
ECE 374 B Lab 4 - Regular equivalence - Solutions Fall 2024

1. Let L =
�

w ∈ {0,1}∗
�

� w starts and ends with 0
	

.

(a) Construct an NFA for L with exactly three states.

Solution: The following NFA N accepts the language. On seeing the symbol 0,
the NFA has moves to a. The NFA stays at a when reading 1; on reading 0 it has
the choice to stay or decide that this is the last character and move to b.

s a b
0

0

0

0,1

■

(b) Convert the NFA you just constructed into a DFA using the incremental subset
construction. Draw the resulting DFA. Your DFA should have four states, all reachable
from the start state.

Solution:
q′ ϵ-reach 0 1 A′?
s s ab ∅
ab ab ab a ✓
∅ ∅ ∅ ∅
a a ab a

Thus we obtain the following four-state DFA; each DFA-state is labeled with the
corresponding set of NFA-states:

s

ab

a

∅

0

1

0

1

0

1

0,1 ■
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(c) Convert the DFA you constructed in part (b) into a regular expression using the state
elimination algorithm.

Solution: Unlabeled arrows indicate ϵ-transitions.
The starting state has no incoming transitions, so we just need to add an

isolated ending state. After removing the dump state ∅ we eliminate ab then a.

0

0

10
1

00∗1

00∗

00∗1+1
00∗

00∗1(00∗1+1)∗00∗ +00∗

We end with the regular expression 00∗1(00∗1+1)∗00∗ +00∗.
Eliminating a then ab gives a different (but equivalent) regular expression:

0

0

10
1 0

0+11∗0

0(0+11∗0)∗

We end with the equivalent regular expression 0(0+11∗0)∗. ■

(d) Write a simpler regular expression for L.

Solution: Applying the identity A+BB∗A= B∗A to the second regular expression
above gives 0(1∗0)∗. ■
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2. (a) Convert the regular expression (0∗1+01∗)∗ into an NFA using Thompson’s algorithm.

Solution: Here unlabeled arrows indicate ϵ-transitions:

c
0

d eb f
1

g

l
1

kj mi
0

h

nas o

■

(b) Convert the NFA you just constructed into a DFA using the incremental subset
construction. Draw the resulting DFA. Your DFA should have four states, all reachable
from the start state. (Some of these states are obviously equivalent, but keep them
separate.)

Solution:
q′ ϵ-reach 0 1 A′?
s sabcefho di g ✓
di sabcdefhijkmno di gl ✓
g sabcefghno di g ✓
gl sabcefghjklmhno di gl ✓

We obtain the following 4-state DFA; here each DFA-state is labeled with the
corresponding set of NFA-states:

1

1

0
s

g

gl

di

0

0

0

1

1

Obviously all four states are equivalent, because they’re all accepting states, but
we’re not supposed to collapse them. ■
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(c) Convert the DFA you just constructed into a regular expression using the state
elimination algorithm. You should not get the same regular expression you started
with.

Solution: As usual, unlabeled arrows indicate ϵ-transitions. We start by adding
a unique accepting state (with ϵ-transitions from the old accepting states), and
then eliminate one state at a time.

1

1

0

0

0

0

1

1 0

0+11*0

0

1

1

ε+11*

0+11*0

ε+11*0+11*0

ε+11*

ε+11*
+

(0+11*0)(0+11*0)*(ε+11*)

We end with the regular expression ϵ +11∗ + (0+11∗0)(0+11∗0)∗(ϵ +11∗).
Applying the equivalence A+ BB∗A= B∗A three times simplifies this regular

expression to (1∗0)∗1∗. ■

(d) Think about later: Find the smallest DFA that is equivalent to your DFA from part (b)
and convert that smaller DFA into a regular expression using the state elimination
algorithm. Again, you should not get the same regular expression you started with.

Solution: Because every state in the DFA from part (b) is accepting, the minimal
equivalent DFA has only one state.

0,1

Running the state elimination algorithm on this trivial DFA yields the regular
expression (0+1)∗. ■

(e) What is this language?

Solution: All binary strings. ■
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3. In a previous lab/homework we talked about a new machine called a finite-state transducer
(FST). The special part thing about this type of machine is that it gives an output on the
transition instead of the state that it is in. An example of a finite state transducer is as
follows:

n0start n1

1 : R

1 : A

0 : A 0 : R

defined by the five tuple: (Σ, Γ ,Q,δ, s). Let’s constrain this machine (call is FSTAR) a bit
and say the output alphabet consists of two signals: accept or reject (Γ = {A, R}). We say
that L(FSTAR) represents the language consisting of all strings that end with a accept (A)
output signal.
Prove that L(FSTAR) represents the class of regular languages.

Solution: The lovely thing about this problem is that it is harder the more you think
about it and the key is simply to address it in small chunks. So let’s break it down
into parts. First let’s define some notations about the machines we have available:

• DFA: M = (QM ,ΣM ,δM , sM , AM )

• NFA: N = (QN ,ΣN ,δN , sN , AN )

• FSTAR F = (QF ,ΣF , ΓF ,δF , sF ). For the transistion function let’s say δ(q, a) =
(q, b) where a ∈ Σ and b ∈ Γ

OK so to prove a machine represents regular languages, we must show two things:

(a) A FSTAR can represent any regular language.
(b) Any language that is accepted by a FSTAR is regular.

Part (a): A FSTAR can represent any regular language: Multiple ways to do
this but the easiest is by using a language transformation like you did in lab. If we
can show a construction that turns any DFA into a FSTAR, then we show that a FSTAR
can represent any regular language.

