
ECE 374 B Lab 1 - Regular Expressions Fall 2024

1 Regular Expressions

Give regular expressions for each of the following languages over the alphabet {0,1}.

1. All strings containing the substring 000.

Solution: (Intuition) Having a substring means a string w must contain the substring
x , but also that any other substrings must appear before or after x .
(Strategy) Each string in the set has three parts: any-string + substring + any-string.
any-string can be described by Σ∗ = (0+1)∗. We know the described substring....
(Result) (0+1)∗000(0+1)∗ ■

2. All strings not containing the substring 000.

Solution: (Intuition) For a string to not allow the substring w, we can manually
define our string to only contain patterns that do not contain w.
(Strategy) Since the substring is 000 and our alphabet contains of 0s and 1s, the only
patterns that are allowed repetitively are 1, 01 or 001 : (1+01+001)∗. Since the
allowed patterns ends with 1 , in order to also accommodate strings that can end with
0s (with a maximum of 2 0s at that to avoid our substring 000) the last substring
would be: (ϵ +0+00)
(Result) (1+01+001)∗(ϵ +0+00) ■

Solution: (Intuition) To not contain the subtring w, with n consecutive repetitions
of the symbol a, we must ensure that a string w must only allow substrings containing
0 to n−1 a’s at any point which can precede or succeed substrings consisting of other
symbols in the alphabet.
(Strategy) The substring that describes a max of two 0s : (ϵ+0+00). Since the only
other symbol in our alphabet is 1, sandwiching it between our previously defined
substring, while allowing repetitions, gives us :
(Result) (ϵ +0+00)(1(ϵ +0+00))∗ ■

3. All strings in which every run of 0s has length at least 3.

Solution: (Intuition) Our alphabet only has 0s and 1s. Every run of 0s with length
of atleast 3 can be preceded or succeeded by any number of 1s.
(Strategy) Each string in the set has 2 parts : 1s of any length + 0s of length >= 3
.Runs of 0s with length of at least 3 can be described as 0000∗.
(Result) (1+0000∗)∗ ■

1

ECE 374 B Lab 1 - Regular Expressions Fall 2024

Solution: (Intuition) Since every run of 0s should have length of at least 3 ,We can
breakdown the string to three substrings x ,y,z. We can define the main pattern for
the body of the string to allow either 1s or 0s of minimum length 3 in substring y.
Substrings x and z are defined to accommodate the beginning and ending patterns
respectively.
(Strategy) We define y , the main body of the string, to be alternating occurrences of
either any number of 1s or 0s of length greater than 3 ,which gives us ((ϵ+0000∗)1)∗.
To accommodate strings that start with 1, x can be described as (ϵ+1) and for strings
that end with three or more zeroes, z can be described as (ϵ +0000∗)
(Result) (ϵ +1)((ϵ +0000∗)1)∗(ϵ +0000∗) ■

4. All strings in which 1 does not appear after a substring 000.

Solution: (Intuition) We can have a maximum of two 0s before any 1. So we can
split the problem to two substrings x and y and write it as x y. x represents all
substrings with 1s where there are less than three 0s before a 1. y represents
substrings containing only 0s.
(Strategy) For x , we can have either no 0 before a 1 or one 0 before a 1 or two 0s
before a 1. This can be represented by (1+01+001)∗ . For y , we can use 0∗ since
it represents zero or more 0s.
(Result) (1+01+001)∗0∗ ■

5. All strings containing at least three 0s.

Solution: (Intuition) Containing at least three 0s can be interpretted as having three
substrings say x , y, z. Then this problem becomes similar to problem 1 in that we
can have any other substring before, after and inbetween x , y and z. (Strategy)
Each string has seven parts: any-string + substring 1 + any-string + substring 2 +
any-string + substring 3 + any-string. Any-string can be described by Σ∗ = (0+1)∗
and our substrings are just 0. (0+1)∗0(0+1)∗0(0+1)∗0(0+1)∗ ■

Solution (clever): (Intuition) This problem can instead be viewed from the lens of
counting the first three 0s. Because our alphabet only have 0s and 1s, this means that
the only symbols around the first three 0s can be 1s. Then any-string can follow after
the first three 0s. The resulting regular expression is simpler than the previous solution.
The second clever solution is the same but in reverse. Reversing the expression works
because the substring 0 is symmetric but it can also be viewed as counting the last
three 0s. (Strategy) Each string has seven parts: 1s+0+1s+0+1s+0 + any-string.
Any-string can be described by Σ∗ = (0+1)∗, 1s is just 1∗ and0is just 0. The second
clever solution is just this in reverse. 1∗01∗01∗0(0+1)∗ or (0+1)∗01∗01∗01∗ ■

2

ECE 374 B Lab 1 - Regular Expressions Fall 2024

6. Every string except 000. [Hint: Don’t try to be clever.]

Solution: Every string w ̸= 000 satisfies one of three conditions: Either |w|< 3, or
|w|= 3 and w ̸= 000, or |w|> 3. The first two cases include only a finite number of
strings, so we just list them explicitly. The last case includes all strings of length at
least 4.

ϵ +0+1+00+01+10+11
+001+010+011+100+101+110+111
+ (1+0)(1+0)(1+0)(1+0)(1+0)∗

■

Solution (clever): A string w in the language falls in one of the following three
categories:

(a) Does not contain 1 and |w|< 3.
(b) Contains 1 in the first three symbols.
(c) Does not contain 1 in the first three symbols and |w|> 3.

