
ECE 374 B Homework 6 Fall 2024

1. A grammar G is a way of generating strings of “terminal” characters from a nonterminal
symbol S, by applying simple substitution rules, called productions. If B→ β is a production,
then we can convert a string of the form αBγ into the string αβγ. A grammar is in Chomsky
normal form if every production is of the form “A→ BC” or “A→ a,” where A, B, and C
are nonterminal characters and a is a terminal character. Design an O(n3)-time dynamic
programming algorithm for determining if string x = x0 x1 . . . xn−1 can be generated from
the start symbol S.

Hint: The solution to this problem is the very famous CYK-algorithm, but the main point
of this exercise is to see if you can summarize this algorithm succinctly (must formulate
the solution as a recurrence with english description for each case).

Solution: In this question, we can create a two-dimensional table T[i][j] where
each element represents the set of non-terminal symbols that can generate substring
x i x i+1 · · · x j .
This table has following characterisctics:

(a) Any element below diagonal is 0

(b) Base case: any element T[i][i] on diagonal, if A→ wi exists, T[i][i] = A

(c) recursive case: for elements above diagonal, at every possible split point k,
where i ≤ k < j. if any production rule A→ BC exists, where B can generate
x i x i+1 · · · xk, C can generate xk+1 · · · x j , this means T[i][j] = A.

We can define a function CYKalgo(x[x0, x1, · · · xn−1]) to check if a string can be
generated from symbol S, where x[x0, x1, · · · xn−1 is the string need to be checked.

Finally, if S ∈ T[0][n − 1], the string can be generated from symbol S. The time
complexity is O(n3) because we have three levels of loops which enumerate rows,
columns of the table and length of substring respectively.

■

1

ECE 374 B Homework 6 Fall 2024

2. Suppose you have a circular necklace with n jewels, each with some value, vi . You wish to
sell the jewels individually, but unfortunately, removing jewel i from the necklace breaks
the neighboring jewels, making them worthless. Design an efficient algorithm to figure out
the maximum revenue you can receive from the circular necklace.

Solution: We decide to pick an arbitrary gem and say it’s v0. Then, we say the gems
proceed in a clockwise fashion as v1, v2, ..., vn−1. From this lens, the problem is a
classic example of an optimization problem which can be solved with DP. The idea
is that at each gem, we make a "decision" as to if we are going to sell it or not. The
quirky bit is the first gem, as selling it or not affects whether you can sell the last gem.
We rectify this by modifying our recurrence to store whether we sold the first gem
or not, handling both cases. This can be encapsulated in the following recurrence
MaxProfit(k, a) which represents the maximum profit we can make starting at gem k
with a = 0 meaning we didn’t sell the first gem and a = 1 meaning we did.

MaxProfit(k, a) =

0 k ≥ n or (k = n− 1∧ a = 1)

max

(

MaxProfit(k+ 2, a) + vk

MaxProfit(k+ 1, a)
otherwise

We memoize this recurrence with a 2-D table with the first row representing a = 0
and the second row a = 1 with each column represents a gem. We fill in both rows
from high k to low k independently. Our return value is the following:

max{MaxProfit(1, 0), v0 +MaxProfit(2, 1)}

This requires O(n) space and O(n) time complexity since each array entry can be
filled in O(1) time. ■

2

ECE 374 B Homework 6 Fall 2024

3. We have an n×m rectangle/array M . Each cell in M has an arbitrary label value, which is
a positive integer. We want to cut M into several pieces of rectangles such that all the grid
cells in a single rectangle have the same value. A rectangle can be cut only along one of it’s
horizontal or vertical grid lines, which will break it into two rectangles. Note that you can
only cut one rectangle at a time. And the price of cutting the rectangle is the area of the
rectangle (aka the number of grid cells in it). Clearly the worst case is to cut M into n×m
pieces. But we want to find if there is any better solution.

Describe an algorithm that computes the minimum cost of cutting the input grid M
into pieces, following the above rules, so that if two grid cells are on the same rectangle,
they must have the same label. Your algorithm should be as fast as possible.

Solution: +10pts We would introduce a sub-problem here first. The sub-problem
is defined by a rectangle, such a rectangle is determined by two points p, q ∈ M =
[n]× [m]. We first precompute, for each p, q ∈ M , if the rectangle
r(p, q) = {(i, j) ∈ M |x(p)≤ i ≤ x(q) and y(p)≤ j ≤ y(q)}
is valid — that is, the labels for all cells in r(p, q) are the same. Namely, this
takes O((nm)3) time. But a simple recursive algorithm can do it in O((nm)2) using
memoization. Introduce the function label(p, q) where it will return the label in the
rectangle r, denoted with p as the top left corner and q as the bottom right corner, if
all cells in it have the same label; and it will return BAD if the labels are different.
Then we have the following recurrence:
label(p,q):

