
ECE 374 B Lab 10 - Divide and Conquer - Solutions Fall 2024

In lecture, we described an algorithm of Karatsuba that multiplies two n-digit integers using
O(nlg3) single-digit additions, subtractions, and multiplications. In this lab we’ll look at some
extensions and applications of this algorithm.

1. Describe an algorithm to compute the product of an n-digit number and an m-digit number,
where m< n, in O(mlg 3−1n) time.

Solution: Split the larger number into ⌈n/m⌉ chunks, each with m digits. Multiply
the smaller number by each chunk in O(mlg3) time using Karatsuba’s algorithm, and
then add the resulting partial products with appropriate shifts.

SkewMultiply(x[0 .. m− 1], y[0 .. n− 1]):
prod← 0
for i← 0 to ⌈n/m⌉ − 1

chunk← y[i ·m .. (i + 1) ·m− 1]
prod← prod+Multiply(x , chunk) · 10i·m

return prod

Each call to Multiply requires O(mlg 3) time, and all other work within a single
iteration of the main loop requires O(m) time. Thus, the overall running time of the
algorithm is O(1) + ⌈n/m⌉O(mlg 3) = O(mlg 3−1n) as required.

This is the standard method for multiplying a large integer by a single “digit”
integer written in base 10m , but with each single-“digit” multiplication implemented
using Karatsuba’s algorithm. ■

1



ECE 374 B Lab 10 - Divide and Conquer - Solutions Fall 2024

2. Describe an algorithm to compute the decimal representation of 2n in O(nlg 3) time. (The
standard algorithm that computes one digit at a time requires Θ(n2) time.)

Solution: We compute 2n via repeated squaring, implementing the following recur-
rence:

2n =











1 if n= 0

(2n/2)2 if n> 0 is even
2 · (2⌊n/2⌋)2 if n is odd

We use Karatsuba’s algorithm to implement decimal multiplication for each square.

TwoToThe(n):
if n= 0

return 1
m← ⌊n/2⌋
z← TwoToThe(m) 〈〈recurse!〉〉
z←Multiply(z, z) 〈〈Karatsuba〉〉
if n is odd

z← Add(z, z)
return z

The running time of this algorithm satisfies the recurrence T (n) = T (⌊n/2⌋)+O(nlg 3).
We can safely ignore the floor in the recursive argument. The recursion tree for
this algorithm is just a path; the work done at recursion depth i is O((n/2i)lg 3) =
O(nlg3/3i). Thus, the levels sums form a descending geometric series, which is
dominated by the work at level 0, so the total running time is at most O(nlg3). ■

2



ECE 374 B Lab 10 - Divide and Conquer - Solutions Fall 2024

3. Describe a divide-and-conquer algorithm to compute the decimal representation of an
arbitrary n-bit binary number in O(nlg 3) time. [Hint: Let x = a · 2n/2 + b. Watch out for
an extra log factor in the running time.]

Solution: Following the hint, we break the input x into two smaller numbers x =
a · 2n/2 + b; recursively convert a and b into decimal; convert 2n/2 into decimal using
the solution to problem 2; multiply a and 2n/2 using Karatsuba’s algorithm; and finally
add the product to b to get the final result.

Decimal(x[0 .. n− 1]):
if n< 100

use brute force
m← ⌈n/2⌉
a← x[m .. n− 1]
b← x[0 .. m− 1]
return Add(Multiply(Decimal(a),TwoToThe(m)),Decimal(b))

The running time of this algorithm satisfies the recurrence T (n) = 2T (n/2) +
O(nlg3); the O(nlg3) term includes the running times of bothMultiply and TwoToThe
(as well as the final linear-time addition).

The recursion tree for this algorithm is a binary tree, with 2i nodes at recursion
depth i. Each recursive call at depth i converts an n/2i-bit binary number to
decimal; the non-recursive work at the corresponding node of the recursion tree
is O((n/2i)lg3) = O(nlg3/3i). Thus, the total work at depth i is 2i · O(nlg3/3i) =
O(nlg3/(3/2)i). The level sums define a descending geometric series, which is
dominated by its largest term O(nlg 3).

Notice that if we had converted 2n/2 to decimal recursively instead of calling
TwoToThe, the recurrence would have been T (n) = 3T (n/2) + O(nlg 3). Every
level of this recursion tree has the same sum, so the overall running time would be
O(nlg3 log n). ■

3



ECE 374 B Lab 10 - Divide and Conquer - Solutions Fall 2024

Think about later:

4. Suppose we can multiply two n-digit numbers in O(M(n)) time. Describe an algorithm to
compute the decimal representation of an arbitrary n-bit binary number in O(M(n) log n)
time.

Solution: We modify the solutions of problems 2 and 3 to use the faster multiplication
algorithm instead of Karatsuba’s algorithm. Let T2(n) and T3(n) denote the running
times of TwoToThe and Decimal, respectively. We need to solve the recurrences

T2(n) = T2(n/2) +O(M(n)) and T3(n) = 2T3(n/2) + T2(n) +O(M(n)).

But how can we do that when we don’t know M(n)?

For the moment, suppose M(n) = O(nc) for some constant c > 0. Since any
algorithm to multiply two n-digit numbers must read all n digits, we have M(n) = Ω(n),
and therefore c ≥ 1. On the other hand, the grade-school lattice algorithm implies
M(n) = O(n2), so we can safely assume c ≤ 2. With this assumption, the recursion
tree method implies

T2(n) = T2(n/2) +O(nc) =⇒ T2(n) = O(nc)

T3(n) = 2T3(n/2) +O(nc) =⇒ T3(n) =

¨

O(n log n) if c = 1,
O(nc) if c > 1.

So in this case, we have T3(n) = O(M(n) log n) as required.

In reality, M(n) may not be a simple polynomial, but we can effectively ignore any
sub-polynomial noise using the following trick. Suppose we can write M(n) = nc ·µ(n)
for some constant c and some arbitrary non-decreasing function µ(n).a

To solve the recurrence T2(n) = T2(n/2) +O(M(n)), we define a new function
T̃2(n) = T2(n)/µ(n). Then we have

T̃2(n) =
T2(n/2)
µ(n)

+
O(M(n))
µ(n)

≤
T2(n/2)
µ(n/2)

+
O(M(n))
µ(n)

= T̃2(n/2) +O(nc).

Here we used the inequality µ(n) ≥ µ(n/2); this the only fact about µ that we
actually need. The recursion tree method implies T̃2(n) ≤ O(nc), and therefore
T2(n)≤ O(nc) ·µ(n) = O(M(n)).

Similarly, to solve the recurrence T3(n) = 2T3(n/2)+O(M(n)), we define T̃3(n) =
T3(n)/µ(n), which gives us the recurrence T̃3(n)≤ 2T̃3(n/2) +O(nc). The recursion
tree method implies

T̃3(n)≤

¨

O(n log n) if c = 1,
O(nc) if c > 1.

In both cases, we have T̃3(n) = O(nc log n), which implies that T3(n) = O(M(n) log n). ■
aA recent multiplication algorithm based on fast Fourier transforms runs in O(n log n 2O(log∗ n)) time,

so we can safely assume that c = 1. But our solution doesn’t use that fact.

4


