
ECE 374 B Homework 9 Fall 2024

1. For any integer k, the problem kSat is defined as follows:
• Input: A boolean formula Φ in conjunctive normal form, with exactly k distinct

literals in each clause.
• Output: True if Φ has a satisfying assignment, and False otherwise.

(a) Describe and analyze a polynomial-time reduction from 2Sat to 3Sat, and prove your
reduction is correct.

Solution: One such reduction (of infinitely many possible ones) is as follows. Let

Φ=
n
∧

i=1

ℓi,1 ∨ ℓi,2

be the instance to 2Sat; in the above description of Φ, ℓi,1 and ℓi,2 are literals for
all 1≤ i ≤ n, not variables. Construct 3CNF formula

Φ′ =
n
∧

i=1

(ℓi,1 ∨ ℓi,2 ∨ x)∧ (ℓi,1 ∨ ℓi,2 ∨ x);

here, x is a variable not in Φ. Input Φ′ into the black box algorithmA for 3Sat,
and feed the output ofA as the output of the constructed algorithm for 2Sat. Φ′
has exactly twice the number of clauses as Φ and there are at most 2n variables.
Thus, Φ′ can be constructed by brute force in time O(n) by a scanning through
once Φ. The reduction is linear-time and thus polynomial-time.

We now prove the correctness of this reduction by proving the following claim:
Φ has a satisfying assignment ⇐⇒ Φ′ has a satisfying assignment.
⇒ Suppose there is an assignment A of the variables in Φ that makes Φ evaluate

to True. Fix 1≤ i ≤ n. By the definition of∧, we have that ℓi,1∨ℓi,2 evaluates
to True under A. By the definition of ∨, this gives either ℓi,1 = True or
ℓi,2 = True under A. Define the assignment A′ as one that coincides with
A for variables in Φ and assigns any truth value to x . By the definition of
∨, both ℓi,1 ∨ ℓi,2 ∨ x and ℓi,1 ∨ ℓi,2 ∨ x evaluate to True under A′. Since
this analysis holds for all 1 ≤ i ≤ n, by the definition of ∧, we have that
∧n

i=1(ℓi,1 ∨ ℓi,2 ∨ x) ∧ (ℓi,1 ∨ ℓi,2 ∨ x) evaluates to True under A′. But
∧n

i=1(ℓi,1 ∨ ℓi,2 ∨ x)∧ (ℓi,1 ∨ ℓi,2 ∨ x) = Φ′, which implies Φ′ has a satisfying
assignment.

⇐ Suppose there is an assignment A′ of the variables inΦ′ that makesΦ′ evaluate
to True. Fix 1≤ i ≤ n. By the definition of ∧, (ℓi,1∨ℓi,2∨ x)∧ (ℓi,1∨ℓi,2∨ x)
evaluates to True under A′. By the definition of ∧ again, ℓi,1 ∨ ℓi,2 ∨ x and
ℓi,1 ∨ ℓi,2 ∨ x both evaluate to True under A′. It can easily be seen that both
x and x cannot be True under A′. Assume that x is True under A′ without
loss of generality. Then x evaluates to False, which implies that either ℓi,1
or ℓi,2 must evaluate to True. We prove this by contradiction. Suppose
both ℓi,1 and ℓi,2 evaluate to False. Then ℓi,1 ∨ ℓi,2 ∨ x evaluates to False, a
contradiction. By the definition of ∨, then ℓi,1 ∨ ℓi,2 evaluates to True under
A′ (and the restriction of the assignment A of A′ to variables in Φ). Since
this analysis holds for all 1 ≤ i ≤ n, by the definition of ∧, we have that

1

ECE 374 B Homework 9 Fall 2024

∧n
i=1 ℓi,1 ∨ ℓi,2 evaluates to True under A. But

∧n
i=1 ℓi,1 ∨ ℓi,2 = Φ, which

implies Φ has a satisfying assignment.
■

(b) Describe and analyze a polynomial-time algorithm for 2Sat. [Hint: This problem is
strongly connected to topics earlier in the semester.]

Solution: Let
Φ=

n
∧

i=1

ℓi,1 ∨ ℓi,2

be the instance to 2Sat; in the above description of Φ, ℓi,1 and ℓi,2 are literals for
all 1≤ i ≤ n, not variables. Construct a directed graph G = (V, E) as follows:
• x is a variable in Φ ⇐⇒ x , x ∈ V
• ℓ1 ∨ ℓ2 is a clause for some literals ℓ1 and ℓ2 in Φ ⇐⇒ ℓ1→ ℓ2,ℓ2→ ℓ1 ∈ E

Compute the strong components of G using Kosaraju’s algorithm and check if,
for any variable x , x and x are in the same strong component. If so, return
False. Otherwise, return True. Kosaraju’s algorithm and checking the above
condition combined require time O(V + E) in terms of the graph G. Since V ≤ 2n
and E ≤ 2n where n is the number of clauses in Φ, in terms of the original input
Φ, this algorithm requires time O(n). This verifies that the algorithm is indeed
polynomial-time. ■

(c) Why don’t these results imply a polynomial-time algorithm for 3Sat?

