
ECE 374 B Homework 7 Fall 2024

1. Assume we have a list of nuts N = [n1 .. nk] and a list of bolts B = [b1 .. bk], where each
nut and bolt is of unique size. Each nut matches exactly one bolt and vice versa. The nuts
and bolts are visually indistinguishable, therefore you cannot directly compare a pair of
bolts or a pair of nuts. However, you can compare a bolt to a nut by trying to fit them, at
which point you’ll find if the pair is too loose, too tight, or perfectly fit. In addition, you are
also given an O(1) oracle M(S) which will return the median of S, where S ⊆ N . Describe
an O(k log k) algorithm that matches each nut to each bolt.

Solution: We can utilize the oracle to select the median ñ of the nuts, and compare
ñ to every bolts. After the comparisons, we will get a set B+ of the bolts that were
bigger than ñ, a set B− of the bolts that were smaller than ñ, and the bolt b̃ that
matches with ñ (which is the median of B). Then, we can use b̃ to divide N \ {ñ} into
N+ and N− in the same way. Note that every nuts in N+ would have its matching bolt
in B+, and the same applies for N−. Therefore we can recursively apply the above
method to (N+, B+) and (N−, B−).
The runtime of the above algorithm is represented with the following recurrence:

T (k) = 2T (k/2) + k

Since the amount of work at each level is k and there are log k levels, the total amount
of work is O(k log k).

The following is the pseudo code for the algorithm. Note that in the following
pseudo code, the operator + represents list appending while maintaining the order.
When applied on two pairs of lists, it represents pairwise appending, so (A1, B1) +
(A2, B2) = (A1 + A2, B1 + B2).

Match(N[n1 .. nk], B[b1 .. bk):
if N = [] 〈〈Base case〉〉

return ([], [])
N+, N−, B+, B−← [] 〈〈Initialize as empty lists〉〉
ñ← M(N[n1 .. nk]) 〈〈Get median using oracle〉〉
for i← 1 to k

if bi > ñ, then B+← B+ + [bi]
else if bi < ñ, then B−← B− + [bi]
else, b̃← bi

for i← 1 to k
if ni > b̃, then N+← N+ + [ni]
else if ni < b̃, then N−← N− + [ni]

N , B←Match(N−, B−) + ([ñ], [b̃]) +Match(N+, B+)
return (N , B)

■

1

ECE 374 B Homework 7 Fall 2024

2. There is a group of n dogs labeled from 1 to n where each dog has a different level of
loudness and a different level of smartness. You are given an array, denoted as clever,
where clever[i] = [ai , bi] indicates that ai is smarter than bi and an integer array where
quite[i] denotes the quietness of the i th dog. You can assume all the input data is correct.

Describe and analyze an algorithm that will output an integer array where ret[x] = y
if y is the least quiet dog among all dogs who have equal or more intelligence than dog
x .

Solution: Let’s write some notations first.

• Let n be the number of dogs, labeled from 1 to n.
• clever[i] = [ai , bi] indicates that dog ai is smarter than dog bi .
• quiet[i] denotes the quietness level of the ith dog.
• dp[i] will store the index of the least quiet dog among all dogs that are at least

as intelligent as dog i.

First, we construct a directed graph G, where each vertex represents a dog. Then,
for each clever[i] = [ai , bi], we add an edge (ai , bi). Notice that G is a DAG.

The recurrence to fill the dynamic programming table is:

dp[i] =







i if i is a source;

min(quiet[i], min
i reachable from j

quiet[dp[j]]) otherwise.

This function essentially states that the least quiet dog among those as smart as
or smarter than dog i is determined by considering i itself and all dogs that can be
reached via directed edges to i. If there is no dog smarter than i (meaning that i is a
source in the constructed DAG), then dp[i] = i.

To avoid repeated recalculations, we can implement this in a dynamic programming
approach by processing the dogs in a topologically sorted order.

