
ECE 374 B: Algorithms and Models of Computation, Fall 2024
Midterm 2 – November 5th, 2024

• You will have 75 minutes (1.25 hours) to solve all the problems. Most have multiple
parts. Don’t spend too much time on questions you don’t understand and focus on
answering as much as you can! Make sure to check both sides of all the pages and make
sure you answered everything. Time is a factor! Budget yours wisely.

• No resources are allowed for use during the exam except a multi-page cheatsheet and
scratch paper on the back of the exam. Do not tear out the cheatsheet or the scratch
paper! It messes with the auto-scanner.

• You should write your answers completely in the space given for the question. We will not
grade parts of any answer written outside of the designated space.

• Please use a dark-colored pen unless you are absolutely sure your pencil writing is forceful
enough to be legible when scanned. We will take off points if we have difficulty reading
the uploaded document.

• Incorrect algorithms will receive a score of 0, but slower than necessary but correct
algorithms will always receive some points, even brute force ones. Thus, you should
prioritize the correctness of your submitted algorithms over speed; you will receive more
points that way. On the other hand, submit the fastest algorithms that you know are
correct; faster algorithms will receive more points.

• Any recursive backtracking algorithm or dynamic programming algorithm given without
an English description of the recursive function (i.e., a description of the output of the
function in terms of their inputs) will receive a score of 0.

• Any greedy algorithm or a modification of a standard graph algorithm given without a
proof of correctness will receive a score of 0.

• For problems with a graph given as input, you may assume the graph is simple (i.e., it has
no self-loops or parallel edges).

• Only algorithms referenced in the cheat sheet may be referred to as a “black box”. You may
not simply refer to a prior lab/homework for the solution and must give the full answer.

• Unless explicitly mentioned, a runtime analysis is required for each given algorithm.

• Don’t cheat. If we catch you, you will get an F in the course.

• Good luck!

Name:

NetID:

ECE 374 B Midterm 2 Fall 2024

1 Short answer - 18 points

Answer the following questions. You may briefly (no more than 2 sentences) justify your answers,
but a complete proof is not required.

(a) For each of the following recurrences, do the following:

• Provide a tight asymptotic upper bound.

• No partial credit. Draw a square around your final answer.

(i)

A(n) = A(n/2) + A(n/3) + A(n/4) + n2

(ii)

B(n) = 2B(n/4) +
p

n

(iii)

C(n, m) = C(n/2, m/3) +O(nm)

(b) Consider two numbers x and y, where B is the base, and x1, x0, y1, y0 are integers. How
does Karatsuba’s algorithm compute x y using three multiplications instead of 4?

Hint: Remember Karatsuba’s algorithm broke n-digit integers x and y into two m= n/2 digit
numbers: x = x1Bm + x0 and y = y1Bm + y0

Note: This is a short answer (no more than two sentences). Equations are allowed but
everything needs to be concise.

1

ECE 374 B Midterm 2 Fall 2024

2 Short answer II - 12 points

Answer the following questions. You may briefly (no more than 2 sentences) justify your
answers, but a complete proof is not required.

(a) You are given two character sequences A[0 . . . n − 1], B[0 . . . m − 1]. What are the
minimum and maximum alignment possible between these two sequences? Assume
mismatch cost (α) and insertion/deletion (δ) costs are both equal to 1.

(b) Recall in lecture/discussion we discussed the median of median (linear time selection)
algorithm. The algorithm we discussed breaks a array into lists of size five. What if we
break the array into lists of size 15. What is the recurrence and asymptotic running
time for the this modified version of linear time selection

2

ECE 374 B Midterm 2 Fall 2024

3 Short answer III - 15 points

Answer the following questions. You may briefly (no more than 2 sentences) justify your
answers, but a complete proof is not required.

(a) Consider the following graph:

1

2

3

4

5

6

1

1

3

8

-1
3

1

2

1

1

We call the Floys-Warshall algorithm on this graph and fill out the three dimensional
d(i, j, k) matrix.
What is the value of d(2, 4,3)?

