
ECE 374 B Language Theory: Cheatsheet

1 Languages and strings

Languages

De�nitions

• An alphabet Σ is a �nite set of symbols.

• A string in Σ∗ is a �nite sequence of symbols in Σ.

• A language is L is a set of strings over some alphabet.

All languages represent mathematical problems.
Example: multiplication of two integers:

LMULT2 =


1× 1|1, 1× 2|2, 1× 3|3, . . .
2× 1|2, 2× 2|4, 2× 3|6, . . .

...
...

...
n× 1|n, n× 2|2n, n× 3|3n, . . .

 (1)

Language
operations

• For languages A,B the concatenation of A,B is AB =
{xy | x ∈ A, y ∈ B}.

• For languages A,B, their union is A ∪ B, intersection is
A ∩ B, and di�erence isA \ B (also written asA− B).

• For languageA ⊆ Σ∗ the complement ofA is Ā = Σ∗ \A.

• Σn is the set of all strings of length n.

• Σ∗ = ∪n≥0Σn is the set of all strings over Σ.

• Σ+ = ∪n≥1Σn is the set of non-empty strings over Σ.

Strings

De�nitions

• The length of a stringw (denoted by |w|) is the number of sym-
bols in w.

• For integer n ≥ 0, Σn is set of all strings over Σ of length n.
Σ∗ is the set of all strings over Σ.

• Σ∗ is the set of all strings of all lengths including empty string.

• ε is a string containing no symbols.

• ∅ is the empty set. It contains no strings.

• If x and y are strings then xy denotes their concatena-
tion. Recursively:

– xy = y if x = ε

– xy = a(wy) if x = aw

• v is substring of w ⇐⇒ there exist strings x, y such
that w = xvy.

– If x = ε then v is a pre�x of w

– If y = ε then v is a su�x of w

• A subsequence of a string w = w1w2 . . . wn is either
a subsequence of w2 . . . wn or w1 followed by a sub-
sequence of w2 . . . wn .

• Ifw is a string thenwn is de�ned inductively as follows:
wn = ε if n = 0 or wn = wwn−1 if n > 0

String
operations

2 Overview of language complexity

Overview

regular

context-free

context-sensitive

recursively enumerable

Grammar Languages Production Rules Automaton Examples

Type-0 recursively enumerable
γ → α
(no constraints) Turing machine L = {w|w is a TM which halts}

Type-1 context-sensitive αAβ → αγβ
linear bounded
nondeterministic
Turing machine

L = {anbncn|n > 0}

Type-2 context-free A→ α
nondeterministic
pushdown automata L = {anbn|n > 0}

Type-3 regular A→ aB �nite state machine L = {an|n > 0}

Meaning of symbols:
• a - terminal
• A,B - variables
• α, β, γ - strings in {a ∪ A}∗ where α, β are maybe empty, γ is never empty

a

aTable borrowed fromWikipedia: https://en.wikipedia.org/wiki/Chomsky_hierarchy

https://en.wikipedia.org/wiki/Chomsky_hierarchy


3 Regular languages

Regular language - overview

A language is regular if and only if it can be obtained from �nite languages
by applying

• union,

• concatenation or

• Kleene star

�nitely many times. All regular languages are representable by regular
grammars, DFAs, NFAs and regular expressions.

Regular expressions

Useful shorthand to denotes a language.
A regular expression r over an alphabet Σ is one of the following:
Base cases:

• ∅ the language∅
• ε denotes the language {ε}

• a denote the language {a}

Inductive cases: If r1 and r2 are regular expressions denoting languages
L1 and L2 respectively (i.e.,L(r1) = L1 and L(r2) = L2) then,

• r1 + r2 denotes the language L1 ∪ L2

• r1·r2 denotes the language L1L2

• r∗1 denotes the language L∗1

Examples:

• 0∗ - the set of all strings of 0s, including the empty string

• (00000)∗ - set of all strings of 0s with length a multiple of 5

• (0 + 1)∗ - set of all binary strings

Nondeterministic �nite automata
NFAs are similar to DFAs, but may have more than one transition destination
for a given state/character pair.

An NFAN accepts a string w i� some accepting state is reached byN from
the start state on input w.

The language accepted (or recognized) by an NFA N is denoted L(N) and
de�ned as L(N) = {w | N accepts w}.

A nondeterministic �nite automaton (NFA) N = (Q,Σ, s, A, δ) is a �ve tuple
where

• Q is a �nite set whose elements are called states

• Σ is a �nite set called the input alphabet

• δ : Q×Σ∪{ε} → P(Q) is the transition function (hereP(Q) is the power
set ofQ)

• s and Σ are the same as in DFAs

Example:

q0start q1 q2 q3

0,1

1 0

ε

1

0,1

• Q = {q0, q1, q2, q3}

• Σ = {0, 1}

• δ :

ε 0 1
q0 {q0} {q0} {q0, q1}
q1 {q1, q2} {q2} ∅
q2 {q2} ∅ {q3}
q3 {q3} {q3} {q3}

• s = q0

• A = {q3}

For NFA N = (Q,Σ, δ, s, A) and q ∈ Q, the ε-reach(q) is the set of all
states that q can reach using only ε-transitions.
Inductive de�nition of δ∗ : Q× Σ∗ → P(Q):

• if w = ε, δ∗(q, w) = ε-reach(q)

• if w = a for a ∈ Σ, δ∗(q, a) = εreach
(⋃

p∈ε-reach(q) δ(p, a)
)

• if w = ax for a ∈ Σ, x ∈ Σ∗ : δ∗(q, w) =

εreach
(⋃

p∈ε-reach(q)

(⋃
r∈δ∗(p,a) δ

∗(r, x)
))

Regular closure

Regular languages are closed under union, intersection, complement, dif-
ference, reversal, Kleene star, concatenation, etc.