FindLeastQuietDogs(clever,quiet):
Construct the directed graph G.
topOrder ← TopologicalSort(G)
Initialize dp[i]← i for all i in 1, . . . , n
for each node b in topOrder:

for each outgoing edge (b, a):
if quiet[dp[a]]> quiet[dp[b]]:

dp[a]← dp[b]
return dp

• Time Complexity:
– Topological sorting takes O(n+m), where m is the number of edges in the

graph (the size of clever).
– Filling the dp table requires O(n+m) as each node and edge is processed

once.

2

ECE 374 B Homework 7 Fall 2024

– Therefore, the total time complexity is O(n+m).
• Space Complexity:

– The graph representation (adjacency list) requires O(n+m) space.
– The dp and quiet arrays each require O(n) space.
– Hence, the overall space complexity is O(n+m).

■

3

ECE 374 B Homework 7 Fall 2024

3. You are given a directed graph G = (V, E) with positive length edges, as well as two vertices
s and t. An edge e ∈ E, is considered bad if the cost of all walks from s to t that uses
e costs at least 3β , where β is the length of the shortest path from s to t. Describe an
algorithm that computes all the bad edges in G. Slower algorithms would earn 60% of the
total points.

Solution: Let’s write some notations first.

• le is the length of edge e ∈ E. It is given that le > 0.
• The cost of a path from s to t through edges e1, e2, . . . en can be written as
∑n

i=1 lei
.

• Dijkstra(G, s, t) returns the shortest path between vertices s and t of a graph G.
Assume that it is given to us, and it returns −∞ if there is no path from s to t.

First, let’s find β . We can use Dijkstra’s algorithm to find the shortest path between
s and t, and its cost would be β . We can use Dijkstra(G, s, t).

One way to solve the problem is to check shortest paths from s and t through all
e’s in E. If e = (u, v), the shortest path from s to t through e can be computed as

Dijkstra(G, s, u) + le +Dijkstra(G, v, t)

All the edges through which the shortest path has a cost > 3β would be the bad
edges of G.

FindBadEdges(G, s, t):
es← φ
β ← Dijkstra(G, s, t)
for each e in G.Ed ges:

α← Dijkstra(G, s, e.u) + e.leng th+Dijkstra(G, e.v, t)
if α > 3β:

es.add(e)
return es

The run time of this solution is O(|E| · (|E| + |V | · log |V |)), assuming Dikstra’s
algorithm has a time complexity of O(|E|+ |V | · log |V |).

Can we improve the time complexity? Yes! Notice that while computing β ,
we can store the shortest path from s to v ∈ V in a lookup table, which means
Dijkstra(G, s, e.u) may be replaced by a table lookup which can be done in O(1).
Creating a similar lookup table for Dijkstra(G, e.v, t) is slightly tricky. We can create
another graph G′ = (V, E′) with E′ =

�

(v, u) | (u, v) ∈ E
	

. We can run Dijkstra’s
algorithm as Dijkstra(G, t, s) and create a lookup table to store the length of the
shortest paths from t to v ∈ V . This would reduce the time complexity of the solution
to O(|E|+ |V | · log |V |) with an additional space complexity of O(|V |+ |E|). ■

4

ECE 374 B Homework 7 Fall 2024

4. In the euclidean traveling-salesman problem, we are given a set of n points in the plane,
and we wish to find the shortest closed tour that connects all n points. The figure above
shows the solution to a 7-point problem. The general problem is NP-hard, and its solution
is therefore believed to require more than polynomial time (we’ll learn more about this in
the third part of the course but for right now , this is just a bit of flavor).

J. L. Bentley has suggested that we simplify the problem by restricting our attention
to bitonic tours, that is, tours that start at the leftmost point, go strictly rightward to the
rightmost point, and then go strictly leftward back to the starting point. Figure 15.11(b)
shows the shortest bitonic tour of the same 7 points. In this case, a polynomial-time
algorithm is possible.

Describe an O(n2)-time algorithm for determining an optimal bitonic tour. You may
assume that no two points have the same x-coordinate and that all operations on real
numbers take unit time. (Hint: Scan left to right, maintaining optimal possibilities for the
two parts of the tour.)

