
ECE 374 B Lab 0 - Languages and definitions Fall 2024

1 Problems as Languages

For each of the following problems:

i. Formulate the problem as a regular language (give an example of the problem instances and
how they are encoded, you don’t have to write every problem instance).

Note that how you encode the language matters for the regular expression you end up with.

1. Checking whether (or not) a number is divisible by 4). You are given a binary number and
need to output if this number is divisible by 4.

Solution: Part(i) Intuition: Note that if a binary number is divisible by 4, then it
must have 2 zeroes in the suffix.

Strategy: Assume we want to formulate this as the language: (LDiv4?). For every
binary number x , we:

• Add the string w= x · ”|1” to LDiv4? if the two-character suffix of x[0 : 1] = 00.
(x is divisible by 4). We add the “|” to separate the input from the output of the
problem.

• Add the string w = x · ”|0” to LDiv4? if the two-character suffix of x[0 : 1] =
01 or 10 or 11. (x is not divisible by 4).

Part(ii) Formulating the language like we did above makes the regular expression
very easy:

rDIV4? = (0+ 1)∗00|1
︸ ︷︷ ︸

all output 1 instances

+

all output 0 instances
︷ ︸︸ ︷

((0+ 1)∗(01+ 10+ 11)|0”

Alternatively, formulating a regular expression that accepts only the binary strings
divisible by 4 is also acceptable. Therefore, any equivalents of (0+ 1)∗00 is a valid
solution.

■

2. The sum of two unary integers.

Solution: Let’s first refresh on what unary numbers are. A unary number is base
1. In other words, each digit in a unary number represent 1digi tposi t ion. Example:
510 = 1012 = 111111

So the language would be similar to the example discussed in lecture. Let’s assume
Σ= {1,+,=}. We don’t particularly need the “+” and “=” symbols but I added them
for visual clarity. Therefore we can describe the language as:

1



ECE 374 B Lab 0 - Languages and definitions Fall 2024

L+unar y =























+ =, +1= 1, +11= 11, . . .
1+ = 1, 1+ 1= 11, 1+ 11= 111, . . .

11+ = 1, 11+ 1= 111, 11+ 11= 1111, . . .
... ... ...

n+ = 1....1(n times), . . . , n+ 11= 1....1(n+2 times), . . .























(1)
■

3. The game of TicTacToe. You are given a completed tic-tac-toe board and you need to
determine who won. Hint: think about how many games of TicTacToe there are.

Solution: Part (i):

Intuition: So with the game of TicTacToe, first thing to notice is that there are a
finite number of games. This means that the language that recognizes a TicTacToe
board and calculates it’s winner must have a finite number of strings making it
automatically regular.

Strategy: Let’s first focus on formulating the strings in the language. First notice
that a TicTacToe board has nine spaces and each space can have one of three values
(blank, X, O). We can construct an encoding where each square corresponds to a
position on the string like follows:

• The language is composed of 9-
character strings. Every charcater
on the string corresponds to a space
on the TicTacToe board.

• We consider a alphabetΣ= {□,×,◦}
to represent a empty-space, X-mark,
O-mark.

• Next we concatenate a “|” symbol
to note the end of the board encod-
ing and add a character to mark the
winner.

0 1 2

8

This game of TicTacToe would be
encoded as

w= [□,□,□,×,×,×,◦,◦,□, |,×]

There are at most 39 possible boards (but remember not all boards are valid since
the number o X’s and O’s must differ by at most 1. We construct the language (LT T T )
by including a string for all the possible games of TicTacToe.

Part(ii)

I’m not going to type out the regular language explicitly but let’s define the regular
expression as:

2



ECE 374 B Lab 0 - Languages and definitions Fall 2024

rT T T = rT T T +w ∀ w ∈ LT T T

As mentioned earlier |LT T T |< 39 which is finite so our above construction is valid.
■

3



ECE 374 B Lab 0 - Languages and definitions Fall 2024

4. The shortest path of a weighted (only positive integer values), undirected graph between 2
nodes s and t.

Solution: Again, this is just a issue of embedding a graph as a string which can be
accomplished a multitude of ways. Big thing is to remember what a graph is, a set of
nodes and a set of edges. So how do we encode a graph as a string? We simply list
out the nodes and edges.

Each string in a language represents an instance of the problem. In this case,
the problem input is the weighted, undirected, graph and the output is the shortest
path. Knowing this, we can formulate a string embedding such as:

〈< l isto f nodes > |< l isto f ed ges > |< shor testpath>〉

Hence if we have a graph such as:

s

a

b

t

1

2

3

4

would yield a sting embedding like:

〈 a, b, c, d
︸ ︷︷ ︸

Nodes in Graph

| s1a, s2b, a3t, b4t
︸ ︷︷ ︸

Edges in Graph

| sat
︸︷︷︸

Shortest Path
〉 (2)

Again I’m including a bunch of extaneous notation for the sake of visual clarity. So
the language that defines the shortest path problem would simply be a collection of
all these strings.

■

4



ECE 374 B Lab 0 - Languages and definitions Fall 2024

2 Recursive Definitions

Give the recursive definition of the following languages. For both of these you should concisely
explain why your solution is correct.

1. A language that contains all strings.

Solution: So the thing to remember with recursive definitions is that you have to
have a base case, and a set of rules that could build on so let’s do that:

Base case: ϵ ∈ La

Next we got the inductive step where we define rules to make other strings. The
good news is that since this language is any strings, we can simply say:

• w= 0x for some x ∈ La, is in La

• w= 1x for some x ∈ La, is in La

■

2. A language which holds all the strings containing the substring 000.

Solution: Very similar to the last problem expect we need to ensure all the strings in
Lb have a particular substring. We can accomplish this by simply changing the base
case:

• Base case: 000 ∈ La

• w= 0x for some x ∈ La, is in La

• w= 1x for some x ∈ La, is in La

But this isn’t completely correct because it means the will always be a suffix. Easy
to fix with a few more rules:

• w= x0 for some x ∈ La, is in La

• w= x1 for some x ∈ La, is in La

■

3. A language LA that contains all palindrome strings using some arbitrary alphabet Σ.

Solution: A string w ∈ Σ∗ is a palindrome if and only if:

• w= ϵ, or
• w= a for some symbol a ∈ Σ, or
• w= axa for some symbol a ∈ Σ and some palindrome x ∈ Σ∗

■

5



ECE 374 B Lab 0 - Languages and definitions Fall 2024

4. A language LB that does not contain either three 0’s or three 1’s in a row. E.g., 001101 ∈ LB
but 10001 is not in LB.

Solution: We are going to define two languages, LB1 and LB0 using a mutually
recursive definition. LB1 contains all strings in LB that start with 1, and LB0 contains
all strings in LB that start with 0. We are also going to have ϵ ∈ LB0 and ϵ ∈ LB1.

Definition:

• ϵ ∈ LB0

• ϵ ∈ LB1

• If x ∈ LB0, then 1x and 11x are in LB1

• If x ∈ LB1, then 0x and 00x are in LB0

Then LB = LB1 ∪ LB0 ■

6


	Problems as Languages
	Recursive Definitions