Deterministic �nite automata
DFAs are �nite state machines that can be represented as a directed graph
or in terms of a tuple.

The language accepted (or recognized) by a DFA M is denoted by L(M)
and de�ned as L(M) = {w |M accepts w}.

A deterministic �nite automaton (DFA) M = (Q,Σ, s, A, δ) is a �ve tuple
where

• Q is a �nite set whose elements are called states

• Σ is a �nite set called the input alphabet

• δ : Q× Σ→ Q is the transition function

• s ∈ Q is the start state

• A ⊆ Q is the set of accepting/�nal states

Example:

q0start q1

1
0

1

0

• Q = {q0, q1}

• Σ = {0, 1}

• δ :
0 1

q0 q1 q0
q1 q0 q1

• s = q0

• A = {q0}

Every string has a unique walk along a DFA. We de�ne the extended transi-
tion function as δ∗ : Q× Σ∗ → Q de�ned inductively as follows:

• δ∗(q, w) = q if w = ε

• δ∗(q, w) = δ∗(δ(q, a), x) if w = ax.

Can create a larger DFA from multiple smaller DFAs. Suppose

• L(M0) = {w has an even number of 0s} (pictured above) and

• L(M1) = {w has an even number of 1s}.

L(MC) = {w has even number of 0s and 1s}

q(0,0)start

q(0,1)

q(1,0)

q(1,1)

11

0

0

0

0

11

Suppose M0 = (Q0,Σ, s0, A0, δ0) and
M1 = (Q1,Σ, s1, A1, δ1). Then

• Q = Q0×Q1 = {(q0, q1) | q0 ∈ Q0, q1 ∈
Q1}

• s = (s0, s1)

• δ : Q × Σ → Q, where δ((q0, q1), a) =
(δ0(q0, a), δ1(q1, a))

• A = {(q0, q1) | q0 ∈ A0 and q1 ∈ A1}

Regular language equivalences

A regular language can be represented by a regular expression, regular
grammar, DFA and NFA.

regular
expressions

DFAsNFAs

→
NFA→

D
FA

algebraic m
ethod

subset construction
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’s
alg
o

Thompson’s algorithm:

L = Ls ∪ Lt L = L∗s

L = Ls · Lt

Arden’s rule: IfR = Q+ RP thenR = QP∗ .

Fooling sets

Some languages are not regular (Ex. L = {0n1n | n ≥ 0}).

Two states p, q ∈ Q are distinguish-
able if there exists a string w ∈ Σ∗ ,
such that

δ
∗
(p, w) ∈ A and δ∗(q, w) /∈ A.

or

δ
∗
(p, w) /∈ A and δ∗(q, w) ∈ A.

Two states p, q ∈ Q are equivalent if
for all strings w ∈ Σ∗ , we have that

δ
∗
(p, w) ∈ A ⇐⇒ δ

∗
(q, w) ∈ A.

For a languageL overΣ a set of stringsF (could be in�nite) is a fooling set or
distinguishing set for L if every two distinct strings x, y ∈ F are distinguish-
able.



4 Context-free languages

Context-free languages

A language is context-free if it can be generated by a context-free grammar.
A context-free grammar is a quadrupleG = (V, T, P, S)

• V is a �nite set of nonterminal (variable) symbols

• T is a �nite set of terminal symbols (alphabet)

• P is a �nite set of productions, each of the formA→ αwhereA ∈ V and
α is a string in (V ∪ T )∗ Formally, P ⊆ V × (V ∪ T )∗ .

• S ∈ V is the start symbol

Example: L = {wwR|w ∈ {0, 1}∗} is described by G = (V, T, P, S)
where V, T, P and S are de�ned as follows:

• V = {S}

• T = {0, 1}

• P = {S → ε | 0S0 | 1S1}
(abbreviation for S → ε, S → 0S0, S → 1S1)

• S = S

Pushdown automata
A pushdown automaton is an NFA with a stack.

The language L = {0n1n | n ≥ 0} is recognized by the pushdown au-
tomaton:

A nondeterministic pushdown automaton (PDA)P = (Q,Σ,Γ, δ, s, A) is a six
tuple where

• Q is a �nite set whose elements are called states

• Σ is a �nite set called the input alphabet

• Γ is a �nite set called the stack alphabet

• δ : Q × (Σ ∪ {ε}) × (Γ ∪ {ε}) → P(Q × (Γ ∪ {ε})) is the transition
function

• s is the start state

• A is the set of accepting states

In the graphical representation of a PDA, transitions are typically written as
〈input read〉, 〈stack pop〉 → 〈stack push〉.

A CFG can be converted to a pushdown automaton.

The PDA to the right recog-
nizes the language described
by the following grammar:

S → 0S|1|ε

qsstart

q2

ql

qa

qp21

ε, ε→ $

ε, ε→ S

ε, S → 1
ε, S → ε
0, 0→ ε
1, 1→ ε

ε, $→ ε

ε, S → S

ε, ε→ 0

Context-free closure
Context-free languages are closed under union, concatenation, and Kleene
star.

They are not closed under intersection or complement.
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