Solution: We sort the points by increasing x-coordinate, labeling them as (p1, p2, . . . , pn).
Let b[i, j] be the length of the shortest bitonic path Pi, j that starts from point

pi and goes strictly left to the leftmost point p1, and then goes strictly right to the
rightmost point in the bitonic path p j . Pi, j should contain all the points p1, p2, . . . , p j .
The final result, representing the shortest bitonic tour, is b[n, n].

The recurrence relation is:

b[i, j] =















|p1p2| if i = 1, j = 2 (a)
b[i, j − 1] + |p j−1p j| if i < j − 1 (b)

min
1≤k< j−1

¦

b[k, j − 1] + |pkp j|
©

if i = j − 1 (c)

(a) Base Case: When there are only two points, p1 and p2, the bitonic path consists
solely of these two points. The path length is simply the Euclidean distance
between them: |p1p2|.

(b) Extending the Rightward Path: If the point p j−1 lies on the right-going subpath,
it immediately precedes p j on this subpath. Since the rightward path continues,
the shortest path to p j from pi must involve the shortest bitonic path from pi to
p j−1. If not, we could replace the subpath with a shorter one.

5

ECE 374 B Homework 7 Fall 2024

Figure 1. If p j−1 is on the rightgoing path, it immediately preceeds p j .

(c) On Leftward Path: Given p j is the final point on the right-going subpath, if the
point p j−1 lies on the left-going subpath, and p j−1 must be the rightmost point
on this subpath, so i = j − 1. p j must have an immediate predecessor point pk,
where 1≤ k < j − 1, on the rightgoing path. This case ensures that the subpath
from pk to p j is the shortest possible, which also ensures the path from pk to
p j−1 must also be a shortest bitonic path. Otherwise, we could find a shorter
bitonic path than Pi, j .

Figure 2. If p j−1 is on the leftgoing path, it must be the rightmost point on the leftgoing subpath.

In an optimal bitonic tour, one of the points adjacent to pn must be in pn−1, so we
have b[n, n] = b[n− 1, n] + |pn−1pn|. The overall time complexity is O(n2), where
we compute b[i, j] for all 1≤ i, j ≤ n.

To reconstruct the points on the shortest bitonic tour, we define r[i, j] to be the
index of the immediate predecessor of p j on the shortest bitonic path Pi, j . Since the
immediate predecessor of p2 on the path P1,2 is p1, we know that r[1, 2] = 1.

Euclidean-TSP(p):
Sort points (p1, p2, . . . , pn) by increasing x-coordinate
Initialize two arrays b[1..n, 1..n] and r[1..n, 1..n]
b[1, 2]← |p1p2|
for j← 3 to n

for i← 1 to j − 2
b[i, j]← b[i, j − 1] + |p j−1p j |
r[i, j]← j − 1

b[j − 1, j]←∞
for k← 1 to j − 2

q← b[k, j − 1] + |pk p j |
if q < b[j − 1, j]

b[j − 1, j]← q
r[j − 1, j]← k

b[n, n]← b[n− 1, n] + |pn−1pn|
return b and r

6

ECE 374 B Homework 7 Fall 2024

The Print-Tour function prints the entire bitonic tour recursively. It starts
from the rightmost point pn and traces backward along the left-going subpath until it
reaches the starting point p1. After completing the left-going subpath, it prints the
remaining points in the right-to-left order, ensuring that no point is printed twice.

Print-Tour(r, n):
Print pn
Print pn−1
k← r[n− 1, n]
Print-Path(r, k, n− 1)
Print pk

Print-Path is a helper function used to recursively print segments of the path
between two points. The recursion allows us to first print the deeper right-to-left
subpath, and then print the left-to-right subpath as the recursion unwinds.

Print-Path(r, i, j):
if i < j

k← r[i, j]
if k ̸= i

Print pk
if k > 1

Print-Path(r, i, k)
else

k← r[i, j]
if k > 1

Print-Path(r, k, j)
Print pk

The algorithm sorts the points in O(n log n) time and computes the bitonic path in
O(n2) time. Tour reconstruction takes O(n) time.

■

7