(b) You have a directed graph G = (V, E) with all positive edge weights. Describe an
algorithm that finds the shortest path between all pairs of vertices. You can use any
of the cheat sheet algorithms as a black box.

3

ECE 374 B Midterm 2 Fall 2024

4 Dynamic Programming - 10 points

In class we discussed the longest increasing subsequence problem but just to recap: we are
given a sequence of n integers and the goal is to find the longest increasing subsequence. We
also know that we can find the length of the longest increasing subsequence in polynomial
time. But how do we find the actual LIS (the actual values that make up the LIS).

Basically if the input is: [6, 3,5, 2,7, 8,1], the output should be: [3, 5,7, 8] (The actual
subsequence). Provide an algorithm (or modify the existing LIS algorithm) that returns
the longest increasing subsequence values. I included the LIS code from lectures/labs
below so you could save some time and only include the modifications to the original
algorithm.

LIS-Iterative(A[1..n]):
A[n+ 1] =∞

int LIS[0..n− 1, 0..n]

for j = 0 . . . n) if A[i] ≤ A[j] then LIS[0][j] = 1

for i = 1 . . . n− 1 do

for j = i . . . n− 1 do

if (A[i]≥ A[j])

LIS[i, j] = LIS[i − 1, j]

else

LIS[i, j] =max(LIS[i − 1, j], 1+ LIS[i − 1, i])

Return LIS[n, n+ 1]

4

ECE 374 B Midterm 2 Fall 2024

5 Dynamic programming - 15 points

Assume you have a chain that is n links long that you need to sell. However, the value of the
chain is not linearly proportional with the number of links. You are given an array A[1 . . . n]
where A[i] stores the price of a chain with n links (you can also assume A[0] = 0. no links =
no chain = no value).

You look at the prices and realize that multiple smaller chains would be more valuable than
the n-link chain you have right now. But you also know that dividing the chain requires you
cut (and destroy) a link meaning that every division reduces the total number of links.

Show a dynamic programming algorithm that finds the maximum value you can obtain from
a n-link chain assuming you sub-divide it correctly.

Recurrence and short English description(in terms of the parameters):

Memoization data structure and evaluation order:

Return value:

Time Complexity:

5

ECE 374 B Midterm 2 Fall 2024

6 Graphing Algorithm I - 15 points

In the traveling salesman problem, we are trying to find the path of smallest length that
visits every vertex exactly once. For a normal graph this is a very difficult problem but for
simple cases, an efficient solution is possible.

Suppose you had a directed acyclic graph (DAG) G = (V, E) with all positive edge weights.
Describe a efficient algorithm that returns the value of the shortest path that visits every
vertex in the graph exactly once. Note that not every DAG has a path that visits every vertex
once and so if there is no such path, your algorithm should return −1. The beginning and
ending vertices can be any vertices in G.

6

ECE 374 B Midterm 2 Fall 2024

7 Graphing Algorithm II - 15 points

You are give a directed graph G = (V, E) where every edge weight can be positive or negative
and is marked as red or black. A red-black path is a path in the graph where edges alternate
between red and black and can start with either a black or red edge.

Give an algorithm that gives you the shortest possible red-black path between vertices s and
t.

7

ECE 374 B Midterm 2 Fall 2024

EXTRA CREDIT (1 pt)

Name the instructors of this course (need both for credit):

Instructor 1 name:

Instructor 2 name:

EXTRA CREDIT (2 pts)

Name a TA and the discussion section time he covers.

TA name:

Discussion section time:

8

ECE 374 B Midterm 2 Fall 2024

This page is for additional scratch work!

9

ECE 374 B Algorithms: Cheatsheet

1 Recursion

Simple recursion

Definitions

• Reduction: solve one problem using the solution to another.

• Recursion: a special case of reduction - reduce problem to a
smaller instance of itself (self-reduction).

– Problem instance of size n is reduced to one or more in-
stances of size n− 1 or less.

