Prove that each of the following languages is *not* regular.

I. $\{\mathbf{0}^{2n}\mathbf{1}^n \mid n \ge 0\}$

Solution (verbose): Let F be the language 0^* . Let x and y be arbitrary strings in F. Then $x = 0^i$ and $y = 0^j$ for some non-negative integers $i \neq j$. Let $z = 0^i \mathbf{1}^i$. Then $xz = 0^{2i} \mathbf{1}^i \in L$. And $yz = 0^{i+j} \mathbf{1}^i \notin L$, because $i + j \neq 2i$. Thus, F is a fooling set for L. Because F is infinite, L cannot be regular.

Solution (concise): For all non-negative integers $i \neq j$, the strings $\mathbf{0}^i$ and $\mathbf{0}^j$ are distinguished by the suffix $\mathbf{0}^i \mathbf{1}^i$, because $\mathbf{0}^{2i} \mathbf{1}^i \in L$ but $\mathbf{0}^{i+j} \mathbf{1}^i \notin L$. Thus, the language $\mathbf{0}^*$ is an infinite fooling set for L.

Solution (concise, different fooling set): For all non-negative integers $i \neq j$, the strings $\mathbf{0}^{2i}$ and $\mathbf{0}^{2j}$ are distinguished by the suffix $\mathbf{1}^i$, because $\mathbf{0}^{2i}\mathbf{1}^i \in L$ but $\mathbf{0}^{2j}\mathbf{1}^i \notin L$. Thus, the language ($\mathbf{00}$)* is an infinite fooling set for L.

2. $\{\mathbf{0}^m \mathbf{1}^n \mid m \neq 2n\}$

Solution (verbose): Let *F* be the language $\mathbf{0}^*$. Let *x* and *y* be arbitrary strings in *F*. Then $x = \mathbf{0}^i$ and $y = \mathbf{0}^j$ for some non-negative integers $i \neq j$. Let $z = \mathbf{0}^i \mathbf{1}^i$. Then $xz = \mathbf{0}^{2i} \mathbf{1}^i \notin L$. And $yz = \mathbf{0}^{i+j} \mathbf{1}^i \in L$, because $i + j \neq 2i$. Thus, *F* is a fooling set for *L*. Because *F* is infinite, *L* cannot be regular.

Solution (concise, different fooling set): For all non-negative integers $i \neq j$, the strings $\mathbf{0}^{2i}$ and $\mathbf{0}^{2j}$ are distinguished by the suffix $\mathbf{1}^i$, because $\mathbf{0}^{2i}\mathbf{1}^i \notin L$ but $\mathbf{0}^{2j}\mathbf{1}^i \in L$. Thus, the language $(\mathbf{00})^*$ is an infinite fooling set for L.

3. $\{\mathbf{0}^{2^n} \mid n \ge 0\}$

Solution (verbose): Let $F = L = \{ \mathbf{0}^{2^n} \mid n \ge 0 \}$. Let x and y be arbitrary elements of F. Then $x = \mathbf{0}^{2^i}$ and $y = \mathbf{0}^{2^j}$ for some non-negative integers x and y. Let $z = \mathbf{0}^{2^i}$. Then $xz = \mathbf{0}^{2^i}\mathbf{0}^{2^i} = \mathbf{0}^{2^{i+1}} \in L$. And $yz = \mathbf{0}^{2^j}\mathbf{0}^{2^i} = \mathbf{0}^{2^{i+2^j}} \notin L$, because $i \neq j$ Thus, F is a fooling set for L. Because F is infinite, L cannot be regular.

Solution (concise): For any non-negative integers $i \neq j$, the strings $\mathbf{0}^{2^i}$ and $\mathbf{0}^{2^j}$ are distinguished by the suffix $\mathbf{0}^{2^i}$, because $\mathbf{0}^{2^i}\mathbf{0}^{2^i} = \mathbf{0}^{2^{i+1}} \in L$ but $\mathbf{0}^{2^j}\mathbf{0}^{2^i} = \mathbf{0}^{2^{i+2^j}} \notin L$. Thus *L* itself is an infinite fooling set for *L*.

4. Strings over {**0**, **1**} where the number of **0**s is exactly twice the number of **1**s.

Solution (verbose): Let F be the language 0^* . Let x and y be arbitrary strings in F. Then $x = 0^i$ and $y = 0^j$ for some non-negative integers $i \neq j$. Let $z = 0^i \mathbf{1}^i$. Then $xz = 0^{2i} \mathbf{1}^i \in L$. And $yz = 0^{i+j} \mathbf{1}^i \notin L$, because $i + j \neq 2i$. Thus, F is a fooling set for L. Because F is infinite, L cannot be regular.