Solution: We do not have enough information. It’s worth noting that either
of the following changes to the prompts of parts (a) and (b) would imply a
polynomial-time algorithm for 3Sat:
• Part (a) asks for polynomial-time reduction from 3Sat to 2Sat instead of from

2Sat to 3Sat.
• Part (b) asks for a polynomial-time algorithm for 3Sat instead of 2Sat.

Also, just because you can use a harder problem (in this case 3Sat) to solve an
easier one (in this case 2Sat) doesn’t mean that is the only way to solve 2Sat (as
you can see in part (b)). This is a subtle but very important distinction that is at
the core of reductions. ■

2

ECE 374 B Homework 9 Fall 2024

2. Prove the following problems are NP-hard.

(a) Given an undirected graph G, does G contain a simple path that visits all but 17 vertices?

Solution: We prove this problem is NP-hard by a reduction from the undirected
Hamiltonian path problem. Given an arbitrary graph G, let H be the graph
obtained from G by adding 17 isolated vertices. Call a path in H almost-
Hamiltonian if it visits all but 17 vertices. We claim that G contains a Hamiltonian
path if and only if H contains an almost-Hamiltonian path.
⇒ Suppose G has a Hamiltonian path P. Then P is an almost-Hamiltonian path

in H, because it misses only the 17 isolated vertices.
⇐ Suppose H has an almost-Hamiltonian path P. This path must miss all 17

isolated vertices in H, and therefore must visit every vertex in G. Since every
edge in P is also in G, we conclude that P is a Hamiltonian path in G.

Constructing H can be done by brute force in time O(V + E), implying the
reduction is polynomial-time. ■

(b) Given an undirected graph G with weighted edges, compute a maximum-diameter
spanning tree of G. (The diameter of a tree T is the length of a longest path in T .
(Don’t use Longest-Path for your reduction))

Solution: We prove this problem is NP-hard by a reduction from the undirected
Hamiltonian path problem. Given an arbitrary undirected graph G, let H be the
graph obtained from G by only assigning weight 1 to all edges. We claim that G
contains a Hamiltonian path if and only a maximum-diameter spanning tree in H
is a Hamiltonian path.
⇒ Suppose G has a Hamiltonian path P in G. Since a path in an undirected

graph is connected, undirected and acyclic, P is a tree by definition. It is
spanning as P goes through every vertex by the definition of Hamiltonian.
Because P is a path of length V − 1 in H, the diameter of P (considering
P as a spanning tree in H) is at least V − 1. However, the diameter of P
in H cannot be more than V − 1 as no path in H has length more than
V − 1. Thus, P is a maximum-diameter spanning tree in H. This implies
that a maximum-diameter spanning tree in H is necessarily a Hamiltonian
path. Suppose otherwise. Then a maximum-diameter spanning tree T in
H is not a Hamiltonian path. In other words, there is a vertex v such that
degT (v) > 2. In this case, there is no path in H that goes through every
vertex, contradicting the existence of P.

⇐ Suppose the maximum-diameter spanning tree T in H is a Hamiltonian path.
Then T is a Hamiltonian path in G.

Checking if the maximum-diameter spanning tree T in H is a Hamiltonian path
can be done in time O(V + E). This is by checking that degT (v) ≤ 2 for every
vertex v in H by scanning its adjacency list, returning True if so and False
otherwise. Because the construction of H can also be done in time O(V + E) by
brute force, the reduction requires time O(V + E). This implies that the reduction
is polynomial-time. ■

3

ECE 374 B Homework 9 Fall 2024

3. Let M be a Turing machine, let w be an arbitrary input string, and let s and t be positive
integers. We say that M accepts w in space s if M accepts w after accessing at most the first
s cells on its tape, and M accepts w in time t if M accepts w after at most t transitions.
Prove that the following languages are decidable or undecidable:

(a)
�

〈M , w〉
�

� M accepts w in time |w|2
	

Solution: Define L =
�

〈M , w〉
�

� M accepts w in time |w|2
	

. We can construct a
Turing machine M ′ to decide L as follows. Given any 〈M , w〉, M ′ runs M on w
for |w|2 steps. If M ′ accepts w in that time, M ′ accepts 〈M , w〉. Otherwise, M ′

rejects 〈M , w〉. M ′ decides L so L is decidable. ■

(b)
�

〈M〉
�

� M accepts at least one string w in time |w|2
	

Solution: Define L =
�

〈M〉
�

� M accepts at least one string w in time |w|2
	

. For
the sake of argument, suppose there is an algorithm there exist an algorithm
DecideL that decides the language L. Then we can solve the halting problem as
follows:

DecideHalt(〈M , w〉):
Encode the following Turing machine M ′:

M ′(x):
run M on input w
return True

return DecideL(〈M ′〉)

Note that if M halts on w, M ′ accepts every input string using the same number
of cells on its tape as its behavior does not depend on its input string x . Call this
number k. Let w′ be any string such that |w′|2 ≥ k; such a string exists as k is a
fixed constant. We prove this reduction correct as follows:

=⇒ Suppose 〈M , w〉 ∈ Halt.
Then M halts on input w.
Then M ′ accepts every input string x in k steps.
Then M ′ accepts w′ in time |w′|2.
So 〈M ′〉 is in L.
So DecideL accepts 〈M ′〉.
So DecideHalt accepts 〈M , w〉.