– For termination, problem instances of small size are solved
by some other method as base cases

Arguably the most famous example of recursion. The goal is to
move n disks one at a time from the first peg to the last peg.

Pseudocode: Tower of Hanoi

Hanoi (n, src, dest, tmp):
if (n > 0) then

Hanoi (n− 1, src, tmp, dest)
Move disk n from src to dest
Hanoi (n− 1, tmp, dest, src)

Tower
of Hanoi

Recurrences
Suppose you have a recurrence of the form T (n) = rT (n/c) + f(n).

The master theorem gives a good asymptotic estimate of the recurrence. If
the work at each level is:

Decreasing: rf(n/c) = κf(n) where κ < 1 T (n) = O(f(n))
Equal: rf(n/c) = f(n) T (n) = O(f(n) · logcn)

Increasing: rf(n/c) = Kf(n) whereK > 1 T (n) = O(nlogcr)

Some useful identities:

• Sum of integers:
∑n

k=1 k =
n(n+1)

2

• Geometric series closed-form formula:
∑n

k=0 ark = a 1−rn+1

1−r

• Logarithmic identities: log(ab) = log a + log b, log(a/b) = log a −
log b, alogc b = blogc a (a, b, c > 1), loga b = logc b/ logc a.

Backtracking

Backtracking is the algorithm paradigm involving guessing the solution to a
single step in somemulti-step process and recursing backwards if it doesn’t
lead to a solution. For instance, consider the longest increasing subse-
quence (LIS) problem. You can either check all possible subsequences:

Pseudocode: LIS - Naive enumeration

algLISNaive(A[1..n]):
maxmax = 0
for each subsequenceB ofA do

ifB is increasing and |B| > max then
max = |B|

returnmax

On the other hand, we don’t need to generate every subsequence;

we only need to generate the subsequences that are increasing:
Pseudocode: LIS - Backtracking

LIS_smaller(A[1..n], x):
if n = 0 then return 0
max = LIS_smaller(A[1..n− 1], x)
ifA[n] < x then

max = max {max, 1 + LIS_smaller(A[1..(n− 1)], A[n])}
returnmax

Divide and conquer

Divide and conquer is an algorithm paradigm involving the decomposition
of a problem into the same subproblem, solving them separately and
combining their results to get a solution for the original problem.

Sorting
algo-
rithms

Algorithm Runtime Space

Mergesort O(n logn)
O(n logn)
O(n) (if optimized)

Quicksort O(n2)
O(n logn) if using MoM

O(n)

We can divide and conquer multiplication like so:

bc = 10
n
bLcL + 10

n/2
(bLcR + bRcL) + bRcR.

We can rewrite the equation as:

bc = b(x)c(x) = (bLx + bR)(cLx + cR) = (bLcL)x
2

+ ((bL + bR)(cL + cR)− bLcL − bRcR) x

+ bRcR,

Its running time isO(nlog2 3) = O(n1.585).

Karatsuba’s
algorithm

Linear time selection
The median of medians (MoM) algorithms give a element that is larger than
3
10 ’s and smaller than 7

10 ’s of the array elements. This is used in the linear
time selection algorithm to find element of rank k.

Pseudocode: Quickselect with median of medians

Median-of-medians (A, i):
sublists = [A[j:j+5] for j← 0, 5, . . . , len(A)]
medians = [sorted (sublist)[len (sublist)/2]

for sublist ∈ sublists]

// Base case
if len (A)≤ 5 return sorted (a)[i]

// Find median of medians
if len (medians)≤ 5

pivot = sorted (medians)[len (medians)/2]
else

pivot =Median-of-medians (medians, len/2)

// Partitioning step
low = [j for j ∈ A if j < pivot]
high = [j for j ∈ A if j > pivot]

k = len (low)
if i < k

return Median-of-medians (low, i)
else if i > k

return Median-of-medians (low, i-k-1)
else
return pivot

Dynamic programming

Dynamic programming (DP) is the algorithm paradigm involving the computation of a recursive backtracking algorithm iteratively to avoid the recomputation of
any particular subproblem.