Solution (concise, different fooling set): For all non-negative integers $i \neq j$, the strings $\mathbf{0}^{2i}$ and $\mathbf{0}^{2j}$ are distinguished by the suffix $\mathbf{1}^i$, because $\mathbf{0}^{2i}\mathbf{1}^i \in L$ but $\mathbf{0}^{2j}\mathbf{1}^i \notin L$. Thus, the language $(\mathbf{00})^*$ is an infinite fooling set for L.

Solution (closure properties): If *L* were regular, then the language

$$L \cap \mathbf{0}^* \mathbf{1}^* = \left\{ \mathbf{0}^{2n} \mathbf{1}^n \mid n \ge 0 \right\}$$

would also be regular since regular languages are closed under intersection but we have seen in Problem 1 that $\{0^{2n}1^n \mid n \ge 0\}$ is not regular.

Another solution based on closure properties. If L were regular, then the language

$$\left((\mathbf{0}+\mathbf{1})^* \setminus L\right) \cap \mathbf{0}^*\mathbf{1}^* = \{\mathbf{0}^m\mathbf{1}^n \mid m \neq 2n\}$$

would also be regular, because regular languages are closed under complement and intersection. But we just proved that $\{\mathbf{0}^m \mathbf{1}^n \mid m \neq 2n\}$ is not regular in problem 2. *[Yes, this proof would be worth full credit, either in homework or on an exam.]*

Note that the proofs based on closure properties relied on non-regularity of some previously known languages. One could also think of the proofs as allowing you to simplify the initial language to a more structured one which may be easier to work with.

5. Strings of properly nested parentheses (), brackets [], and braces {}. For example, the string ([]) {} is in this language, but the string ([)] is not, because the left and right delimiters don't match.

Solution (verbose): Let F be the language (*. Let x and y be arbitrary strings in F. Then $x = ({}^i$ and $y = ({}^j$ for some non-negative integers $i \neq j$. Let $z =)^i$. Then $xz = ({}^i)^i \in L$. And $yz = ({}^j)^i \notin L$, because $i \neq j$. Thus, F is a fooling set for L. Because F is infinite, L cannot be regular.

Solution (concise): For any non-negative integers $i \neq j$, the strings $({}^i$ and $({}^j$ are distinguished by the suffix $)^i$, because $({}^i)^i \in L$ but $({}^i)^j \notin L$. Thus, the language $({}^*$ is an infinite fooling set.

Solution (closure properties): If *L* were regular, then the language $L \cap ({}^*)^* = \{({}^n)^n \mid n \ge 0\}$ would be regular. The language $\{({}^n)^n \mid n \ge 0\}$ is the same as $\{0^n 1^n \mid n \ge 0\}$ modulo changing the symbol names and is not regular from lecture. Thus *L* is not regular.

6. *w*, such that $|w| = \lfloor k\sqrt{k} \rfloor$, for some natural number *k*.

Hint: since this one is more difficult, we'll even give you a fooling set that works: try $F = \{0^{m^6} | m \ge 1\}$. We'll also provide a bound that can help: the difference between consecutive strings in the language, $\lceil (k+1)^{1.5} \rceil - \lceil k^{1.5} \rceil$, is bounded above and below as follows

 $1.5\sqrt{k} - 1 \le \lceil (k+1)^{1.5} \rceil - \lceil k^{1.5} \rceil \le 1.5\sqrt{k} + 3$

All that's left is you need to carefully prove that *F* is a fooling set for *L*.

Solution: Let F be the set $\{\mathbf{0}^{m^6} | m \in \mathbb{N}\}$.

We can also write this as $\{\mathbf{0}^{\lceil k\sqrt{k}\rceil} | k = m^4, m \in \mathbb{N}\}$. Note that each element in *F* is also an element in *L*.

Let $x = \mathbf{0}^{m^6}$ and $y = \mathbf{0}^{n^6}$ for some m < n.

Let z be the smallest string such that $xz \in L$. By the given bound, $|z| \le 1.5m^2 + 3$.

Suppose for contradiction $yz \in L$. By the other side of the given bound, we would need $|z| \ge 1.5n^2 - 1$. We can show both of these contraints on z can't be satisfied, since $1 \le m \le n - 1$, so

$$1.5m^{2}+3 \le 1.5(n-1)^{2}+3 = 1.5(n^{2}-2n+1)+3 = 1.5n^{2}-1+(5.5-3n) \le 1.5n^{2}-1$$

Solution: From my experience in office hours, I wanted to write another solution which clarifies a few things (since this is a difficult problem).

