
ECE 374 B Homework 5 Fall 2024

1. Matrix multiplication is associative, and so all parenthesizations yield the same product.
A product of matrices is fully parenthesized if it is either a single matrix or the product
of two fully parenthesized matrix products, surrounded by parentheses. For example, if
the chain of matrices is 〈A1, A2, A3, A4〉 then we can fully parenthesize the product in five
distinct ways:

•
�

A1,
�

A2,
�

A3, A4

���

•
�

A1,
�

(A2, A3)A4

��

•
�

(A1A2)
�

A3A4

��

•
�

(A1 (A2A3))A4

�

•
�

((A1, A2)A3)A4

�

How we parenthesize a chain of matrices can have a dramatic impact on the cost of
evaluating the product. For example, if we have three matrices with dimensions: A1[10×
100], A2[100× 5], A3[5× 50], then ((A1A2)A3) takes 7500 scalar multiplications while
(A1 (A2A3)) takes 75000 scalar multiplications.

Given a chain of n matrices, A1A2 . . . An, where matrix Ai has dimension ri × ci , provide a
dynamic programming algorithm that finds the mininum number of scalar multiplications
required to evaluate the product of the matrices.

Solution: Note the following before we discuss the solution:

(a) For any two consecutive matrices Mi and Mi+1, ci = ri+1.

(b) Multiplying two matrices Mi M j requires ricic j(= ri r jc j) scalar multiplications.

(c) Multiplying matrices Mi , Mi+1, · · ·M j results in a matrix with dimension ri × c j .

Consider a matrix chain M1M2 · · ·Mn. There are n − 1 matrix multiplications to
compute, and we want to order the n − 1 matrix multiplications in a way that
minimizes the number of scalar multiplications. Suppose we compute the k-th
multiplication(the multiplication between Mk and Mk+1) at the very last. Then,
the cost(the number of scalar multiplications) of the k-th multiplication would be
r1ckcn, since the matrices M1 · · ·Mk and Mk+1 · · ·Mn would be multiplied separately
before the k-th multiplication, giving the dimensions r1× ck and rk+1× cn respectively.
Therefore, the minimum cost we can get while computing the k-th multiplication at
last would be MSM(1, k)+MSM(k+1, n)+ r1ckcn, where MSM(i, j) is the minimum
total cost of the multiplications on Mi · · ·M j . Based on the above observation, we can
construct the following recurrence.

MSM(i, j) =

(

0 if i >= j

min
i≤k< j

MSM(i, k) +MSM(k+ 1, j) + rickc j otherwise

As mentioned, MSM(i, j) represents the minimum number of scalar multiplications
required to compute Mi Mi+1 · · ·M j, and therefore MSM(1, n) would be the final
answer we are looking for.

To get a dynamic programming algorithm, we use a 2D array MSM[1 .. n, 1 .. n] for
memoization, filling out the entries in decreasing i and increasing j order.

1

ECE 374 B Homework 5 Fall 2024

MSM(A[1 .. n]):
for i← 1 to n 〈〈Base cases〉〉

MSM[i, j]← 0

for i← n down to 1
for j← i + 1 to n

min←∞
for k← i to j − 1

c← MSM[i, k] +MSM[k+ 1, j] + rickc j
if c < min

min← c
MSM[i, j]← min

return MSM[1, n]

Since the amount of work at each iteration is constant, the runtime of the algorithm is
O(n3). ■