Longest increasing subsequence

The longest increasing subsequence problem asks for the
length of a longest increasing subsequence in a unordered
sequence, where the sequence is assumed to be given as an
array. The recurrence can be written as:

LIS(i, j) =

0 if i = 0

LIS(i− 1, j) if A[i] ≥ A[j]

max

{
LIS(i− 1, j)

1 + LIS(i− 1, i)
else

Pseudocode: LIS - DP

LIS-Iterative(A[1..n]):
A[n+ 1] =∞
for j ← 0 to n

if A[i] ≤ A[j] then LIS[0][j] = 1

for i← 1 to n− 1 do
for j ← i to n− 1 do

if A[i] ≥ A[j]
LIS[i, j] = LIS[i− 1, j]

else
LIS[i, j] = max

{
LIS[i− 1, j],

1 + LIS[i− 1, i]
}

return LIS[n, n+ 1]

Edit distance

The edit distance problem asks how many edits we need to
make to a sequence for it to become another one. The recur-
rence is given as:

Opt(i, j) = min

αxiyj +Opt(i− 1, j − 1),

δ +Opt(i− 1, j),

δ +Opt(i, j − 1)

Base cases: Opt(i, 0) = δ · i and Opt(0, j) = δ · j
Pseudocode: Edit distance - DP

EDIST (A[1..m], B[1..n])
for i← 1 tom doM [i, 0] = iδ
for j ← 1 to n doM [0, j] = jδ

for i = 1 tom do
for j = 1 to n do

M [i][j] = min

COST
[
A[i]

][
B[j]

]

+M [i− 1][j − 1],

δ +M [i− 1][j],

δ +M [i][j − 1]

2 Graph algorithms

Graph basics

A graph is defined by a tuple G = (V,E) and we typically define n = |V | and m = |E|. We define (u, v) as the edge from u to v. Graphs can be represented
as adjacency lists, or adjacency matrices though the former is more commonly used.

• path: sequence of distinct vertices v1, v2, . . . , vk such that vivi+1 ∈ E for 1 ≤ i ≤ k − 1. The length of the path is k − 1 (the number of edges in the path).
Note: a single vertex u is a path of length 0.

• cycle: sequence of distinct vertices v1, v2, . . . , vk such that (vi, vi+1) ∈ E for 1 ≤ i ≤ k − 1 and (vk, v1) ∈ E. A single vertex is not a cycle according to
this definition.
Caveat: Sometimes people use the term cycle to also allow vertices to be repeated; we will use the term tour.

• A vertex u is connected to v if there is a path from u to v.

• The connected component of u, con(u), is the set of all vertices connected to u.

• A vertex u can reach v if there is a path from u to v. Alternatively v can be reached from u. Let rch(u) be the set of all vertices reachable from u.

Directed acyclic graphs

Directed acyclic graphs (dags) have an intrinsic ordering of the vertices that
enables dynamic programming algorithms to be used on them.
A topological ordering of a dagG = (V,E) is an ordering≺ on V such that
if (u, v) ∈ E then u ≺ v.

Pseudocode: Kahn’s algorithm

Kahn(G(V,E),u):
toposort←empty list
for v ∈ V :

in(v)← |{u | u→ v ∈ E}|
while v ∈ V that has in(v) = 0:

Add v to end of toposort
Remove v from V
for v in u→ v ∈ E:

in(v)← in(v)− 1
return toposort

Running time: O(n + m)

• A dag may have multiple topological sorts.

• A topological sort can be computed by DFS, in particular by listing the
vertices in decreasing post-visit order.

