
ECE 374 B Lab 6 - Context-Free Grammars - Solutions Fall 2024

Give context-free grammars for each of the following languages. For each grammar, describe in
English the language for each non-terminal, and in the examples above. As usual, we won’t get
to all of these in section.

1.
�

02n1n | n≥ 0
	

Solution: S→ ϵ | 00S1. ■

2. {0m1n | m ̸= 2n}

[Hint: If m ̸= 2n, then either m< 2n or m> 2n. Extend the previous grammar, but pay
attention to parity. This language contains the string 01.]

Solution: To simplify notation, let ∆(w) = #(0, w)− 2#(1, w). Our solution follows
the following logic. Let w be an arbitrary string in this language.

• Because ∆(w) ̸= 0, then either ∆(w)> 0 or ∆(w)< 0.
• If ∆(w) > 0, then w = 0iz for some integer i > 0 and some suffix z with
∆(z) = 0.

• If ∆(w)< 0, then w= x1 j for some integer j > 0 and some prefix x with either
∆(x) = 0 or ∆(x) = 1.

• Substrings with ∆= 0 is generated by the previous grammar; we need only a
small tweak to generate substrings with ∆= 1.

Here is one way to encode this case analysis as a CFG. The nonterminals M and L
generate all strings where the number of 0s is More or Less than twice the number of
1s, respectively. The last nonterminal generates strings with ∆= 0 or ∆= 1.

S→ M | L {0m1n}m ̸= 2n

M → 0M | 0E {0m1n}m> 2n

L→ L1 | E1 {0m1n}m< 2n

E→ ϵ | 0 | 00E1 {0m1n}m= 2n or 2n+ 1

Here is a different correct solution using the same logic. We either identify a
non-empty prefix of 0s or a non-empty prefix of 1s, so that the rest of the string
is as “balanced” as possible. We also generate strings with ∆ = 1 using a separate
non-terminal.

S→ AE | EB | FB {0m1n}m ̸= 2n

A→ 0 | 0A 0+ =
�

0i
	

i ≥ 1

B→ 1 | 1B 1+ =
�

1 j
	

j ≥ 1

E→ ϵ | 00E1 {0m1n}m= 2n

F → 0E {0m1n}m= 2n+ 1

Alternatively, we can separately generate all strings of the form 0odd1∗, so that we

1

ECE 374 B Lab 6 - Context-Free Grammars - Solutions Fall 2024

don’t have to worry about the case ∆= 1 separately.

S→ D | M | L {0m1n}m ̸= 2n

D→ 0 | 00D | D1 {0m1n}m is odd
M → 0M | 0E {0m1n}m> 2n

L→ L1 | E1 {0m1n}m< 2n and m is even
E→ ϵ | 00E1 {0m1n}m= 2n

■

Solution: Intuitively, we can parse any string w ∈ L as follows. First, remove the first
2k 0s and the last k 1s, for the largest possible value of k. The remaining string cannot
be empty, and it must consist entirely of 0s, entirely of 1s, or a single 0 followed by
1s.

S→ 00S1 | A | B | C {0m1n}m ̸= 2n

A→ 0 | 0A 0+

B→ 1 | 1B 1+

C → 0 | 0B 01+

Lets elaborate on the above, since k is maximal, w = 02kw′1k. If w′ starts with 00,
and ends with a 1, then we can increase k by one. As such, w′ is either in 0+ or 1+. If
w′ contains both 0s and 1s, then it can contain only a single 0, followed potentially
by 1+. We conclude that w′ ∈ 0+ +1+ +01+.

■

3. {0,1}∗ \
�

02n1n | n≥ 0
	

[Hint: Extend the previous grammar. What is missing?]

Solution: This language is the union of the previous language and the complement
of 0∗1∗, which is (0+1)∗10(0+1)∗.

S→ T | X {0,1}∗ \
�

02n1n
	

n≥ 0

T → 00T1 | A | B | C {0m1n}m ̸= 2n

A→ 0 | 0A 0+

B→ 1 | 1B 1+

C → 0 | 0B 01+

X → Z10Z (0+1)∗10(0+1)∗

Z → ϵ | 0Z | 1Z (0+1)∗

■

The next few problems deal with push-down automata (PDA). The goal of these problems
is to simply gain an understanding of PDAs which are the machines needed to recognize a
context-free language:

2

ECE 374 B Lab 6 - Context-Free Grammars - Solutions Fall 2024

4. What language does the following push-down automata recognize (Hint: This is a non-
deterministic automata as most PDAs are)?