First let's start with the fooling set $F = \{\mathbf{0}^{m^6} | m \ge 1\}$. This set is a subset of the language $L_{P5} = \{\mathbf{0}^{m^6} | m \in \mathbb{N}\}$ but that's ok for us. If we prove that F has infinite distinguishable states, then it means L_{P5} has at least infinite distinguishable states which is a problem for L_{P5} being regular.

So that's the big picture but how do we get there? Well first let's consider two strings from the fooling set:

$$x = \mathbf{0}^{i^6}$$
$$y = \mathbf{0}^{j^6}$$

for i < j. So both these strings are part of the original language (assuming $k = i^4 ork = j^4$). But what about the next string in their sequence? Is there another run of zeros (*z*) that you can add to *x* such that $xz \in L_{P5}$. More importantly if *x* and *y* are distinguishable then it means $yz \notin L_{P5}$? If $L_{GoforthScientificInc}$ is not regular, then we need to prove that such a *z* cannot exist which let's $xz \& yz \in L_{P5}$.

So let's do a **Proof by Contradiction** as we do with most fooling set problems.

• First let's look at *xz* which is the next largest run of zeros after *x* that belongs to

 L_{P5} .

- Looking at the definition for L_{P5} , in order for $x \in L_{P5}$, $k = i^4$ which give us the string $x = \mathbf{0}^{i^6} = \mathbf{0}^{(i^4)^{1.5}}$.
- So the next largest run of Θ 's in L_{P5} occurs when $k = i^4 + 1$ which would give us the string $xz = \Theta^{(i^4+1)^{1.5}}$.
- This means that we can finding the length of z by

$$|xz| - |x| = |\mathbf{0}^{(i^4+1)^{1.5}}| - |\mathbf{0}^{(i^4)^{1.5}}| = (i^4+1)^{1.5} - (i^4+1)^{1.5} = |z|$$

- According to boundaries given in the problem this means that

$$1.5\sqrt{i^4} - 1 = 1.5i^2 - 1 \le |z| \le 1.5i^2 + 3 = 1.5\sqrt{i^4} + 3$$
(I)

- Next, because of the proof by contradiction we're assuming $yz \in L_{P5}$ as well. This is the next largest run of zeros after y that is in L_{P5} . Here we follow the exact steps as above but with j instead of i.
 - Looking at the definition for L_{P5} , in order for $y \in L_{P5}$, $k = j^4$ which give us the string $y = \mathbf{0}^{j^6} = \mathbf{0}^{(j^4)^{1.5}}$.
 - The next largest run of Θ 's in L_{P5} occurs when $k = j^4 + 1$ which would give us the string $yz = \Theta^{(j^4+1)^{1.5}}$.
 - This means that we can finding the length of *z* by

$$|yz| - |y| = |\mathbf{0}^{(j^4+1)^{1.5}}| - |\mathbf{0}^{(j^4)^{1.5}}| = (j^4+1)^{1.5} - (j^4+1)^{1.5} = |z|$$

- According to boundaries given in the problem this means that

$$1.5j^2 - 1 \le |z| \le 1.5j^2 + 3 \tag{2}$$

• So we got some boundaries for *z* defined by *xz* and *yz* shown below.

$$1.5i^2 - 1$$
 |z| according to (1) $1.5i^2 + 3$

Т

1.5
$$j^2 - 1$$
 |z| according to (2) 1.5 $j^2 + 3$

Now if the states of *x* and *y* are not distinguishable (i.e. both xz and yz can be in L_{P5}), then there should be some value of *z* that both prefixes can follow to an accept state. Namely,

$$1.5j^2 - 1 \le |z| \le 1.5i^2 + 3 \tag{3}$$

- But wait! Didn't we say i < j? If i > 0 then (3) is impossible!
- Therefore, there is run of zeroes for z where both xz and yz would be in L_{P5} .

- x and y denote distinguishable states states of the language L_{P5} .
- Because *F* is infinite, the DFA representing L_{P5} would require infinite states which violates the definition of regular language and hence, L_{P5} can't be regular.

7. Strings of the form $w_1 # w_2 # \dots # w_n$ for some $n \ge 2$, where each substring w_i is a string in $\{0, 1\}^*$, and some pair of substrings w_i and w_j are equal.

