ECE 374 B

Lab 4 - Regular equivalence - Solutions Fall 2024

1. Let L = {w e{0,1}" | w starts and ends with 0}.

(a) Construct an NFA for L with exactly three states.

Solution: The following NFA N accepts the language. On seeing the symbol 0,
the NFA has moves to a. The NFA stays at a when reading 1; on reading 0 it has
the choice to stay or decide that this is the last character and move to b.

0,1
@L\/ ée
—
0

©

(b) Convert the NFA you just constructed into a DFA using the incremental subset

construction. Draw the resulting DFA. Your DFA should have four states, all reachable
from the start state.

Solution:
q iereach | 0 i1 |A?
s s ab : @
ab i ab abial| Vv
2 @9 |0 @
a : a ab i a

Thus we obtain the following four-state DFA; each DFA-state is labeled with the
corresponding set of NFA-states:

[

0,1 |

ECE 374 B Lab 4 - Regular equivalence - Solutions Fall 2024

(c) Convert the DFA you constructed in part (b) into a regular expression using the state
elimination algorithm.

Solution: Unlabeled arrows indicate e-transitions.

The starting state has no incoming transitions, so we just need to add an
isolated ending state. After removing the dump state @& we eliminate ab then a.

00*1+1

*@&«5 ~O2L G0
5

00"1(00*1+ 1)*00* + 0O*

—QO O

We end with the regular expression 00*1(00*1 + 1)*00* + 00*.

Eliminating a then ab gives a different (but equivalent) regular expression:

0+11%0

—O»&:& ~O%-
O

NG 0(0 + 11*9)*=©

We end with the equivalent regular expression (0 + 11*0)*. [|

(d) Write a simpler regular expression for L.

Solution: Applying the identity A+ BB*A = B*A to the second regular expression
above gives 0(1*0)*. [|

ECE 374 B

Lab 4 - Regular equivalence - Solutions Fall 2024

2.

(@) Convert the regular expression (0*1+ ©1*)* into an NFA using Thompson’s algorithm.

Solution: Here unlabeled arrows indicate e-transitions:

(b) Convert the NFA you just constructed into a DFA using the incremental subset
construction. Draw the resulting DFA. Your DFA should have four states, all reachable
from the start state. (Some of these states are obviously equivalent, but keep them

separate.)
Solution:
q g-reach |o:1]A?
s sabcefho diig| Vv
di : sabcdefhijkmno | di i gl | v
g i sabcefghno diig| Vv
gl | sabcefghjklmhno | di i gl | v

We obtain the following 4-state DFA; here each DFA-state is labeled with the
corresponding set of NFA-states:

Obviously all four states are equivalent, because they’re all accepting states, but
we’re not supposed to collapse them.

ECE 374 B Lab 4 - Regular equivalence - Solutions Fall 2024

() Convert the DFA you just constructed into a regular expression using the state
elimination algorithm. You should not get the same regular expression you started
with.

Solution: As usual, unlabeled arrows indicate e-transitions. We start by adding
a unique accepting state (with e-transitions from the old accepting states), and
then eliminate one state at a time.

e+11*
+
(04+11%0)(0+11*0)*(e+11%)

We end with the regular expression € + 11* + (0 + 11*0)(0 + 1170)*(e + 11%).

Applying the equivalence A+ BB*A = B*A three times simplifies this regular
expression to (1*0)*1*. [|

(d) Think about later: Find the smallest DFA that is equivalent to your DFA from part (b)
and convert that smaller DFA into a regular expression using the state elimination
algorithm. Again, you should not get the same regular expression you started with.

Solution: Because every state in the DFA from part (b) is accepting, the minimal
equivalent DFA has only one state.

Running the state elimination algorithm on this trivial DFA yields the regular
expression (0 + 1)*. [|

(e) What is this language?

Solution: All binary strings. [|

ECE 374 B Lab 4 - Regular equivalence - Solutions Fall 2024

3. In a previous lab/homework we talked about a new machine called a finite-state transducer
(FST). The special part thing about this type of machine is that it gives an output on the
transition instead of the state that it is in. An example of a finite state transducer is as
follows:

defined by the five tuple: (3,T,Q,5,s). Let’s constrain this machine (call is FST,z) a bit
and say the output alphabet consists of two signals: accept or reject (I' = {A,R}). We say
that L(FSTyg) represents the language consisting of all strings that end with a accept (A)
output signal.

Prove that L(FST,g) represents the class of regular languages.

Solution: The lovely thing about this problem is that it is harder the more you think
about it and the key is simply to address it in small chunks. So let’s break it down
into parts. First let’s define some notations about the machines we have available:
L DFA: M == (QM)ZMJ 6M,SM,AM)
L NFA: N - (QN)2N55N’SN)AN)
* FSTpz F = (Qp, 25,5, 0F,5r). For the transistion function let’s say 6(q,a) =
(g,b) whereace X and beT

OK so to prove a machine represents regular languages, we must show two things:

(@) A FSTyg can represent any regular language.

(b) Any language that is accepted by a FST,R is regular.

Part (a): A FST, can represent any regular language: Multiple ways to do
this but the easiest is by using a language transformation like you did in lab. If we
can show a construction that turns any DFA into a FST,g, then we show that a FSTy
can represent any regular language.