The strings in (a) can be listed explicitly. The strings in (b) can be further categorized
based on the location of the first occurrence of 1, and can be written as

�

1+ 01+
001
�

(1+0)∗. Notice that strings with multiple 1s in the first three symbols are also
captured by the given expression. For example, 111 can be generated by 1(1+0)∗.
Finally, the strings in (c) can be written as

�

000(1+0)
�

(1+0)∗. Combining the three
catefories, we obtain the following expression:

ϵ +0+00+
�

1+01+001+000(1+0)
�

(1+0)∗

■

3

ECE 374 B Lab 1 - Regular Expressions Fall 2024

7. All strings w such that in every prefix of w, the number of 0s and 1s differ by at most 1.

Solution: Equivalently, strings that alternate between 0s and 1s: (01+10)∗(ϵ+0+
1) ■

8. Any string not in 0∗ +1∗

Solution: So the language represented by 0∗ +1∗ contains all the binary strings that
have only 0’s and all the binary strings that have only 1’s. Hence, all the strings not
included in that language have at least one 0 and one 1. Something like this would
do:

(0+1)∗0 (0+1)∗1 (0+1)∗ + (0+1)∗1 (0+1)∗0 (0+1)∗

Note that we need to account for 01 and 10 so that’s why we have to have two parts
to the above expression. ■

⋆9. All strings containing at least two 0s and at least one 1.

Solution: There are three possibilities for how such a string can begin:

• Start with 00, then any number of 0s, then 1, then anything.
• Start with 01, then any number of 1s, then 0, then anything.
• Start with 1, then a substring with exactly two 0s, then anything.

All together: 000∗1(0+1)∗ + 011∗0(0+1)∗ + 11∗01∗0(0+1)∗

Or equivalently:
�

000∗1 + 011∗0 + 11∗01∗0
�

(0+1)∗ ■

Solution: There are three possibilities for how the three required symbols are ordered:

• Contains a 1 before two 0s: (0+1)∗1 (0+1)∗0 (0+1)∗0 (0+1)∗

• Contains a 1 between two 0s: (0+1)∗0 (0+1)∗1 (0+1)∗0 (0+1)∗

• Contains a 1 after two 0s: (0+1)∗0 (0+1)∗0 (0+1)∗1 (0+1)∗

So putting these cases together, we get the following:

(0+1)∗1 (0+1)∗0 (0+1)∗0 (0+1)∗

+ (0+1)∗0 (0+1)∗1 (0+1)∗0 (0+1)∗

+ (0+1)∗0 (0+1)∗0 (0+1)∗1 (0+1)∗ ■

Solution (clever): (0+1)∗
�

101∗0+011∗0+01∗01
�

(0+1)∗ ■

4

ECE 374 B Lab 1 - Regular Expressions Fall 2024

Æ10. All strings in which the substring 000 appears an even number of times.
(For example, 0001000 and 0000 are in this language, but 00000 is not.)

Solution: Every string in {0,1}∗ alternates between (possibly empty) blocks of 0s and
individual 1s; that is, {0,1}∗ = (0∗1)∗0∗. Trivially, every 000 substring is contained
in some block of 0s. Our strategy is to consider which blocks of 0s contain an even or
odd number of 000 substrings.

Let X denote the set of all strings in 0∗ with an even number of 000 substrings.
We easily observe that X = {0n | n= 1 or n is even}= 0+ (00)∗.

Let Y denote the set of all strings in 0∗ with an odd number of 000 substrings.
We easily observe that Y = {0n | n> 1 and n is odd}= 000(00)∗.

We immediately have 0∗ = X + Y and therefore {0,1}∗ = ((X + Y)1)∗(X + Y).
Finally, let L denote the set of all strings in {0,1}∗ with an even number of 000

substrings. A string w ∈ {0,1}∗ is in L if and only if an even number of blocks of 0s in
w are in Y ; the remaining blocks of 0s are all in X . We consider two simple subcases
to help us make sure we don’t make mistakes.

• Exactly zero blocks of 0s are in Y . This means all blocks of 0s are in X and they
alternate with blocks of 1s. We capture this by (X1)∗X where the last X is to
allow ending in blocks of 0s.

• Exactly two blocks of 0s are in Y . The expression (X1)∗Y1·(X1)∗Y (ϵ+1(X1)∗X)
captures this where we are paying attention in the expression to what comes
after the second block of Y ; either we end in that block or we need a 1 to
separate a string that has zero blocks from Y .

Now we consider the general case with an even number of blocks in Y which can
be zero, two or a multiple of two that can be simulated by repetitions. We can obtain
this by considering the expression for exactly two blocks and allowing concatenation
arbitrary number of times while being careful to ensure that we separate with a
1 as needed and allowing for the expression to end appropriately. The expression
�

(X1)∗Y1 · (X1)∗Y1
�∗ allows an arbitrary even number of blocks in Y with the caveat

that it always ends with Y1 if it has non-zero repetitions. We need to allow ending in
Y or (X1)∗X as in the second subcase above. Letting Z = (X1)∗Y1 · (X1)∗Y helps us
simplify the final expression.

Putting the preceding observations together we obtain the following expression.

L = (Z1)∗(Z + (X1)∗X)

We will not plug in the expressions for X and Y because it will make the expression
too long. There are likely to be shorter expressions based on better case analysis
but debugging them is probably not worth it unless it is very important in some
application.

Whew! ■

5

	Regular Expressions