Solution (verbose): Let *F* be the language 0^* . Let *x* and *y* be arbitrary strings in *F*. Then $x = 0^i$ and $y = 0^j$ for some non-negative integers $i \neq j$. Let $z = \#0^i$. Then $xz = 0^i \#0^i \in L$. And $yz = 0^j \#0^i \notin L$, because $i \neq j$. Thus, *F* is a fooling set for *L*. Because *F* is infinite, *L* cannot be regular.

Solution (concise): For any non-negative integers $i \neq j$, the strings $\mathbf{0}^i$ and $\mathbf{0}^j$ are distinguished by the suffix $\mathbf{#0}^i$, because $\mathbf{0}^i \mathbf{#0}^i \in L$ but $\mathbf{0}^j \mathbf{#0}^i \notin L$. Thus, the language $\mathbf{0}^*$ is an infinite fooling set.

Work on these later:

7. $\{\mathbf{0}^{n^2} \mid n \ge 0\}$

Solution: Let *x* and *y* be distinct arbitrary strings in *L*. Without loss of generality, $x = \mathbf{0}^{2i+1}$ and $y = \mathbf{0}^{2j+1}$ for some $i > j \ge 0$. Let $z = \mathbf{0}^{i^2}$. Then $xz = \mathbf{0}^{i^2+2i+1} = \mathbf{0}^{(i+1)^2} \in L$ On the other hand, $yz = \mathbf{0}^{i^2+2j+1} \notin L$, because $i^2 < i^2 + 2j + 1 < (i+1)^2$. Thus, *z* distinguishes *x* and *y*. We conclude that *L* is an infinite fooling set for *L*, so *L* cannot be regular.

Solution: Let x and y be distinct arbitrary strings in 0^* . Without loss of generality, $x = 0^i$ and $y = 0^j$ for some $i > j \ge 0$. Let $z = 0^{i^2+i+1}$. Then $xz = 0^{i^2+2i+1} = 0^{(i+1)^2} \in L$. On the other hand, $yz = 0^{i^2+i+j+1} \notin L$, because $i^2 < i^2 + i + j + 1 < (i+1)^2$. Thus, z distinguishes x and y. We conclude that 0^* is an infinite fooling set for L, so L cannot be regular.

Solution: Let x and y be distinct arbitrary strings in 0000*. Without loss of generality, $x = 0^i$ and $y = 0^j$ for some $i > j \ge 3$. Let $z = 0^{i^2 - i}$. Then $xz = 0^{i^2} \in L$. On the other hand, $yz = 0^{i^2 - i + j} \notin L$, because $(i-1)^2 = i^2 - 2i + 1 < i^2 - i < i^2 - i + j < i^2$. (The first inequalities requires $i \ge 2$, and the second $j \ge 1$.) Thus, z distinguishes x and y.

We conclude that 0000^* is an infinite fooling set for *L*, so *L* cannot be regular.

8. { $w \in (0 + 1)^*$ | *w* is the binary representation of a perfect square}

Solution: We design our fooling set around numbers of the form $(2^k + 1)^2 = 2^{2k} + 2^{k+1} + 1 = 10^{k-2} 10^k 1 \in L$, for any integer $k \ge 2$. The argument is somewhat simpler if we further restrict k to be even.

Let $F = \mathbf{1}(\mathbf{00})^* \mathbf{1}$, and let x and y be arbitrary strings in F.

Then $x = \mathbf{10}^{2i-2}\mathbf{1}$ and $y = \mathbf{10}^{2j-2}\mathbf{1}$, for some positive integers $i \neq j$.

Without loss of generality, assume i < j. (Otherwise, swap *x* and *y*.)

Let $z = 0^{2i}$ **1**.

Then $xz = 10^{2i-2}10^{2i}1$ is the binary representation of $2^{4i} + 2^{2i+1} + 1 = (2^{2i} + 1)^2$, and therefore $xz \in L$.

On the other hand, $yz = 10^{2j-2}10^{2i}1$ is the binary representation of $2^{2i+2j} + 2^{2i+1} + 1$. Simple algebra gives us the inequalities

$$(2^{i+j})^2 = 2^{2i+2j}$$

< $2^{2i+2j} + 2^{2i+1} + 1$
< $2^{2(i+j)} + 2^{i+j+1} + 1$
= $(2^{i+j} + 1)^2$.

So $2^{2i+2j} + 2^{2i+1} + 1$ lies between two consecutive perfect squares, and thus is not a perfect square, which implies that $yz \notin L$.

We conclude that F is a fooling set for L. Because F is infinite, L cannot be regular.