Doing this is relatively straightforward. Accept in a DFA is ending in an accept
state. Accept in a FST,y is ending on an accept transition.

Hence, given a DFA (M), we’d like to construct a FST4R (F) such that L(M) = L(F).
We define F as follows:

Qr=Qu
Yp =Xy
SF=Sm
I'={A,R}
0r(q,a) = (6m(q,a),A) ifoyu(q,a) €Ay
= (6m(q,a),R) if6m(q,a) €Ay

ECE 374 B Lab 4 - Regular equivalence - Solutions Fall 2024

Part (b): Any language that is accepted by a FST,R is regular. Little harder
this one. The immediate impulse is to turn the FST,y into a NFA directly which is a
good impulse. But because you can have multiple transitions going to the same state
with mixed accept/reject signals, it'll be tough to know what states to make an accept
state and what to make a reject state:

So a bit of a problem since we can’t just turn g, into an accepting state. But what
if we add intermediate states on the path of the transitions like so:

(——()

This NFA-part denotes the same thing as the FST-part above it. So let’s define the
NFA formally:

ECE 374 B Lab 4 - Regular equivalence - Solutions Fall 2024

Qy =Qr X ZUQF Original states plus state per transition
Added states marked as (qp,a)
Original states marked as (qp,)

Ly =2Xp

SN =SF
on((g,0),a) =(q,a) Original transitions go to intermediate states
on((g,a),€) =(65(q,a)[0],O0) Intermediate states go to expected original states

AN = (q7 Cl) lf 5F(q: Cl)[l] =A
Add intermediate states that

correspond to accepting transition

This construction shows that every language accepted by a FST,; can also be
accepted by an NFA.

Summation: Parts (a) and (b) together show that FST,g’s represent the class of
regular languages. |

ECE 374 B Lab 4 - Regular equivalence - Solutions Fall 2024

4. LetL = {w €{0,1}* | a 0 appears in some position i of w, and a 1 appears in position i + 2}.

(a) Construct an NFA for L with exactly four states.

Solution: The following NFA N accepts the language. On seeing the symbol
0, the NFA has the choice of either staying at s or to check if it is followed, 2
positions later, with a 1.

Bromond

(b) Convert the NFA you just constructed into a DFA using the incremental subset
construction. Draw the resulting DFA. Your DFA should have eight states, all reachable
from the start state.

Solution:
q iereach| O i 1 |A?
s s sa i s
sa sa sab sb
sab | sab sab i shc
sb sb sa sc
sbc i she sac i sc | v
sc i sc sac i sc | v
sac i sac sabc | sbc | v
sabc i sabc | sabc i shc | v

Thus we obtain the following eight-state DFA; each DFA-state is labeled with the
corresponding set of NFA-states:

ECE 374 B Lab 4 - Regular equivalence - Solutions Fall 2024

(c) Convert the NFA you constructed in part (a) into a regular expression using the state
elimination algorithm.

Solution: As usual, unlabeled arrows indicate e-transitions.

We begin by adding new isolated start and accepting states, and then
eliminate left to right.

—o—geoo 80

0+1)"0

NG LA LE L2 1R Wl g

0+1

(0+1)0(0+1) 1
—O -@&—0O0—0

0+1
(0e+1)0(0+1)1
—)O :6—»@

(0e+1)o(0+1)1(0+1)*
—() :@

We end with the regular expression (0 + 1)*0(0 + 1)1(0 + 1)*. []

ECE 374 B Lab 4 - Regular equivalence - Solutions

Fall 2024

5. (a) Convert the regular expression (¢ +(0+11)*0)1(11)* into an NFA using Thompson’s

algorithm.

Solution: Again, unlabeled arrows indicate e-transitions:

(b) Convert the NFA you just constructed into a DFA using the incremental subset
construction. Draw the resulting DFA. Your DFA should have six states, all reachable
from the start state. (Some of these states are obviously equivalent, but keep them

separate.)
Solution:
q i e-reach 01 |A?
s i sabcejkmnop | dl | fq
dl i abcedijklop | dl } fq
fa i fege @ hu| v
i @ oo
hu : abcehijkuv | dl | fw
fw i fertwx @ hu| v

Thus, we obtain the following six-state DFA; each DFA-state is labeled with the
corresponding set of NFA-states:

10

ECE 374 B Lab 4 - Regular equivalence - Solutions Fall 2024

() Convert the DFA you just constructed into a regular expression using the state
elimination algorithm. You should not get the same regular expression you started
with.

Solution: As usual, unlabeled arrows indicate e-transitions. After removing the
dump state @ and adding a unique accepting state (with e-transitions from the
old accepting states), we eliminate one state at a time. To simplify the final
expression, I applied the equivalence A+ BB*A = B*A on the fly in the last two
stages of the algorithm.

1D*1

\<> ((11)*0)*(11)*1 ‘©

We end with the regular expression ((11)*0)*(11)*1.
(Eliminating the states in different orders yields different regular expres-
sions.) [|

(d) What is this language?

Solution: All binary strings that end with an odd-length run of 1s, where all
other runs of 1s have even length. More simply: (0 + 11)*1.]

11

