ECE 374 B Lab 3 - Language Transformation - Solutions Fall 2024

Let L be an arbitrary regular language over the alphabet 2 = {0, 1}. Prove that the following
languages are also regular. (You probably won't get to all of these.)

1. FL1pODDS(L) := {flipOdds(w) | w € L}, where the function flipOdds inverts every odd-
indexed bit in w. For example:

flipOdds(00000111101010101)=0101600160111111111

Solution: Let M = (Q,s,A, &) be a DFA that accepts L. We construct a new DFA
M’ =(Q,s’,A’,8") that accepts FLipODDS(L) as follows.

To keep track of if the index is even/odd, we cross the original states Q with the
set {EVEN, opD}. Then every time an input is processed we flip this second coordinate.
The starts state is (s, EVEN). Effectively this is a flag determining if it is even or odd.

To flip the bits on odd indexes, we define the transition of odd indexed bits (i.e.
(g, opD)) as the transition of the original DFA with a flipped input and the even
indexed bits (i.e. (q, EVEN)) as the transition of the original DFA with the same input.

Q' = Q x {EVEN, oDD}
s’ = (s, EVEN)
A’ = A x {EVEN, oDD}
&'((g,0pp),0) = (6(q, 1), EVEN)
&'((g,EvEN), 0) = (6(q, ©), 0DD)
&'((g,0pp), 1) = (6(q, 0), EVEN)
6'((q,EVEN), 1) = (5(q, 1), ODD)

start

ECE 374 B Lab 3 - Language Transformation - Solutions Fall 2024

2. FLipOpp1s(L) := {flipOddis(w) | w € L}, where the function flipOdd1 inverts every
other 1 bit of its input string, starting with the second 1 (which would have a index of 1 in
a o-indexing scheme). For example:

flip0dd15(00001111101010101) = 00001010100010001

Solution: Let M =(Q,s,A, §) be a DFA that accepts L. We need to construct a new
NFA M’ =(Q/,s’,A’, ") that accepts FLipOpp1s(L).

Intuition: All we need to do is keep track of if we’re on a odd-indexed 1 and if we
are, instead of accepting the 1, we accept a zero. So it’s similar to the first problem but
in this case we keep the zero transitions on the same level but only change between
even/odd when we see a 1. And if we’re on the odd level, the 1-transition becomes a
O-transition.

Strategy: We need to add EVEN, OpD to the states to accommodate the flip bit.M’
would never accept two consecutive 1s (Eg:11) because FLiPOpp1s will flip every
other 1 bit, so if M’ ever sees 11, it rejects. Also,when we see a 1 and flip = TRUE we
should kill the execution thread as it indicates that we waited too long to flip a 0 to a
1.

Example: Let M be the DFA of a language which accepts all strings containing the
substring 11 .So M will be as follows:

0]
0 0,1

g is the accepting state of M.So for the string 11:

0(q0,1)=q1
0(q1,1)=q,

Since g, is the accepting state of M.For M’ the accepting states would be
{(qZJ TRUE), (q2> FALSE)}'

ECE 374 B Lab 3 - Language Transformation - Solutions Fall 2024

The input 01 to M’ gives the final state (qz, TRUE) which is an accepting state of
M.

Solution: Each state (q,flip) of M’ indicates that M is in state q, and we need to
flip a O bit before the next 1 bit if and only if flip = TRUE.

Q' = Q x {TRUE, FALSE}
s’ = (s, TRUE)
A’ = A x {TRUE, FALSE}
5'((q,FaLsE), 0) = {(5(q, 0), FALSE)}
&'((g, TruE), 0) = {(6(q, 0), TrRUE), (6(g,1), FaLsE)}
&'((q,FaLsE), 1) = {(6(g, 1), TruE)}
6'((q, TrRUE), 1)=&

ECE 374 B Lab 3 - Language Transformation - Solutions Fall 2024

3. UNFLIPODD1S(L) := {w € ¥* | flipOdd1s(w) € L}, where the function flipOdd1 inverts
every other 1 bit of its input string, starting with the second 1 (which would have a index
of 1 in a o-indexing scheme). For example:

flip0dd15(00001111101010101) = 00001010100010001

Solution: Let M =(Q,s,A, §) be a DFA that accepts L. We need to construct a new
DFA/NFA M’ = (Q’,s’,A’, 8") that accepts UNFLIPODD1s(L) as follows.

