressions.

Regular expressions

Useful shorthand to denotes a language.
A regular expression r over an alphabet X is one of the following:
Base cases:

+ @ the language @
- e denotes the language {e}
- a denote the language {a}

Inductive cases: If r1 and r2 are regular expressions denoting languages
L, and L, respectively (ie.L(r1) = L1 and L(r2) = L») then,

+ r1 + rz denotes the language L1 U Lo
+ r1+rz denotes the language L1 Lo
- rj denotes the language L7

Examples:

+ 0™ - the set of all strings of 0s, including the empty string

+ (00000)* - set of all strings of 0s with length a multiple of 5
- (04 1)* - set of all binary strings

Nondeterministic finite automata

NFAs are similar to DFAs, but may have more than one transition destination
for a given state/character pair.

An NFA N accepts a string w iff some accepting state is reached by N from
the start state on input w.

The language accepted (or recognized) by an NFA N is denoted L(N) and
definedas L(N) = {w | N accepts w}.

A nondeterministic finite automaton (NFA) N = (Q, X, s, A, §) is a five tuple
where

+ Qs afinite set whose elements are called states

- Y is afinite set called the input alphabet

- §: QxXU{e} — P(Q) isthetransition function (here P(Q) is the power
set of Q)

+ sand X are the same as in DFAs

Example:
© Q=1{q90,91,92,93}
- »={0,1}
| e o 1
o1 1 s qo ( {q0} ) qu% {qoélh}
start Z J L () Cq q1, q: q:
ROROSSCRS R {2 fag)
a3 {as} {as} {as}
* $=4qo
© A={g}

Deterministic finite automata

DFAs are finite state machines that can be represented as a directed graph
or in terms of a tuple.

The language accepted (or recognized) by a DFA M is denoted by L (M)
and defined as L(M) = {w | M accepts w}.

A deterministic finite automaton (DFA) M = (Q, %, s, A, d) is a five tuple
where

+ Qs afinite set whose elements are called states

- Y is afinite set called the input alphabet

- §:Q X X — Qisthe transition function

+ s € Qs the start state

+ A C Qs the set of accepting/final states

Example:
© Q={q0,q1}
1 1 - 2 ={0,1}
© 0o 1
start .@ T TR
q1 q0 q1
(0] S =4qo
© A={q}

Every string has a unique walk along a DFA. We define the extended transi-
tion functionas §* : @ x ¥* — @ defined inductively as follows:

- 8 (q,w) =qifw=c¢
+ 8"(q,w) =6"(6(q, a),x) ifw = ax.

Can create a larger DFA from multiple smaller DFAs. Suppose
+ L(Mp) = {w has an even humber of 0s} (pictured above) and
+ L(M;) = {w has an even number of 1s}.

L(Mc) = {w has even number of 0s and 1s}
Suppose My = (Qo,%, s0, Ao, o) and
M1 = (Ql, Z, S1, Al, 51) Then

* Q=QoxQ1=1{(9,91) | 90 € Qo,q1 €
1
+ s = (s0,81)
©6:QxX = Q where §((q0,91),a) =
(60(q0, a), 61(q1,a))
+ A={(q0,q1) | g0 € Apand g1 € A}

Regular language equivalences

A regular language can be represented by a regular expression, regular
grammar, DFA and NFA.

Thompson's algorithm:

regular
expressions.

®

Arden'srule: If R = Q + RP then R = QP~*.

\. J

For NFA N = (Q,%,d,s,A) and g € Q. the e-reach(q) is the set of all
states that ¢ can reach using only e-transitions.
Inductive definition of §* : Q x £* — P(Q):

- ifw=¢ 6"(q,w) = e-reach(q)

c ifw=aforaeX 6%(q,a)=ereach (Upes—reach(q) 4(p, a))

< if w = ax for a E 3,z E 2 6%(q,w) =

ereach (Upea-reach(q) (Ures* (pra) 07 (7 $)) )

Regular closure

Regular languages are closed under union, intersection, complement, dif-
ference, reversal, Kleene star, concatenation, etc.

Fooling sets

Some languages are not regular (Ex. L = {0™1" | n > 0}).

Two states p, ¢ € Q are distinguish-
able if there exists a string w € %,
such that Two states p, ¢ € Q are equivalent if
for all strings w € £*, we have that

8" (p,w) € Aand §* (q,w) ¢ A.
o 5" (p,w) € A <= 6§ (q,w) € A.

8" (p,w) & Aand 5" (q,w) € A.

For alanguage L over X a set of strings F (could be infinite) is a fooling set or
distinguishing set for L if every two distinct strings =, y € F are distinguish-
able.

\.




4 Context-free languages

Context-free languages Pushdown automata

A language is context-free if it can be generated by a context-free grammar.
A context-free grammar is a quadruple G = (V, T, P, S)

+ V is afinite set of nonterminal (variable) symbols
+ Tis afinite set of terminal symbols (alphabet)

- Pisafinite set of productions, each of the form A — « where A € V and
aisastringin (VU T)* Formally, P C V x (V. UT)™.

+ S € Vs the start symbol

Example: L = {ww®|w € {0,1}*} is described by G = (V, T, P, S)
where V, T, P and S are defined as follows:

- V={S}
- T ={0,1}

- P={S—¢]0S0| 151}
(abbreviation for S — ¢, S — 050, S — 151)

- S=8

A pushdown automaton is an NFA with a stack.

The language L = {0™1™ | n > 0} is recognized by the pushdown au-
tomaton:

A nondeterministic pushdown automaton (PDA) P = (Q, X, T, 4, s, A) isa six
tuple where

+ Qs afinite set whose elements are called states
- XY is afinite set called the input alphabet
- I'is afinite set called the stack alphabet

c0:Q x (2U{e}) x TU{e}) — P(Q x (' U {e})) is the transition
function

+ sis the start state
- Ais the set of accepting states

In the graphical representation of a PDA, transitions are typically written as
(input read), (stack pop) — (stack push).

A CFG <can be converted to a pushdown automaton.
start qs
e,e = $
GD
The PDA to the right recog-
nizes the language described
by the following grammar: g,e > S
S = 08]1je e, —1 525

Context-free closure

Context-free languages are closed under union, concatenation, and Kleene
star.

They are not closed under intersection or complement.

\.
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