
ECE 374 B Homework 4 Fall 2024

1. Solve the following recurrence relations. For parts (a) and (b), give an exact solution. For
parts (c) and (d), give an asymptotic one. In both cases, justify your solution.

(a) A(n) = A
�

1
2 n
�

+ n3

Solution: We simply find the work done at every level. At level k we have
(k

2k)3 =
1

23k k3 work. Thus the exact amount of work done is (using the fact that
we have a geometric sequence)

A(n) = n3 +
1
8

n3 +
1
64

n3 + · · ·+ 1

= n3 ·
1− 1/(8n3)

1− 1/8

=
8n3 − 1

7

■

(b) B (n) = 2B
�

1
4 n
�

+
p

n

Solution: We again find the work done at every level. At level k we have
2k
q

n
4k =

p
n. Since there are log4 n = log n

2 . So we simply have that B(n) =
log n

2 ■

(c) C (n) = C
�

1
3 n
�

+ C
�

2
3 n
�

+O (n)

Solution: We again find the work done at every level. At level k we have

O(n) ·
1
3k

k
∑

i=0

�

�

k
i

�

2i

�

= O(n)

work. Since there is O(log n) number of levels, we conclude an asymptotic bound
of C(n) = O(n) ·O(log n) = O(n log n). ■

(d) D (n) = D
�

1
15 n
�

+ D
�

1
10 n
�

+ 2D
�

1
6 n
�

+
p

n

Solution: We can get a lower and upper bound by using the number of deepest
and shallowest leaves, noticing that at leaves we have constant amount of work.
The deepest leaf will be at level k = log6 n, and we can upper bound the number
of leaves by 4k = 4log6 n = nlog6 4. So we have overestimate D(n) = O(nlog6 4).

On the other hand, the shallowest leaf will be at level k = log15 n, and we
can lower bound the number of leaves by 4k = 4log15 n = nlog15 4. So we have
underestimate D(n) = Ω(nlog15 4). ■

1

ECE 374 B Homework 4 Fall 2024

2. Suppose you are given a sorted sequence of distinct integers a =
�

a1, a2, . . . , an

�

drawn
from 1 to m where n < m. Give an O

�

lg (n)
�

algorithm to find the smallest integer ≤ m
that is not present in a.

Solution: The idea is, since array a is sorted and elements are distinct. So if ai = i+1,
all elements up to i were present. If ai ̸= i+1, the partial array up to i missed integers.
We can define a binary search function to find the smallest missing integer, where a
denotes searching array.

FindMatch(ℓ, r) :
left, right← 0, len(a)− 1
while left≤ right :

mid= (left+right)//2
if a[mid] ==mid+ 1 :

left=mid+ 1
else:

right=mid− 1
return left+ 1

Binary search algorithm shrink searching window to half in each iteration, so the time
complexity is O(log n). ■

2

ECE 374 B Homework 4 Fall 2024

3. Let A, B be two n × n matrices of real numbers. In your Linear Algebra class, you
might’ve learned the brute-force algorithm to compute AB in O(n3) time. However, using
a similar strategy to Karatasuba’s algorithm adapted to matrices, a mathematician named
Volker Strassen invented a divide-and-conquer algorithm to perform the multiplication
in O(n2.8074) time, dutifully named Strassen’s Algorithm. From now on, assume you’re
given a black box, Strassen(A, B), which computes the matrix product of two matrices
A, B ∈ Rn×n. We assume that multiplication and addition of two real numbers is constant.

Note: No Linear Algebra knowledge should be used to solve this problem

(a) Suppose you needed to hand-compute the "power of 2" matrix power A2k
for some

matrix A ∈ Rn×n and k ∈ N. Give an efficient algorithm to solve this problem and
determine it’s time complexity in terms of m= 2k, that is in terms of the power on the
matrix A.

Solution: The key idea is that A2k+1
= A2k

A2k
, from which the recursive relation

follows. We call our recursive relation Pow2(A, k) and express it as:

Pow2(A, k) =

(

Strassen(Pow2(A, k− 1), Pow2(A, k− 1)) k > 1

A k = 1

The runtime of this algorithm satisfies the following recurrence relation for the
variable k:

T (k) = T (k− 1) +O(n2.8074)

Assuming that T (1) = 1, we get a runtime of O(kn2.8074) after unrolling. Since
k = log2(m), we get a final runtime of O(log2(m)n

2.8074). ■

(b) How would you modify this to compute Am for any m ∈ N, that is compute any positive
integer matrix power? Would this change the time complexity?