Intuition: This is seems like a complex language but let’s break it down. First
thing to realize is that the language is not a one-to-one relationship. For instance,
let’s say flipOdd1s(w) = 010. In this case, w could be a number of things. possible
solutions for w include: w = 010 or w = 011. In both cases, flipOdd1s(w) = 010. Also
observe that runs of 1’s cannot be a part of the language of L because flipOdd1s(w)
always results in atleast one 0 in between every pair of 1’s

So what does the NFA for UNFLIPODD1s(L) do? Well when you see the first 1,
you don’t want to do anything. But once you get that first 1, you need to unflip a zero
(accept a 1 instead of a 0) before you get the the next 1.

Strategy: So, every state is represented as (g,flip) with flip € { EVEN,ODD },
where flip = OpD indicates that we need to accept a 1 where L would have accepted
a 0. We start with (s, EVEN) to ensure that the first 1 bit in the string would not be
flipped. When that happens, we also reset the flag to be Opp until the next 1 bit is
read from the string at which point of time we just switch the flag back to be EvEn
and repeat the process. We can look at an example of this process with an arbitrary
regular language input:

Example: For M’ to accept the string 111, we and feed the flipped string 101 to

M. DFA M:
0
0 1
start H@% =@
1 0,1

DFA M':

start —

ECE 374 B Lab 3 - Language Transformation - Solutions Fall 2024

Solution: So now let’s geenralize what we did constructing the NFA for L’ above
to any arbitrary version of L.

Q' = Q x {EvEN, ODD}
s’ = (s, EVEN)
A’ = A x {EvEN, ODD}
&'((g,Even), 0) = (6(q,), EvVEN)
&'((g,0pp), 0) = (5(q, ©),0pD)
&'((g,Even), 1) = (6(q, 1), 0pD)
5'((q,0pp), 1) = (5(q, 0), EVEN)

Once again, by treating 1 and 0 as synonyms for EvEN and Opb, respectively, we
can rewrite 5’ more compactly as

&'((q.flip), a) = (6(q, ~flip A @), flip® a) -

ECE 374 B Lab 3 - Language Transformation - Solutions Fall 2024

4. cycle(L) :={xy|x,y € &¥*, yx € L}, The language that accepts the rotations of string from
a regular language.

Solution: The given language cycle(L) is a set of strings that can be obtained by
spliting a string w € L into two parts and swapping the order of the parts. As an
example, if L = {101}, then cycle(L) ={101,011,110}. To get the idea, consider
the following DFA M = (%, Q,s,A, &) for the langauge L.

0,1

Suppose we start from the state q, instead of g, traverse through the DFA to reach
g3, take an e-transition to qg, then continue traversal until reaching back to g,. This
traversal would represent the string 110, which is in cycle(L). Therefore, if we could
start from an arbitrary state g € Q and traverse the DFA in a similar way as presented
above, the traversals would represent the language cycle(L).

At a high-level, we construct an NFA with |Q| different copies of a pair of
M (therefore, it would be the total of 2|Q| copies of M). Each pair would corre-
spond to a certain starting state, among all states in Q. For each pair, one copy of
M corresponds to pre-cycle, and the other corresponds to post-cycle. We also add a
pseudo start state s’ that can e-transition to one of the copies. Then, we modify the
transition function so it allows the traversal explained above.

Formally, we construct NFA M’ :=(%,Q’,s’,A’,8), where

* Q' :=(QxQx{pre,post})U{s’}
* A':={(q,q,post) | g €Q}
* The transition function &’ is defined as follows,

5'(s',e)=1{(q,q,pre) | ¢ €Q}

(q;,s,post) ifgjeAx=¢€

6/ i»4j,Pre), x) =
((ql q] p)) {(qi: 5(qj,x),pre) otherwise

5/((qi) q]> pOSt)> x) = (qi) 5(‘1}; x))pOSt)

A state ¢/ = (q;,9 i,pre), for an example, represents that the traversal started from
gi, so far the input string led to g;, and we haven’t cycled yet. Once we reach one of
the original accepting states within a pre-cycle copy, we can take an e-transition to
the original starting state s of the corresponding post-cycle copy, and then continue

ECE 374 B Lab 3 - Language Transformation - Solutions Fall 2024

traversal. We accept when we reach the state from which we started the traversal
within the post-cycle copy. |

ECE 374 B Lab 3 - Language Transformation - Solutions Fall 2024

5. Prove that the language insert1(L) := {x1y | xy € L} is regular.
Intuitively, insert1(L) is the set of all strings that can be obtained from strings in L by insert-
ing exactly one 1. For example, if L = {&,00K!}, then insert1(L) = {1, 100K!,010K!,
001K!,00K1!,00K!1}.

