
ECE 374 B Lab 9 - Binary Search - Solutions Fall 2024

The algorithms portion of the course will require you to evaluate mathematical expressions.
Recursive algorithms have a natural synergy with recurrence relations and hence for this course,
you will be expected to solve simple recurrence relations. Find the upper-asymptotic bound to
the recurrence relations below:

Solution: The following recurrence relations can be analyzed intuitively. In the case of
simple recurrence relations, a potential strategy is to draw out the recurrence tree and find:

• the number of levels

• the work done at each level

and multiplying the two together to find the total work. Using this approach, there are
three possibilities (corresponding to the three equations given!). ■

1. T (n) = 2T (n− 1) + cn

Solution: We can begin by visualizing the recursion tree:
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The work are every level of the recursion tree is increasing and hence, the total work
done is dominated by the “leafs”. Intuitively we conclude that the asymptotic bound of
the function is equal to the work done at the leaves and so: T (n) = 2T (n− 1) + cn=
O(2n) ■
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2. T (n) = 2T
� n
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Solution: Doing the recursion tree out for this case, we notice that the amount of
work is constant at every level:
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Hence, the total amount of work done is equal to the amount of work at each level
times the number of levels: T (n) = 2T (n/2) + cn= O(n log n) ■

3. T (n) = 2T
� n
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Solution: Finally let’s consider the case where the amount of work is deceasing at
every level:
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Like the first case, the total workload is dominated by one end of the tree (in this
case the root). Hence, the total workload is dominated by the workload at the root:
T (n) = 2T (n/4) + cn= O(n). ■

Recurrence relations are a fascinating and area od discrete mathematics. Feel free to explore
more advanced equations and solving techniques!1

1http://discrete.openmathbooks.org/dmoi2/sec_recurrence.html
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Here are several problems that are easy to solve in O(n) time, essentially by brute force. Your
task is to design algorithms for these problems that are significantly faster using binary search
related ideas.

1. Suppose we are given an array A[1 .. n] of n distinct integers, which could be positive,
negative, or zero, sorted in increasing order so that A[1]< A[2]< · · ·< A[n].

(a) Describe a fast algorithm that either computes an index i such that A[i] = i or
correctly reports that no such index exists.

Solution: Suppose we define a second array B[1 .. n] by setting B[i] = A[i]− i
for all i. For every index i we have

B[i] = A[i]− i ≤ (A[i + 1]− 1)− i = A[i + 1]− (i + 1) = B[i + 1],

so this new array is sorted in increasing order. Clearly, A[i] = i if and only if
B[i] = 0. So we can find an index i such that A[i] = i by performing a binary
search in B. We don’t actually need to compute B in advance; instead, whenever
the binary search needs to access some value B[i], we can just compute A[i]− i
on the fly instead!

Here are two formulations of the resulting algorithm, first recursive (keeping
the array A as a global variable), and second iterative.

〈〈Return any index i such that ℓ≤ i ≤ r and A[i] = i〉〉
FindMatch(ℓ, r):

if ℓ > r
return None

mid← (ℓ+ r)/2
if A[mid] =mid 〈〈B[mid] = 0〉〉

return mid
else if A[mid]<mid 〈〈B[mid]< 0〉〉

return FindMatch(mid+ 1, r)
else 〈〈B[mid]> 0〉〉

return FindMatch(ℓ,mid− 1)

FindMatch(A[1 .. n]):
hi← n
lo← 1
while lo≤ hi

mid← (lo+ hi)/2
if A[mid] =mid 〈〈B[mid] = 0〉〉

return mid
else if A[mid]<mid 〈〈B[mid]< 0〉〉

lo←mid+ 1
else 〈〈B[mid]> 0〉〉

hi←mid− 1
return None

■
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(b) Formulate a recurrence relation that describes your algorithm.

Solution: From the recursive formulation, we see that a constant (O(1)) amount
of work is done at every step. Additionally every step tosses out half the array
and so the algorithm is described by:

T (n) = T
�n

2

�

+O(1) = O (log(n))

In both formulations, the algorithm is binary search, so it runs in O(log n)
time. ■

(c) Suppose we know in advance that A[1]> 0. Describe an even faster algorithm that
either computes an index i such that A[i] = i or correctly reports that no such index
exists. [Hint: This is really easy.]

Solution: The following algorithm solves this problem in O(1) time:

FindMatchPos(A[1 .. n]):
if A[1] = 1

return 1
else

return None

Again, the array B[1 .. n] defined by setting B[i] = A[i]− i is sorted in increasing
order. It follows that if A[1] > 1 (that is, B[1] > 0), then A[i] > i (that is,
B[i]> 0) for every index i. A[1] cannot be less than 1. ■
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2. Suppose we are given an array A[1 .. n] of n integers, which could be positive, negative, or
zero, sorted in increasing order so that A[1]≤ A[2]≤ · · · ≤ A[n]. Suppose we wanted to
count the number of times some integer value x occurs in A. Describe an algorithm (as fast
as possible) which returns the number of elements containing value x .

Solution: Dumb Approach: We could simply iterate through the array and count
the number of times x appears. This would take O(n) time.

Better Approach: First we can use binary search to find an instance of x . Then
since A is sorted, All values of x appear next to one-another. Hence, if we find one
instance of x , we can interate over the block of x instances and count the size. This
will take O(log(n) + k) time where k is the number of array elements containing x .
The one issue is that if k is large, i.e. on the order of n, then the runtime reduces to
O(log(n) + k) = O(log(n) +O(n)) = O(n).