2

ECE 374 B Homework 5 Fall 2024

2. Consider the problem of neatly printing a paragraph with a monospaced font (all characters
having the same width) on a printer. The input text is a sequence of n words of lengths
l1; l2; . . . ; ln, measured in characters. We want to print this paragraph neatly on a number
of lines that hold a maximum of M characters each. Our criterion of “neatness” is as
follows. If a given line contains words i through j, where i ≤ j, and we leave exactly
one space between words, the number of extra space characters at the end of the line
is M − j + i −Σ j

k=i lk, which must be nonnegative so that the words fit on the line. We
wish to minimize the sum, over all lines except the last, of the cubes of the numbers of
extra space characters at the ends of lines. Give a dynamic-programming algorithm to
print a paragraph of n words neatly on a printer. Analyze the running time and space
requirements of your algorithm. Consider the problem of neatly printing a paragraph with
a monospaced font (all characters having the same width) on a printer. The input text is a
sequence of n words of lengths l1; l2; . . . ; ln, measured in characters. We want to print this
paragraph neatly on a number of lines that hold a maximum of M characters each. Our
criterion of “neatness” is as follows. If a given line contains words i through j, where i ≤ j,
and we leave exactly one space between words, the number of extra space characters at
the end of the line is M − j + i −Σ j

k=i lk, which must be nonnegative so that the words fit
on the line. We wish to minimize the sum, over all lines except the last, of the cubes of
the numbers of extra space characters at the ends of lines. Give a dynamic-programming
algorithm to print a paragraph of n words neatly on a printer. Analyze the running time
and space requirements of your algorithm.

Solution: Intuition: We must decide where to place line breaks so that the total
penalty (defined as the cube of the extra spaces at the end of each line) is minimized.
Greedily minimizing the extra spaces in each line does not account for the cumulative
penalties of future lines, potentially leading to a higher total cost than an arrangement
that strategically allows more extra space in some lines to minimize the overall penalty.
Therefore, we will use DP to solve this question.

Function Definitions:

• M : The given maximum number of characters per line.

• l[1...n]: sequence of n words.

• minCost(j): The minimal total cost of neatly printing words from word 1 to
word j. The solution is calculated by minCost(n).

• firstPosInLine(j): The position of the first word on the line ending at word j in
the optimal arrangement. Used when reconstructing the paragraph.

• extras(i, j): The number of extra spaces at the end of a line containing words i
to j. We calculate the number of extra spaces when words i to j are placed on a
line using provided formula:

extras(i, j) = M − j + i −Σ j
k=i lk (1)

• lineCost(i, j): The line cost (penalty) when words i to j are placed on a single
line. lineCost(i, j) is defined as:

3

ECE 374 B Homework 5 Fall 2024

lineCost(i, j) =











extras(i, j)3, if extras(i, j)≥ 0 and j ̸= n

0, if extras(i, j)≥ 0 and j = n

∞, if extras(i, j)< 0

(2)

Recurrence Relation: The minimal total cost minCost(j) can be computed using
the following recurrence relation:

minCost(j) =

¨

0 if j = 0 (Base case)
min1≤i≤ j {minCost(i − 1) + lineCost(i, j)} if j > 0 (Recursive case)

(3)

This relation states that the minimal cost of arranging words 1 to j is the minimum
cost of arranging words 1 to i − 1 plus the cost of placing words i to j on a new line.

Filling Order: We use a length n 1D array as the memoization structure. Since j
starts from 0 in our base case, we fill the array in order of increasing j from 1 to n.
For each j, we need to consider all possible starting positions i for the line ending at j
and choose the one that minimizes minCost(j).

Algorithm:

4

ECE 374 B Homework 5 Fall 2024

NeatlyPrintParagraph(l[1 .. n], M):
〈〈Step 1: Compute extras[i][j]〉〉
〈〈Precompute the extra spaces for all combinations of words from i to j〉〉
For i← 1 to n:

extras[i][i]← M − l[i]
For j← i + 1 to n:

extras[i][j]← extras[i][j - 1] −l[j]− 1
〈〈Step 2: Compute line costs lineCost[i][j]〉〉
〈〈Compute the line costs based on the extra spaces calculated〉〉
For i← 1 to n:

For j← i to n:
If extras[i][j] ≥ 0:

If j = n:
lineCost[i][j]← 0 〈〈No penalty for the last line〉〉

Else:
lineCost[i][j]← (extras[i][j])3

Else:
lineCost[i][j]←∞ 〈〈Words do not fit on one line〉〉

〈〈Step 3: Compute minimum cost minCost[j] and track breaks firstPosInLine[j]〉〉
minCost[0]← 0
For j← 1 to n:

minCost[j]←∞
For i← 1 to j:

If minCost[i - 1] + lineCost[i][j] < minCost[j]:
minCost[j]← minCost[i - 1] + lineCost[i][j]
firstPosInLine[j]← i 〈〈Record the line break position〉〉

〈〈Step 4: Reconstruct the solution〉〉
Initialize l ines← empty list
k← n
While k > 0:

i← firstPosInLine[k]
Prepend (i, k) to l ines
k← i − 1

Return l ines

• Running Time Analysis:

(a) Computing extras[i][j] takes O(n2) time since we have nested loops over i
and j.

(b) Computing lineCost[i][j] also takes O(n2) time.
(c) Computing minCost[j] and f irstPosInLine[j] involves two nested loops,

resulting in O(n2) time.
(d) Reconstructing the solution takes O(n) time.
(e) Total Time Complexity: O(n2).

• Note: Because each word length is positive, each line cannot have more than M
words, so each entry minCost[j] depends on at most n and at most M previous
entries minCost[i]. Therefore, we can optimize the range of the loops to be
the min(M , n) for the all functions used, and the resulting algorithm technically
runs in O(min(n2, nM)) time, but it’s not required for full credit.

5

ECE 374 B Homework 5 Fall 2024

• Space Requirements:

(a) The arrays extras[1..n][1..n] and lineCost[1..n][1..n] require O(n2) space.
(b) The arrays minCost[0..n] and f irstPosInLine[1..n] require O(n) space.
(c) Total Space Complexity: O(n2).

■

6

ECE 374 B Homework 5 Fall 2024

3. Binomial coefficients are a family of positive integers that have a number of useful properties
and they can be defined in several ways. One way to define them is as an indexed recursive
function, C(n, k), where the “C” stands for “choice” or “combinations.” In this case, the
definition is as follows:

C (n, 0) = 1

C (n, n) = 1

C (n, k) = C (n− 1, k− 1) + C (n− 1, k) 0< k < n

Describe a scheme for computing C(n, k) using memoization.

Solution: For a 2D table, according to the recurrence, each time we look at the
element at "upper left" and "upper" with respect to current element, and as we have k
< n, we only need to fill the "bottom left" half of the memory table.

BinomialCoefficient(n, k):
Initialize a 2D array dp of size (n+ 1)× (k)
for i← 0 to n

dp[i][0]← 1 〈〈C(n, 0) = 1 for all n〉〉
dp[i][i]← 1 〈〈C(n, n) = 1 for all n〉〉

for i← 1 to n
for j← 1 to i − 1

dp[i][j]← dp[i − 1][j − 1] + dp[i − 1][j]
return dp[n][k]

Runtime: O(nk) ■

7

ECE 374 B Homework 5 Fall 2024

4. Suppose we are given a collection A= {a1, a2, ..., an} of n positive integers that add up to
N . Design an O(nN)-time algorithm for determining whether there is a subset B ∈ A such
that Σai∈Bai = Σai∈A−Bai .

Solution: Does there exist a subset that sums to N
2

English Description E(i, j):

Let E(i, j) decide whether there exists a subset of A[i . . . n] that sums to j.

Recursive Relation:

E(i, j) = E(i + 1, j)∨ E(i + 1, j − A[i])

• General Case: The relation holds for all valid i and j.

• Base Case: E(i, 0) = True for i ∈ 1 . . . n+ 1.

• Invalid Case: E(i, j) = False if j < 0.

Answer:

The final answer will be E(1, N
2).

Memoization:

• Use a 2D array to store results: decreasing i, increasing j.

• Space Complexity: O(nN).

Time Complexity:

• O(n) options for i, O(N) options for j, and each takes O(1) comparisons.

• Time Complexity: O(nN).

■

8