⇐= Suppose 〈M , w〉 /∈ Halt.
Then M does not halt on input w.
Then M ′ diverges on every input string x .
Then M ′ accepts no string.
So 〈M ′〉 is not in L.
So DecideL rejects 〈M ′〉.
So DecideHalt rejects 〈M , w〉.

4

ECE 374 B Homework 9 Fall 2024

In both cases, DecideHalt is correct. But that’s impossible, because Halt is
undecidable. We conclude that the algorithm DecideL cannot not exist. So L
must be undecidable. ■

(c)
�

〈M , w〉
�

� M accepts w in space |w|2
	

Solution: Define L =
�

〈M , w〉
�

� M accepts w in space |w|2
	

. We can construct
a Turing machine M ′ to decide L as follows. Suppose M ′ has 〈M , w〉 as its
input. We assume M has the states Q and tape alphabet Γ . M ′ runs M on w
for k ≜ |Q||w|2|Γ ||w|

2 steps. If M accepts w in k steps while accessing only the
first |w|2 cells on its tape, M ′ accepts 〈M , w〉. Otherwise, M ′ rejects 〈M , w〉. M ′

decides L and so L is decidable.
The reasoning for the choice of M ′ is as follows. By definition, |Q| is number

of states of M , |w|2 is number of possible tape head positions if the tape head is
within the first |w|2 cells of M and |Γ ||w|2 is the maximum number of possible
strings that can be on the first |w|2 cells of M . Thus, k is an upper bound on
the number of possible configurations of M if M only ever accesses the first |w|2
cells. This implies that if M doesn’t accept w in k steps while accessing only the
first |w|2 cells, M would never accept input w after accessing only the first |w|2
cells. ■

(d)
�

〈M〉
�

� M accepts at least one string w in space |w|2
	

Solution: Define L =
�

〈M〉
�

� M accepts at least one string w in space |w|2
	

. For
the sake of argument, suppose there is an algorithm there exist an algorithm
DecideL that decides the language L. Then we can solve the halting problem as
follows:

DecideHalt(〈M , w〉):
Encode the following Turing machine M ′:

M ′(x):
run M on input w
return True

return DecideL(〈M ′, w〉)

Note that if M halts on w, M ′ accepts every input string using the same cells
on its tape as its behavior does not depend on its input string x . Let k be the
number cells M ′ uses on its tape when it accepts its input string x . Also, let w′

be any string such that |w′|2 ≥ k; such a string exists as k is a fixed constant. We

5

ECE 374 B Homework 9 Fall 2024

prove this reduction correct as follows:

=⇒ Suppose 〈M , w〉 ∈ Halt.
Then M halts on input w.
Then M ′ accepts every input string x using the first k cells of its tape.
Then M ′ accepts w′ in space |w′|2.
So 〈M ′, w〉 is in L.
So DecideL accepts 〈M ′, w〉.
So DecideHalt accepts 〈M , w〉.

⇐= Suppose 〈M , w〉 /∈ Halt.
Then M does not halt on input w.
Then M ′ diverges on every input string x .
Then M ′ accepts no string.
Then M ′ accepts no string w in space |w|2.
So 〈M ′, w〉 is not in L.
So DecideL rejects 〈M ′, w〉.
So DecideHalt rejects 〈M , w〉.

In both cases, DecideHalt is correct. But that’s impossible, because Halt is
undecidable. We conclude that the algorithm DecideL cannot not exist. So L
must be undecidable. ■

6

ECE 374 B Homework 9 Fall 2024

4. Let (Σ= {0, 1}):

X =

�

0w w ∈ AT M
1w w ∈ ĀT M

�

Show that neither X nor X̄ is recursively-enumerable.

Solution: First let’s show that X is not recursively enumerable. We know that
the language NA=

�

〈M , w〉|M is a TM and M does not accept w
	

is not recursively
enumerable (see lecture). In this case, the reduction is to create new yes instances of
X by saying {1w|w ∈ NA}. Since the reduction is computable then we know that X is
not recursively enumerable.

To show X̄ is not recursively enumerable, we can reduce ĀT M to X̄ . In this case
the reduction would simply be i = {0w|w ∈ ĀT M}. Hence, i is only in X̄ if w ∈ ĀT M .
Since the reduction is computable, the language is not recursively enumerable. ■

7