Best Approach: We can slightly modify binary search to find the leftmost array
element that contains x (the left-bound of the array block):

FindLeftBound(A[1 .. n], x , i):
if A[1] = x

return i
else

if A[n/2]≥ x
return FindLeftBound(A[1, ..., n/2], x , i)

else
return FindLeftBound(A[n/2+ 1, ..., n], x , i + n/2)

i is a variable to keep track of the original position of the sub-array beign currently
evaluated. We do the same to find the right bound and subtract the two values from
one another to find the number of instances of x . ■
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3. Suppose we are given an array A[1 .. n] such that A[1]≥ A[2] and A[n−1]≤ A[n]. We say
that an element A[x] is a local minimum if both A[x − 1] ≥ A[x] and A[x] ≤ A[x + 1].
For example, there are exactly six local minima in the following array:

9
▲
7 7 2

▲
1 3 7 5

▲
4 7

▲
3
▲
3 4 8

▲
6 9

Describe and analyze a fast algorithm that returns the index of one local minimum. For
example, given the array above, your algorithm could return the integer 9, because A[9] is
a local minimum. [Hint: With the given boundary conditions, any array must contain at
least one local minimum. Why?]

Solution: The following algorithm solves this problem in O(log n) time:

LocalMin(A[1 .. n]) :
if n< 100

find the smallest element in A by brute force
m← ⌊n/2⌋
if A[m]< A[m+ 1]

return LocalMin(A[1 .. m+ 1])
else

return LocalMin(A[m .. n]))

If n is less than 100, then a brute-force search runs in O(1) time. There’s nothing
special about 100 here; any other constant will do.

Otherwise, if A[n/2]< A[n/2+1], the subarray A[1 .. n/2+1] satisfies the precise
boundary conditions of the original problem, so the recursion fairy will find local
minimum inside that subarray.

Finally, if A[n/2] > A[n/2 + 1], the subarray A[n/2 .. n] satisfies the precise
boundary conditions of the original problem, so the recursion fairy will find local
minimum inside that subarray.

The running time satisfies the recurrence T (n)≤ T (⌈n/2⌉+ 1) +O(1). Except for
the +1 and the ceiling in the recursive argument, which we can ignore, this is the
binary search recurrence, whose Solution is T (n) = O(log n).

Alternatively, we can observe that ⌈n/2⌉+ 1< 2n/3 when n≥ 100, and therefore
T (n)≤ T (2n/3) +O(1), which implies T (n) = O(log3/2 n) = O(log n). ■
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4. Suppose you are given two sorted arrays A[1 .. n] and B[1 .. n] containing distinct integers.
Describe a fast algorithm to find the median (meaning the nth smallest element) of the
union A∪ B. For example, given the input

A[1 .. 8] = [0, 1,6, 9,12, 13,18, 20] B[1 .. 8] = [2, 4,5, 8,17, 19,21, 23]

your algorithm should return the integer 9. [Hint: What can you learn by comparing one
element of A with one element of B?]

Solution: The following algorithm solves this problem in O(log n) time:

Median(A[1 .. n], B[1 .. n]) :
if n< 10100

use brute force
else if A[n/2]> B[n/2]

return Median(A[1 .. n/2], B[n/2+ 1 .. n])
else

return Median(A[n/2+ 1 .. n], B[1 .. n/2])

Suppose A[n/2] > B[n/2]. Then A[n/2 + 1] is larger than all n elements in
A[1 .. n/2] ∪ B[1 .. n/2], and therefore larger than the median of A∪ B, so we can
discard the upper half of A. Similarly, B[n/2− 1] is smaller than all n+ 1 elements
of A[n/2 .. n]∪ B[n/2+ 1 .. n], and therefore smaller than the median of A∪ B, so we
can discard the lower half of B. Because we discard the same number of elements
from each array, the median of the remaining subarrays is the median of the original
A∪ B. ■
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To think about later:

4. Now suppose you are given two sorted arrays A[1 .. m] and B[1 .. n] and an integer k.
Describe a fast algorithm to find the kth smallest element in the union A∪ B. For example,
given the input

A[1 .. 8] = [0,1, 6,9, 12,13, 18,20] B[1 .. 5] = [2,5, 7,17, 19] k = 6

your algorithm should return the integer 7.

Solution: The following algorithm solves this problem in O(logmin{k, m+ n− k}) =
O(log(m+ n)) time:

Select(A[1 .. m], B[1 .. n], k) :
if k < (m+ n)/2

return Median(A[1 .. k], B[1 .. k])
else

return Median(A[k− n .. m], B[k−m .. n])

Here, Median is the algorithm from problem 3 with one minor tweak. If Median
wants an entry in either A or B that is outside the bounds of the original arrays, it
uses the value −∞ if the index is too low, or∞ if the index is too high, instead of
creating a core dump ■

5. Suppose you have an algorithm that given as input a directed graph G = (V, E), nodes
s, t ∈ V , and an integer k, outputs whether the number of distinct shortest paths from s to
t is at least k. Describe an algorithm that counts the number of distinct shortest s-t paths
in G. Does your algorithm run in polynomial time?

Solution: This is a Solution sketch. We do binary search again but now we need to
upper bound the number of distinct shortest paths from s to t in G. It is not hard
to construct examples of graphs where the number is at least 2n/2 where n is the
number of nodes. A crude upper bound is mn where m is the number of edges and n
is the number of nodes. Why? Assuming this upper bound binary search will take
O(m log n) calls and this is polynomial in the input length. Note that writing down the
answer may take O(m log n) bits but that is also polynomial in the input length. ■
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