
ECE 374 B Homework 3 Fall 2024

1. Show that the following operations are closed for regular languages!

(a) Set difference (L1\L2)

Solution: We can prove this in two ways.

Proof 1. Use L1\L2 = L1 ∩ L2. If we can prove that regular languages are closed
under intersection (See 1c for proof) and complement, we prove the same for
L1\L2.

Subproof 1. Regular languages are closed under complement.
If L is a regular language accepted by a DFA (Q,Σ,δ, s, A), then L can be repre-
sented by a DFA (Q,Σ,δ, s,Q\A). Hence, L is also regular.

As regular languages are closed under complement and intersection, it follows
from L1\L2 = L1 ∩ L2 that L1\L2 is also regular.

Proof 2. Let DFAs M1 = (Q1,Σ,δ1, s1, A1) and M2 = (Q2,Σ,δ2, s2, A2) accept L1
and L2, respectively. Every string that is accepted by M1 and rejected by M2 is in
language L1\L2. We can define a DFA, M , for L1 ∩ L2 as

Q =Q1 ×Q2

s = (s1, s2)

δ((q1, q2), a) = (δ1(q1, a),δ2(q2, a))

A= A1 ×Q\A2

Hence, L1\L2 is regular. ■

(b) Reversal (LR
1 =
�

wR|w ∈ L1

	

)

Solution: As L1 is regular, it can be represented by an NFA. So if we show that
we can construct an NFA for LR

1 , we can prove that regular languages are closed
under reversal.

How do we construct an NFA for LR
1?

• The start state of L1 becomes an accepting state of LR
1 .

• The accepting state of L1 becomes the start state of LR
1 . But FAs can have

multiple accepting states. We can add an auxiliary accepting state with
ε-transitions from the original accepting states.

• Reverse the transition directions.
Let’s look at an example.

L1:
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sstart a b c

0,1

0 0, 1 1

0,1

LR
1 :

s0start s a b c

0, 1

0 0,1 1

0, 1

Unlabled transitions are ε-transitions.

Formally, let (Q,Σ,δ, s, A) represent an NFA that accepts L1. An NFA that accepts
LR

1 can be written as

QR =Q ∪
�

s0

	

ΣR = Σ

sR = s0

AR = {s}

δR =

(

δR(s0,ε) = q ∀ q ∈ A

δR(q, a) = q′ ∀ q, q′ ∈Q, a ∈ Σ if δ(q′, a) = q

Hence, LR
1 is a regular language.

■

(c) Intersection (L1 ∩ L2)

Solution: There are two ways to prove this.

Proof 1. Use L1 ∩ L2 = L1 ∪ L2. Let’s prove that regular languages are closed
under union and complement (already covered in 1a).

Subproof 1. Regular languages are closed under union.
Let L1 and L2 be represented by regular expressions R1 and R2, respectively.
Then L1 ∪ L2 can be represented by regular expression R1+R2. Hence, L1 ∪ L2 is
also regular. Alternatively, we can show it using NFAs for L1 and L2 (similar to
Thompson’s Algorithm).

Finally, since we have shown that regular languages are closed under union and
complement, they are closed under intersection also, following L1∩ L2 = L1 ∪ L2.
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Proof 2. Let DFAs M1 = (Q1,Σ,δ1, s1, A1) and M2 = (Q2,Σ,δ2, s2, A2) accept
L1 and L2, respectively. Every string that is accepted by both M1 and M2 is in
language L1 ∩ L2. We can define a DFA, M , for L1 ∩ L2 as

Q =Q1 ×Q2

s = (s1, s2)

δ((q1, q2), a) = (δ1(q1, a),δ2(q2, a))

A= A1 × A2

Hence, L1 ∩ L2 is regular. ■
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2. Let divide operation be: A/B =
�

w|wx ∈ A for some x ∈ B
	

. Show that the divide operation
is closed for regular languages.

Solution: Take some arbitrary regular languages A, B. Since A is regular, there
exists some DFA M = (Q, s,δ,Σ, F) that describes A. Consider the following DFA
M ′ := (Q, s,δ,Σ, F ′), with F ′ defined as

F ′ :=
�

q ∈Q : there exists x ∈ B s.t. reading x at state q in M ends in F
	

Then M ′ is a DFA that describes A/B, which by Kleene’s Theorem implies A/B is
regular.