q1start

q2

q3 q4

q5 q6 q7

ϵ,ϵ→
$

ϵ,ϵ→ ϵ
ϵ,
ϵ
→
ϵ

ϵ, $→ ϵ

ϵ,ϵ→ ϵ ϵ, $→ ϵ

a,ϵ→ a b,ϵ→ ϵ c, a→ ϵ

b, a→ ϵ c,ϵ→ ϵ

Solution: This example illustrates a pushdown automata that recognizes the lan-
guage:

L = {ai b jck|i, j, k ≥ 0 and i = j or i = k} (1)

Informally the PDA for this language works by first reading and pushing the a’s.
When the a’s are done, the machine has all of them on the stack so that it can match
them with either the b’s or c’s. Thsi maneuver is a bit trickyh because the machine
doesn’t know in advance whether to match the a’s with the b’s or c’s. Nondeterminism
comes in handy here.

Using its nondeterminism, the PDA can guess whether to match the a’s with the
b’s or with the c’s as shown above. Think of the machine as having two branches of its
nondeterminism, one for each possible guess. If either of them matches, that branch
accepts and the entire machine accepts.

a ■
aSolution borrowed from Sipser et al. "Introduction to the Theory of Computation" textbook (Figure

2.17).

3

ECE 374 B Lab 6 - Context-Free Grammars - Solutions Fall 2024

5. Develop the PDA for the language:

L = {w is a palidrome and w ∈ {0,1}∗} (2)

Solution:

q1start q2

q3q4

ϵ,ϵ→ $ 0,ϵ→ 0
1,ϵ→ 1

ϵ,ϵ→ ϵΣ,ϵ→ ϵ

0,0→ ϵ
1,1→ ϵϵ, $→ ϵ

The informal description of the PDA is as follows:
Begin by pushing the symbols that are read onto the stack. At each point, non-

deterministically guess that the middle of the string has been reached and and then
change into popping off the stack for each symbol red, checking to see that they are
the same. IN a palindrome, you can either have even or odd number of characters. To
make the PDA accept odd-lengthed palindromes, we add a edge between q2 and q3 to
“burn” one character. If they were always the same symbol, and the stack empties at
the same time as the input is finished, accept; otherwise, reject.

a ■
abased off an example in from Sipser et al. "Introduction to the Theory of Computation" textbook

(Example 2.18).

4

ECE 374 B Lab 6 - Context-Free Grammars - Solutions Fall 2024

Work on these later:

6.
�

w ∈ {0,1}∗
	

#(0, w) = 2 ·#(1, w) – Binary strings where the number of 0s is exactly
twice the number of 1s.

Solution: S→ ϵ | SS | 00S1 | 0S1S0 | 1S00.
For any string w, let ∆(w) = #(0, w)− 2 ·#(1, w). To prove the correctness of the

grammar, we should prove:

(a) Any string x generated by the grammar satisfies ∆(x) = 0.
(b) Any string x such that ∆(x) = 0 can be generated by the grammar.

Part (a) is trivial, since all the production rules add one 1 and two 0s.
Part (b) can be proved by induction.
As the base case, any string w such that |w| ≤ 3 and ∆(w) = 0 can trivially be

generated by the grammar.
Suppose that for some constant k, any string w such that |w|= k−3 and∆(w) = 0

can be generated by the grammar.
To prove that the grammar can generate any string x with |x |= k and ∆(x) = 0,

there are two cases to consider.
First, suppose x can be split into two non-empty substrings x = y1 y2 such that

∆(y1) =∆(y2) = 0. Then, by the inductive hypothesis, y1 and y2 can be generated
by the grammar. Therefore, x can be generated by first applying the rule S→ SS and
separately generating y1, y2.

Then, suppose x cannot be split into two substrings like the above. In other words,
for any proper prefix p of x , we have either ∆(p)> 0 or ∆(p)< 0. This case can be
further split into three sub-cases.

• Suppose for every proper prefix p of x , ∆(p)> 0. In this case, x must start with
00 and end with 1, because otherwise there would be some proper prefix q of
x such that ∆(q) < 0: If the string starts with 1 or 01, then we have q = 1 or
q = 01. If the string starts with 00 and ends with 0, then we define q in the
way that x = q0. Moreover, since x starts with 00 and ends with 1, if we define
r in the way that x = 00r1, then |r| = k− 3 and ∆(r) = 0. Therefore, by the
inductive hypothesis and the production rule S→ 00S1, we conclude that x can
be generated.