DFS and BFS
Pseudocode: Explore (DFS/BFS)

Explore(G,u):
for i← 1 to n:

Visited[i]← False
Add u to ToExplore and to S
Visited[u]← True
Make tree T with root as u
while B is non-empty do

Remove node x from B
for each edge (x, y) inAdj(x) do

if Visited[y] = False
Visited[y]← True
Add y to B, S, T (with x as parent)

Note:

• If B is a queue, Explore becomes BFS.
• If B is a stack, Explore becomes DFS.

Pre/post
num-
bering

Pre and post numbering aids in analyzing the graph structure. By
looking at the numbering we can tell if a edge (u, v) is a:

• Forward edge: pre(u) < pre(v) < post(v) < post(u)

• Backward edge: pre(v) < pre(u) < post(u) < post(v)

• Cross edge: pre(u) < post(u) < pre(v) < post(v)

Strongly connected components

• Given G, u is strongly
connected to v if v ∈
rch(u) and u ∈ rch(v).

• A maximal group of
vertices that are all
strongly connected to
one nother is called a
strong component.

G:

ab c

de f

g h

GSCC

b, e, f a, c, d

g h

Pseudocode: Metagraph - linear time

Metagraph(G(V,E)):
Compute rev(G) by brute force
ordering← reverse postordering of V in rev(G)

by DFS(rev(G), s) for any vertex s
Mark all nodes as unvisited
for each u in ordering do

if u is not visited and u ∈ V then
Su ← nodes reachable by u by DFS(G, u)
Output Su as a strong connected component
G(V,E)← G− Su

Shortest paths

Dijkstra’s algorithm:
Find minimum distance from vertex s to all other vertices in graphs without
negative weight edges.

Pseudocode: Dijkstra

for v ∈ V do
d(v)←∞

X ← ∅
d(s, s)← 0
for i← 1 to n do

v ← argminu∈V −X d(u)
X = X ∪ {v}
for u in Adj(v) do

d(u)← min {(d(u), d(v) + ℓ(v, u))}
return d

Running time:O(m+nlogn) (if using a Fibonacci heap as thepriority queue)

Bellman-Ford algorithm:
Find minimum distance from vertex s to all other vertices in graphs without
negative cycles. It is a DP algorithm with the following recurrence:

d(v, k) =

0 if v = s and k = 0

∞ if v ̸= s and k = 0

min

{
minuv∈E {d(u, k − 1) + ℓ(u, v)}
d(v, k − 1)

else

Base cases: d(s, 0) = 0 and d(v, 0) =∞ for all v ̸= s.
Pseudocode: Bellman-Ford

for each v ∈ V do
d(v)←∞

d(s)← 0

for k ← 1 to n− 1 do
for each v ∈ V do

for each edge (u, v) ∈ in(v) do
d(v)← min{d(v), d(u) + ℓ(u, v)}

return d

Running time: O(nm)

Floyd-Warshall algorithm:
Find minimum distance from every vertex to every vertex in a graph without
negative cycles. It is a DP algorithm with the following recurrence:

d(i, j, k) =

0 if i = j

∞ if (i, j) /∈ E and k = 0

min

{
d(i, j, k − 1)

d(i, k, k − 1) + d(k, j, k − 1)
else

Then d(i, j, n − 1) will give the shortest-path distance from i to j .
Pseudocode: Floyd-Warshall

Metagraph(G(V,E)):
for i ∈ V do

for j ∈ V do
d(i, j, 0)← ℓ(i, j)

(* ℓ(i, j)←∞ if (i, j) /∈ E, 0 if i = j *)

for k ← 0 to n− 1 do
for i ∈ V do

for j ∈ V do

d(i, j, k)← min

{
d(i, j, k − 1),

d(i, k, k − 1) + d(k, j, k − 1)

for v ∈ V do
if d(i, i, n− 1) < 0 then

return "∃ negative cycle inG"

return d(·, ·, n− 1)

Running time: Θ(n3)

	Short answer - 18 points
	Short answer II - 12 points
	Short answer III - 15 points
	Dynamic Programming - 10 points
	Dynamic programming - 15 points
	Graphing Algorithm I - 15 points
	Graphing Algorithm II - 15 points