Note: A reader may notice that we haven’t given a way to compute F ′; supposing
that A and B are infinite this may perhaps be computationally infeasible. However,
that doesn’t matter! To show regularity, we only need to show such a machine exists.
Since F ′ ⊆Q by definition and describes A/B, we succinctly prove that A/B is regular
for any arbitrary regular languages A, B. ■
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3. Show that the following languages (Σ= {0,1}) are regular (or not):

(a) L3a =
�

1k y|y ∈ {0, 1}∗ and y contains at least k 1’s, for k ≥ 1
	

Solution: The language is regular. For any string w ∈ L3a, we notice that w can
be rewrite as w= 1 · y where y has at least one 1. Thus, the regular expression is
L3a = 1(0+ 1)∗1(0+ 1)∗. ■

(b) L3b =
�

1k y|y ∈ {0,1}∗ and y contains at most k 1’s, for k ≥ 1
	

Solution: Let F be the language 1+0. Let x and y be arbitrary strings in F.
Then x = 1i0 and y = 1 j0 for some i > j ≥ 1.
Let z = 1i .
Then we have xz = 1i01i ∈ L3b
On the other hand, we get yz = 1 j01i . Notice that the largest k we can choose in
this case is j. However, the number of 1’s in y will still be greater than k. So we
state that yz /∈ L.
Thus z distinguishes x and y. We conclude that F is an infinite fooling set for
L3b, so L3b cannot be regular. ■
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4. Let
Σ2 =

¨

�

0
0

�

,

�

0
1

�

,

�

1
0

�

,

�

1
1

�

«

.

Consider the top and bottom rows to be strings of 0’s and 1’s. For each of the following
languages, determine if they are regular (or not):

(a) L4a =
�

w ∈ Σ∗2| the bottom row of w is three times the top row
�

Solution: Idea: In order to to prove that C is regular, we need to construct
a DFA that recognizes this language. To do so, we can use the property that
regular languages are closed under reversal and read the input backward, i.e.
start with the low order bits. Multiplying by 3 in binary is equivalent to adding
the multiplicand with the result of shifting the multiplicand itself to the left by
one bit. For example, three times 111 (7) is equal to 111 plus 1110 (14) which
is 10101 (21). So, if we represent the top and bottom rows of a string w that is
in the language by TnTn−1 . . . T1T0 and BnBn−1 . . . B1B0, respectively, they must
satisfy the following condition:

Tn Tn−1 . . . T1 T0
Tn−1 Tn−2 . . . T0 0
Bn Bn−1 . . . B1 B0

We can see that any valid input string must have B0 = T0. For the relations
between Bi and Ti for i ≥ 1, a valid value for Bi will depend on the values of
Ti and Ti−1 as well as whether or not there exists a carry-in c in

i (which is equal
to the carry-out couti−1 from the previous sum). The following logical equations
describe exactly how they are related for i ≥ 1:

Bi = Ti ⊕ Ti−1 ⊕ c in
i

c in
i+1 =
�

Ti ∧ Ti−1

�

∨
�

�

Ti ∨ Ti−1

�

∧ c in
i

�

= couti

Besides that, it can be seen that a valid input also requires that c in
n+1 = coutn = 0

and Tn = 0.

Therefore, in order to prove that C is regular, we need a DFA with a total
of 4 states ( not taking into account the sink state) to keep track of all possible
combinations of c in

i and Ti−1 and, for each of these states, there will be exactly
two possible valid output transitions depending on whether Ti is equal to 0 or 1
(the corresponding value of Bi will be given by the above equation).

State Diagram: Let qi j denote the state for which the carry-in is equal to i
and the previous symbol seen at the top is equal to j and let qsink denote the sink
state. Then, the following DFA recognizes C .
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*the transition from the sink state to itself was omitted ■

(b) L4b =
�

w ∈ Σ∗2| each row of w contains a equal number of 1’s
	

Solution: We can construct a simple fooling set for this language as F =
¨

�

1
0

�n

|n> 0

«

. Then we can take any two strings from the language x =

�

1
0

�i

and y =

�

1
0

� j

for i ̸= j and construct a suffix z =

�

0
1

�i

. We see that xz ∈ L4b but
yz /∈ L4b. Therefore F is a fooling set of L4b. Since F is infinite, the DFA that
represents L4b would need to be infinite but that is impossible. So the language
is not representable by a DFA and is therefore not regular.

■
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