Solution: Let M = (Q,s,A, §) be a DFA that accepts L. We need to construct an NFA
M’ =(Q,s’,A’,8") that accepts insert1(L).

Intuition: Since the string in the language is represented as x1y, where x repre-
sents all the possible prefixes of a string in L and y represents all the suffixes. We can
use two states - before and after. A state change can occur from before to after when
we see a 1. If the machine is in the before state and it reads a 1, it can choose to
either stay in the before state or move to the after state. If the machine is in the after
state and reads a 1, it will stay in the after state since it had already chosen a 1 to
ignore previously. Thus we combine the before and after states with the states of M
Q) to form the set of states Q’ of M.

Strategy: M’ nondeterministically simulates M running on a string prefix, then
uses a 1 character and then runs M the rest of the input string. The transformation is
best shown in the following example:

DFA for M:

0 1 0,1
start —(S > a >(b
NFA for M’:

0 1 0,1
1 (0]
start —{ s, before a,before b,before
1 1 1

A

Solution: So we need to simply formalize the transformation above. First we

ECE 374 B Lab 3 - Language Transformation - Solutions Fall 2024

know we need to double the states. X stays the same. For the delta functions both
sets of DFAs have the same transitions but we need to add a 1 transition from the DFA
simulating the prefix to the DFA simulating the suffix.

e The state (g, before) means (the simulation of) M is in state ¢ and M’ has not
yet skipped over a 1.
* The state (q, after) means (the simulation of) M is in state g and M’ has already
skipped over a 1.
Q' := Q x {before, after}
s’ := (s, before)
A’ :={(q, after) | q €A}
{(5(q a), before), (g,after)} ifa=1
{(5(q, a), before)} otherwise
5 (g, after), @) = {(5(g, @), after)} .

5'((q, before),a) = {

ECE 374 B Lab 3 - Language Transformation - Solutions Fall 2024

6. Prove that the language delete1(L) := {xy | x1y € L} is regular.

Intuitively, delete1(L) is the set of all strings that can be obtained from strings in L
by deleting exactly one 1. For example, if L = {101101,00,¢}, then deletel(L) =
{01101,10101,10116}.

Solution: Let M = (Q,s,A,8) be a DFA that accepts L. We construct an NFA
M’ =(Q,s’,A’,8") with e-transitions that accepts delete1(L) as follows.

Intuitively, M’ simulates M, but inserts a single 1 into M’s input string at a
nondeterministically chosen location.
* The state (g, before) means (the simulation of) M is in state ¢ and M’ has not
yet inserted a 1.
* The state (q, after) means (the simulation of) M is in state g and M’ has already
inserted a 1.
Q' := Q x {before, after}
s’ := (s, before)
A" :={(q, after) | q €A}
&'((q, before), e) = {((q, 1), after) }
&§'((q, after),e) =@

&'((g, before),a) = {(5(q, a), before)}
&'((q, after),a) = {(6(q, a), after)} -

I0

ECE 374 B Lab 3 - Language Transformation - Solutions Fall 2024

7. Consider the following recursively defined function on strings:

ifw=e
aa * stutter(x) if w = ax for some symbol a and some string x

€
stutter(w) := {

Intuitively, stutter(w) doubles every symbol in w. For example:

e stutter(PRESTO) = PPRREESSTTO0
e stutter(HOCUS©POCUS) = HHOOCCUUSS©oPPOOCCUUSS

(@) Prove that the language stutter (L) := {w | stutter(w) € L} is regular.

Solution: Let M = (Q,s,A,6) be a DFA that accepts L. We construct an DFA
M’ =(Q’,s’,A’,5") that accepts stutter (L) as follows.

Intuitively, M’ reads its input string w and simulates M running on stutter(w).
Each time M’ reads a symbol, the simulation of M reads two copies of that

symbol.
Q' =Q
s'=s
A=A
5'(g,a) = 6(5(q,a),a) m

II

ECE 374 B

Lab 3 - Language Transformation - Solutions Fall 2024

(b) Prove that the language stutter(L) := {stutter(w) | w € L} is regular.