• Suppose for every proper prefix p of x , ∆(p)< 0. In this case, x must start with
1 and end with 00, with the similar reasoning. If x starts with 0, then we have
q = 0. If it ends with 10,01,11, then we can let q be the string obtained by
removing two symbols at the end from x . Therefore, defining r in the way that
x = 1r00, it is clear that we can generate x with S→ 1S00.

• Suppose there exists a constant m > 0 such that for all proper prefix p of x
with |p| ≤ m, ∆(p)> 0, and for all proper prefix q of x with |q|> m, ∆(q)< 0.
This is possible because we are comparing #(0, w) and 2 ·#(1, w)(For example,
consider a string 010, and let p = 0 and q = 01). In this case, x must start with

5

ECE 374 B Lab 6 - Context-Free Grammars - Solutions Fall 2024

0, followed by a substring r1 such that ∆(r1) = 0, then followed by 1, followed
by another substring r2 with ∆(r2) = 0, then end with a 0, so that we have
x = 0r11r20. If x starts with 1, it violates the condition ∆(p) > 0. If it is not
followed by r11, then there would be no q such that∆(p)< 0. If it is not followed
by r20, then there would be y1, y2 such that x = y1 y2, ∆(y1) = ∆(y2) = 0.
Therefore, with the inductive hypothesis and the production rule S → 0S1S0,
we conclude that we can generate x .

Since we were able to generate any string x of length k that satisfies ∆(x) = 0,
we conclude that the the grammar is correct. ■

7. {0,1}∗ \ {ww}w ∈ {0,1}∗.
[Anti-hint: The language {ww}w ∈ 0,1∗ is not context-free. Thus, the complement of a
context-free language is not necessarily context-free!]

Solution: All strings of odd length are in L.
Let w be any even-length string in L, and let m = |w|/2. For some index i ≤ m,

we have wi ̸= wm+i. Thus, w can be written as either x1y0z or x0y1z for some
substrings x , y, z such that |x | = i − 1, |y| = m− 1, and |z| = m− i. We can further
decompose y into a prefix of length i − 1 and a suffix of length m− i. So we can
write any even-length string w ∈ L as either x1x ′z′0z or x0x ′z′1z, for some strings
x , x ′, z, z′ with |x | = |x ′| = i − 1 and |z| = |z′| = m− i. Said more simply, we can
divide w into two odd-length strings, one with a 0 at its center, and the other with a
1 at its center.

S→ AB | BA | A | B strings not of the form ww

A→ 0 | ΣAΣ odd-length strings with 0 at center
B→ 1 | ΣBΣ odd-length strings with 1 at center
Σ→ 0 | 1 single character

■

6

ECE 374 B Lab 6 - Context-Free Grammars - Solutions Fall 2024

8. Convert the following CFG into a PDA:
S→ aBc | ab
B→ SB | ϵ

Solution:

q1start q2 qloop qacc
ϵ,ϵ→ $ ϵ,ϵ→ S

a,a→ ϵ
b,b→ ϵ
c,c→ ϵ
ϵ, B→ ϵ

ϵ, $→ ϵ

qP11

qP12

ϵ,S
→ c

ϵ,ϵ→ B

ϵ,
ϵ
→
a

S → aBc

qP21

ϵ
,ϵ
→
a

ϵ
,S
→
b

S → ab

qP31

ϵ,B
→

B
ϵ,ϵ→

S

B → SB

As discussed in lecture, there is a simple (though slightly tedious) procedure for
converting a CFG into a non-deterministic PDA. The main idea is that you want to
convert the accepted string on the stack only popping the leftmost terminals in the
correct order. Hence, we construct the pda above as follows:

(a) We need to mark the beginning of the stack with a dollar symbol to avoid
triggering any of our epsilon transitions should we run out of stack memory.

(b) Next we need to put the start variable on the stack to begin constructing the
string.

(c) Next we insert a loop state which does two things:
• Pops terminals off the stack. This is akin to reading the characters of the

string left to right.
• provide an anchor for the other state loops that represent the production

rules.
(d) For each production rule, we want to replace a variable on the stack with the

mix of terminals/variables that the production rule specifies. Starting at the loop

7

ECE 374 B Lab 6 - Context-Free Grammars - Solutions Fall 2024

state, we create paths which describe all the production rules in the grammar.
(e) Finally we add an accept state that is only reachable when the input is empty

and the stack is clear of all terminals/variables.
a

■
aInspired by the youtube video: https://www.youtube.com/watch?v=ZImtQBMSW_Y

8

https://www.youtube.com/watch?v=ZImtQBMSW_Y