Solution: In this case, we can not assume that m is a power of 2. However,
we can still make this recursive by cleverly splitting it up for when m is even
and odd. If m is even, we can do Am = A0.5mA0.5m and if m is odd, we can do
Am = AA0.5(m−1)A0.5(m−1). We call our recursive relation Pow(A, m) such that:

Pow(A, m) =

(

Strassen(Pow(A, m
2), Pow(A, m

2)) m≡ 0 (mod 2)
Strassen(A, Pow(A, m− 1)) m≡ 1 (mod 2)

The analysis is slightly trickier than before. Assume T (1) = 1 and notice that if m
is odd, then it takes 2 matrix multiplications to get from ⌊m

2 ⌋ to m. This is our
worst case, so we can bound the recurrence by:

T (m)≤ T (⌊
m
2
⌋) + 2O(n2.8074)

Again using unrolling we see that we achieve a runtime of O(log2(m)n
2.8074).

Thus, the asymptotic performance doesn’t change. ■

3

ECE 374 B Homework 4 Fall 2024

(c) Say your friend George was able to magically calculate the matrix product AB using 6
matrix multiplications of n

2 ×
n
2 matrices and 37400 additions of n×n matrices. What’s

the runtime of his algorithm? (Note: It takes O(n2) to calculate A+ B).

Solution: The first step in a divide-and-conquer runtime problem is always to
formulate a recurrence relation. In this case, we have 6 recursive subproblems
of size n

2 and 37400 O(n2) = O(n2) amount of work at each level. This can be
formulated as the following recurrence relation where c ∈ R is some positive
constant.

T (n) = 6T (
n
2
) + cn2

We assume that T (1) = 1 and we can apply Master’s Theorem to this recurrence
where a = 6 and b = 2. Doing the math, we find we’re in the "leaf-dominated"
case and thus our runtime is O(nlog2(6))≈ O(n2.585). ■

(d) George coded a correct version of the algorithm in Python, but when he benchmarked
it against Strassen’s algorithm he found his implementation was much slower. Why
might that be?

Solution: The overhead of 37400 matrix additions outweighs the improvement
he made by saving a single matrix multiplication. Asymptotically, George’s
solution might be faster, but for the (relatively) small matrices being tested on his
computer it’s much slower. For reference, Strassen’s algorithm uses around 18
additions. ■

4

ECE 374 B Homework 4 Fall 2024

4. We are given a array of n steel rods of integer length where the ith piece has length L [i].
We seek to cut them so that we end up with k pieces of exactly the same length, in addition
to other fragments. And we want this collection of k pieces to be as large as possible.

For instance, the largest collection (k = 4) pieces you can get from the collection:
L = {10,6, 5,3} is 5.

Give a correct and efficient algorithm that, for a given L and k, returns the maximum
possible length of the k equal pieces cut from the initial n sticks.

Solution: First, let l be the length of the pieces after cutting the steel rods

L[i] = ai × l + bi (1)

which means that we would end up with ai steel rods with length l and one rod with
length bi < l after cutting i th rod, for a given l.

Next, what are the possible values for l that we should consider?

1≤ l ≤max(L) (2)

How do we check if a given value of l works for us or not? To check this, we can
try cutting the rods as in (1) and see if

∑|L|
i=1 ai ≥ k.

〈〈Check if a given value of l works for L and k.〉〉
IsValid(L, k, l):

n← 0
for i← 1 to |L|

n← n+ ⌊ L[i]
l ⌋

if n≥ k
return True

else
return False

A simple solution is to check every l, starting from 1 to max(L) and return the
largest l that is valid, according to IsValid.

FindLargestCutLength(L, k):
lmax ← 0
for l ← 1 to max(L)

if IsValid(L, k, l)
lmax ← l

return lmax

The complexity of IsValid is O(|L|). For FindLargestCutLength, the for loop
iterates from 1 to max(L). Hence, its complexity is O(max(L)× |L|).

Can we make FindLargestCutLength faster? Let’s take two values li and l j
such that l j > li . If IsValid(L, k, li) is False, IsValid(L, k, l j) will also be False. This
means that we can use binary search to find the largest valid l.

5

ECE 374 B Homework 4 Fall 2024

FindLargestCutLength(L, k):
lmax ← 0
lle f t ← 1
lri ght ←max(L)
while lle f t ≤ lri ght

lmid ← ⌊
lle f t+lri ght

2 ⌋
if IsValid(L, k, lmid)

lmax ← lmid
lle f t ← lmid + 1

else
lri ght ← lmid

return lmax

Since we are discarding half the search space in every iteration, the while loop
will run log(max(L)) times. Hence, the complexity of FindLargestCutLength is
O(log(max(L))× |L|).

■

6