Solution: Let M = (Q,s,A, 6) be a DFA that accepts L. wWe construct an DFA
M’ =(Q,s’,A’,8’) that accepts stutter(L) as follows.
M’ reads the input string stutter(w) and simulates M running on input w.

* State (q,®) means M’ has just read an even-indexed® symbol in stutter(w),
so M should ignore the next symbol (if any).

* For any symbol a € %, state (q,a) means M’ has just read an odd-indexed
symbol in stutter(w), and that symbol was a. If the next symbol is an a,
then M should transition normally; otherwise, the simulation should fail.

* The state fail means M’ has read two successive symbols that should have
been equal but were not; the input string is not stutter(w) for any string w.

Q' =Q x ({o} UX) U {fail} for some new symbol e & 3

s'=(s,)
A'={(q,®)] g€A}
5'((q,®),a) =(q,a) forallgeQandaecX

/ _J(6(q,a),®) ifa=b
6'((q,a),b) = {fail fasb

&’ (fail, a) = fail forallae> g

“The first symbol in the input string has index 1; the second symbol has index 2, and so on.

forallgeQand a,b e X

I2

ECE 374 B Lab 3 - Language Transformation - Solutions Fall 2024

Solution (via regular expressions): Let R be an arbitrary regular expression.
We recursively construct a regular expression stutter(R) as follows:

(@ ifR=0g

stutter(w) if R = w for some string w € ©*
stutter(R) := { stutter(A) + stutter(B) if R =A+ B for some regexen A and B
stutter(A) o stutter(B) if R=A * B for some regexen A and B
 (stutter(A))* if R = A* for some regex A

To prove that L(stutter(R)) = stutter(L(R)), we need the following identities for
arbitrary languages A and B:

o stutter(AU B) = stutter(A) U stutter(B)

e stutter(A ¢ B) = stutter(A) © stutter(B)

e stutter(A*) = (stutter(A))*
These identities can all be proved by inductive definition-chasing, after which the

claim L(stutter(R)) = stutter(L(R)) follows by induction. We leave the details of
the induction proofs as an exercise for afuture semester an-exam the reader.

Equivalently, we can directly transform R into stutter(R) by replacing every
explicit string w € ¥* inside R with stutter(w) (with additional parentheses if
necessary). For example:

stutter((1+€)(01)*(0 +€) +0%) = (11+£)(0011)*(00 +¢) + (00)*

Although this may look simpler, actually proving that it works requires the same
induction arguments. [|

13

ECE 374 B Lab 3 - Language Transformation - Solutions Fall 2024

8. Consider the following recursively defined function on strings:

€ ifw=g¢g
evens(w) :=1 ¢ if w = a for some symbol a
b - evens(x) if w = abx for some symbols a and b and some string x

Intuitively, evens(w) skips over every other symbol in w. For example:

* evens(EXPELLIARMUS) = XELAMS
* evens(AVADA©KEDAVRA) = VD<oEAR.

Once again, let L be an arbitrary regular language.

(@) Prove that the language evens (L) := {w | evens(w) € L} is regular.

Solution: Let M = (Q,s,A, &) be a DFA that accepts L. We construct a DFA
M’ =(Q/,s’,A’,5") that accepts evens™ (L) as follows:

Q' =Qx{0,1}
s’ =(s,0)
A =Ax{0,1}

5'((q,0),a)=(g,1)
5'((g,1),a) =(56(q,a),0)

M’ reads its input string w and simulates M running on evens(w).
* State (q,0) means M’ has just read an even symbol in w, so M should ignore
the next symbol (if any).

* State (q,1) means M’ has just read an odd symbol in w, so M should read
the next symbol (if any).

14

ECE 374 B

Lab 3 - Language Transformation - Solutions Fall 2024

(b) Prove that the language evens(L) := {evens(w) | w € L} is regular.

Solution: Let M = (Q,s,A,5) be a DFA that accepts L. We construct an NFA
M’ =(Q,s’,A’,8") that accepts evens(L) as follows.
Intuitively, M’ reads the input string evens(w) and simulates M running on
string w, while nondeterministically guessing the missing symbols in w.
e When M’ reads the symbol a from evens(w), it guesses a symbol b € ¥ and
simulates M reading ba from w.

* When M’ finishes evens(w), it guesses whether w has even or odd length,
and in the odd case, it guesses the last symbol in w.

A'=Au{q EQ\ 5(q,a)NA# @ for some a € T}

6'(q,a) = U {5(5(q, b),a)}

bex |

15