if p = q then
return M[p]

end if
if x(p)< x(q) then

mm= ⌊(x(p) + x(q))/2⌋
l1 = label(p, (mm, y(q)))
l2 = label((mm+ 1, y(p)), q)

else
mm= ⌊(y(p) + y(q))/2⌋
l1 = label(p, (x(q), mm))
l2 = label((x(p), mm+ 1), q)

end if
if l1 ̸= l2 then
return BAD

end if
return l1

Clearly the function label(p,q) contains at most O((nm)2) different recursive calls. So
it takes O((nm)2) time to fill the dp table, of size O((nm)2). And the filling order will
be starting from the rectangle with size 1, 2,3, ..., nm. Assume V is the memoization
structure we use, V [p, q] will store the value of label(p, q).

Next, let us also define a helper function that runs in O(1) time, to calculate the
price of a rectangle.
price(p,q):

if x(p)> x(q) or y(p)> y(q) then

3

ECE 374 B Homework 6 Fall 2024

return∞
end if
return (x(p)− x(q) + 1)(y(q)− y(p) + 1)

The solution is now straight-forward. Given a rectangle, we should try all possible cuts,
and take the minimum of these choices. The base case is the time when the current
rectangle has all same labels, which could be determined by V in O(1) time. Denote
the function bestcut(p,q) that will return the minimum cost to cut the rectangle given
by M[p(x),...,q(x)][p(y),...,q(y)], we will have the following recurrence:
bestcut(p,q):
if x(p)> x(q) or y(p)> y(q) then
return∞

end if
if V [p, q] ̸= BAD then
return 0

end if
ρ←∞
for x = x(p) + 1 to x(q) do

c← price(p, q) + bestcut(p, ((x − 1), y(q))) + bestcut((x , y(p)), q)
if c < ρ then
ρ← c

end if
end for
for y = y(p) + 1 to y(q) do

c← price(p, q) + bestcut(p, (x(q), (y − 1))) + bestcut((x(p), y), q)
if c < ρ then
ρ← c

end if
end for
return c

Clearly the function bestcut(p, q) contains at most O((nm)2) different recursive calls.
So it takes O((nm)2) time to fill the dp table, of size O((nm)2). And the filling order
will be starting from the rectangle with size 1,2, 3, ..., nm. The initial function call
or the return value from the dp structure will be bestcut((0,0), (m, n)). Since each
recursive call takes O(n+m) time, the total runtime will be O((nm)2(n+m)). ■

Solution: Solution that is similar to the above approach but did not have the V [p, q]
look-up-table will run in O((nm)2(nm)) = O((nm)3). As every time the recursion need
to spend O(nm) time to check if all the cells on the board have the same label. Since
there are a total of O((nm)2) function calls, the runtime will be O((nm)3). Correct
solution that runs in O((nm)3) or other slower polynomial in the input parameters
should be awarded at most 5 pts.

■

4

ECE 374 B Homework 6 Fall 2024

4. Assume we have a graph G with n vertices and m equal weight edges. We have two balls
B1, B2 that will move along their designed path P1, P2, where P1 has length N1 and P2 has
length N2. Both balls will start at P1[1] and P2[1], and can move only forward along their
designed paths. To be more precise, we define a valid move for a ball is either stay in it’s
current node, or move to the next node on its path. Each ball makes exactly one legal move
in each round. A sequence, specifying in each round a valid move for each robot, is a plan.

The score of a plan is the maximum distance of the two balls from each other at any
moment during the execution of the plan.

Describe an algorithm that computes the minimum score plan for the two balls. Your
algorithm should be as fast as possible.

Solution: We will build a look-up-table, denoted as dG(u, v), that will return the
shortest distance between u and v. We can run BFS n times to build the value for
the look-up-table. After that, the solution is a straightforward adaptation of the
edit-distance DP. Let l(i, j) = dG(P1[i], P2[j]), we can build the function minscore(i,j)
that will return the minimum score plan for two balls if they are currently on position
P1[i] and P2[j]. And we have the following recurrence:
minscore(i,j) =

l(N1, N2) i = N1and j = N2
max(minscore(N1, j + 1), l(N1, j)) i = N1
max(minscore(i + 1, N2), l(i, N2)) j = N2
α otherwise

whereα= max(min[minscore(i+1, j), minscore(i, j+1), minscore(i+1, j+1)], l(i, j)).
Since i and j are bounded by O(N1) and O(N2), there are at most O(N1 ·N2) recursive
function calls. We can use a 2-D array with size O(N1 · N2) for memoization. The
filling order will be in decreasing i and decreasing j. And the value we are interested
in is minscore(1,1). Since building the look-up-table l takes O(nm) time, our total
runtime will be O(N1N2 + nm). This problem is a variant of the discrete Fréchet
distance problem. ■

5