Doing this is relatively straightforward. Accept in a DFA is ending in an accept
state. Accept in a FSTAR is ending on an accept transition.

Hence, given a DFA (M), we’d like to construct a FSTAR (F) such that L(M) = L(F).
We define F as follows:

QF =QM

ΣF = ΣM

sF = sM

Γ = {A, R}
δF (q, a) = (δM (q, a), A) i f δM (q, a) ∈ AM

= (δM (q, a), R) i f δM (q, a) /∈ AM

5



ECE 374 B Lab 4 - Regular equivalence - Solutions Fall 2024

Part (b): Any language that is accepted by a FSTAR is regular. Little harder
this one. The immediate impulse is to turn the FSTAR into a NFA directly which is a
good impulse. But because you can have multiple transitions going to the same state
with mixed accept/reject signals, it’ll be tough to know what states to make an accept
state and what to make a reject state:

qz

qx

qy

1
: R

1 : A

So a bit of a problem since we can’t just turn qz into an accepting state. But what
if we add intermediate states on the path of the transitions like so:

qz

qi
x

qi
y

qx

qy

1

1

ϵ

ϵ

This NFA-part denotes the same thing as the FST-part above it. So let’s define the
NFA formally:
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QN =QF ×Σ∪QF Original states plus state per transition
Added states marked as (qF , a)

Original states marked as (qF ,□)
ΣN = ΣF

sN = sF

δN ((q,□), a) = (q, a) Original transitions go to intermediate states
δN ((q, a),ϵ) = (δF (q, a)[0],□) Intermediate states go to expected original states

AN = (q, a) if δF (q, a)[1] = A

Add intermediate states that
correspond to accepting transition

This construction shows that every language accepted by a FSTAR can also be
accepted by an NFA.

Summation: Parts (a) and (b) together show that FSTAR’s represent the class of
regular languages. ■
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4. Let L =
�

w ∈ {0,1}∗
�

� a 0 appears in some position i of w, and a 1 appears in position i + 2
	

.

(a) Construct an NFA for L with exactly four states.

Solution: The following NFA N accepts the language. On seeing the symbol
0, the NFA has the choice of either staying at s or to check if it is followed, 2
positions later, with a 1.

s a b c
0

0,1

0,1 1

0,1

■

(b) Convert the NFA you just constructed into a DFA using the incremental subset
construction. Draw the resulting DFA. Your DFA should have eight states, all reachable
from the start state.

Solution:
q′ ϵ-reach 0 1 A′?
s s sa s
sa sa sab sb
sab sab sab sbc
sb sb sa sc
sbc sbc sac sc ✓
sc sc sac sc ✓
sac sac sabc sbc ✓
sabc sabc sabc sbc ✓

Thus we obtain the following eight-state DFA; each DFA-state is labeled with the
corresponding set of NFA-states:

s sa sab

sb sc

sbc

sac

sabc
0

1

0

10

1 0

1

0

1

0
1

0
1

0

1

■
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(c) Convert the NFA you constructed in part (a) into a regular expression using the state
elimination algorithm.

Solution: As usual, unlabeled arrows indicate ϵ-transitions.
We begin by adding new isolated start and accepting states, and then

eliminate left to right.

0
0+1

0+1 1
0+1

(0+1)∗0 0+1 1
0+1

(0+1)∗0(0+1) 1
0+1

(0+1)∗0(0+1)1
0+1

(0+1)∗0(0+1)1(0+1)∗

We end with the regular expression (0+1)∗0(0+1)1(0+1)∗. ■
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5. (a) Convert the regular expression (ϵ+(0+11)∗0)1(11)∗ into an NFA using Thompson’s
algorithm.

Solution: Again, unlabeled arrows indicate ϵ-transitions:

c
0

d

e
1

f g
1

h
b ia j k

0
l

s o

m n

p
1

q t
1

u v
1

w xr

■

(b) Convert the NFA you just constructed into a DFA using the incremental subset
construction. Draw the resulting DFA. Your DFA should have six states, all reachable
from the start state. (Some of these states are obviously equivalent, but keep them
separate.)

Solution:
q′ ϵ-reach 0 1 A′?
s sabcejkmnop dl fq
dl abcedijklop dl fq
fq fgqrtx ∅ hu ✓
∅ ∅ ∅ ∅
hu abcehijkuv dl fw
fw fgrtwx ∅ hu ✓

Thus, we obtain the following six-state DFA; each DFA-state is labeled with the
corresponding set of NFA-states:

s

dl

1

0

0

1

hu

Ø

0,1

00

1 1

fwfq

0

1

■
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(c) Convert the DFA you just constructed into a regular expression using the state
elimination algorithm. You should not get the same regular expression you started
with.

Solution: As usual, unlabeled arrows indicate ϵ-transitions. After removing the
dump state ∅ and adding a unique accepting state (with ϵ-transitions from the
old accepting states), we eliminate one state at a time. To simplify the final
expression, I applied the equivalence A+ BB∗A= B∗A on the fly in the last two
stages of the algorithm.

1

0

0

1

1 1

0

1 1

0

0

1

1

0

1

11

11

0

0

1

1

0
1

11

11

((11)*0)*(11)*1

(11)*0

(11)*1

(11)*1(11)*0

We end with the regular expression ((11)∗0)∗(11)∗1.
(Eliminating the states in different orders yields different regular expres-

sions.) ■

(d) What is this language?

Solution: All binary strings that end with an odd-length run of 1s, where all
other runs of 1s have even length. More simply: (0+11)∗1. ■
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