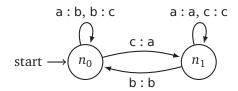
I DFAs

Describe deterministic finite-state automata that accept each of the following languages over the alphabet $\Sigma = \{0, 1\}$. Describe briefly what each state in your DFAs *means*.


Either drawings or formal descriptions are acceptable, as long as the states Q, the start state s, the accept states A, and the transition function δ are all clear. Try to keep the number of states small.

- 1. All strings containing the substring **000**.
- 2. All strings *not* containing the substring **000**.
- 3. Every string except **000**. [Hint: Don't try to be clever.]
- 4. All strings in which the number of **0**s is even **and** the number of **1**s is *not* divisible by 3.
- 5. All strings in which the number of **0**s is even **or** the number of **1**s is *not* divisible by 3.
- 6. Given DFAs M_1 and M_2 , all strings in $\overline{L(M_1)} \oplus L(M_2)$.

 Recall that for two sets A and B, their symmetric distance $A \oplus B$ is the set of elements in either A or B, but not both.

2 Other types of automata

 A finite-state transducer (FST) is a type of deterministic finite automaton whose output is a string instead of just accept or reject. The following is the state diagram of finite state transducer FST₀.

Each transition of an FST is labeled at least an input symbol and an output symbol, separated by a colon (:). There can also be multiple input-output pairs for each transitions, separated by a comma (,). For instance, the transition from n_0 to itself can either take a or b as an input, and outputs b or c respectively.

When an FST computes on an input string $s := \overline{s_0 s_1 \dots s_{n-1}}$ of length n, it takes the input symbols s_0, s_1, \dots, s_{n-1} one by one, starting from the starting state, and produces corresponding output symbols. For instance, the input string abccba produces the output string bcacbb, while cbaabc produces abbbca.

- (a) Each of the following strings is the input of FST₀. Give the sequence of states entered and the output produced.
 - aaca
 - cbbc
 - bcba

- acbbca
- (b) Assume that FST's have an input alphabet Σ and an output alphabet Γ , give a formal definition of this type of model and its computation. (Hint: An FST is a 5-tuple with no accepting states. Its transition function is of the form $\delta: Q \times \Sigma \to Q \times \Gamma$.)
- (c) Give a formal description of FST₀.
- (d) Give a state diagram of an FST with the following behavior. Its input and output alphabets are {T, F}. Its output string is inverted on the positions with indices divisible by 3 and is identical on all the other positions. For instance, on an input TFTTFTFT it should output FFTFFTTT.

Work on these later:

Describe deterministic finite-state automata that accept each of the following languages over the alphabet $\Sigma = \{0, 1\}$. Describe briefly what each state in your DFAs *means*.

Either drawings or formal descriptions are acceptable, as long as the states Q, the start state s, the accept states A, and the transition function δ are all clear. Try to keep the number of states small.

- 7. All strings w such that in every prefix of w, the number of 0s and 1s differ by at most 1.
- 8. All strings containing at least two 0s and at least one 1.
- 9. All strings w such that in every prefix of w, the number of $\mathbf{0}$ s and $\mathbf{1}$ s differ by at most 2.
- *10. All strings in which the substring **000** appears an even number of times. (For example, **0001000** and **0000** are in this language, but **00000** is not.)
- 11. All strings that are **both** the binary representation of an integer divisible by 3 **and** the ternary (base-3) representation of an integer divisible by 4.

For example, the string **1100** is an element of this language, because it represents $2^3 + 2^2 = 12$ in binary and $3^3 + 3^2 = 36$ in ternary.

*12. All strings w such that $F_{\#(\mathbf{10},w)} \mod 10 = 4$, where $\#(\mathbf{10},w)$ denotes the number of times **10** appears as a substring of w, and F_n is the nth Fibonacci number:

$$F_n = \begin{cases} 0 & \text{if } n = 0\\ 1 & \text{if } n = 1\\ F_{n-1} + F_{n-2} & \text{otherwise} \end{cases}$$