ECE 374 B Lab 11 - Backtracking - Solutions Fall 2024

Note: There is a lot of confusion on how to write English descriptions of recurrences. I wrote
two such descriptions in the first two solutions of Problem 1. The rest I'm keeping brief so you
can practice describing solutions.

Describe recursive backtracking algorithms for the following problems. Don’t worry about running
times.

1. Given an array A[1.. n] of integers, compute the length of a longest increasing subsequence.

Solution: Add a sentinel value A[0] = —oco. Let LIS(i, j) denote the length of the
longest increasing subsequence of A[i..n] where every element is larger than A[j].
This function obeys the following recurrence:

0 ifi>n (za)

LISG, j) = LIS(i +1,7j) ifi <nandA[j] > A[i] (1b)
LIS(i+1,7j) .

max{ 14+ LIS(i+1,1) } otherwise (10)

LIS(i, j) denotes the length of the longest increasing subsequence of A[i..n] where
every element is larger than A[j]. The cases are described as follows:

e 1ais the base case. If i > n there is nothing in the array’s suffix and therefore,
nothing to put in the subsequence.

e 1bif A[j] > A[i], then you simply cannot add A[i] to the subsequence and thus,
the LIS of A[i..n] assuming all values must be larger than A[j] is simply the LIS
of A[i + 1..n] assuming all valuues must be larger than A[j].

e 1cif A[j] < A[i], then A[i] can be added to the LIS, but that doesn’t mean it
should be. Hence we need to compare the case where we don’t add A[i] to the
LIS (LIS(i + 1, j)) to the case where we do add A[i] to the LIS (1 + LIS(i + 1,1)).

We need to compute LIS(1, 0) to get the length of the LIS for the total sequence. M

ECE 374 B Lab 11 - Backtracking - Solutions Fall 2024

Solution: Let LIS(i) denote the length of the longest increasing subsequence of
A[i..n] that begins with A[i]. This function obeys the following recurrence:

o 1 if A[j1<A[i]forall j >i (2a)
LIs() = { 1 + max {LIS(j) \ j>1iandA[j] >A[i]} otherwise (2b)

The cases can be described as follows:

e 2a is the base case. If A[j] < A[i], it means that A[j] cannot be a part of the
longest LIS that begins with A[i]. Hence, the maximum LIS that begins with A[i]
assuming A[j] is in the LIS must be 1.

* 2b simply looks at all the possible elements after A[i] and says, “if this element
must be a part of the subsequence, what is the LIS that starts with A[i]?”

(The first case is actually redundant if we define max @ = 0.) We need to compute
max; LIS(i). [|

Solution: Add a sentinel value A[0] = —oo. Let LIS(i) denote the length of the
longest increasing subsequence of A[i..n] that begins with A[i]. This function obeys
the following recurrence:

LIS(i) 1 ifA[j1<A[i]forall j >i
l =
1 +max{LIS(j) | j>iandA[j] >A[i]} otherwise

(The first case is actually redundant if we define max@ = 0.) We need to compute
LIS(0) — 1; the —1 removes the sentinel —oco from the start of the subsequence. H

Solution: Add sentinel values A{0] = —o0 and A[n+ 1] = oo. Let LIS(j) denote the
length of the longest increasing subsequence of A[1..j] that ends with A[j]. This
function obeys the following recurrence:

LIS(]) = 1 ifj=0
. 1 +max{LIS(i) \ i <jandA[i] <A[j]} otherwise

We need to compute LIS(n + 1) — 2; the —2 removes the sentinels —oo and oo from
the subsequence. |

ECE 374 B Lab 11 - Backtracking - Solutions Fall 2024

2. Given an array A[1 .. n] of integers, compute the length of a longest decreasing subsequence.

Solution: Add a sentinel value A[0] = oo. Let LDS(i, j) denote the length of the
longest decreasing subsequence of A[i..n] where every element is smaller than A[j].
This function obeys the following recurrence:

0 ifi>n
LDS(i,j) =4 LDS(i +1,) ifi <nand A[j] <A[i]
max {LDS(i +1,j),1+LDS(i + 1,i)} otherwise

We need to compute LDS(1,0). []

Solution: Multiply every element of A by —1, and then compute the length of the
longest increasing subsequence using the algorithm from problem 1. [|

ECE 374 B Lab 11 - Backtracking - Solutions Fall 2024

3. Given an array A[1..n] of integers, compute the length of a longest alternating sub-
sequence.

Solution: We define two functions:

* Let LAS*(i, j) denote the length of the longest alternating subsequence of A[i..n]
whose first element (if any) is larger than A[j] and whose second element (if
any) is smaller than its first.

e Let LAS™ (i, j) denote the length of the longest alternating subsequence of A[i..n]
whose first element (if any) is smaller than A[j] and whose second element (if
any) is larger than its first.

These two functions satisfy the following mutual recurrences:

0 ifi>n
LAS*(i,j) =< LAST(i+1,)) ifi <nandA[i] <A[j]
max {LAS™(i +1,j),1+LAS (i +1,i)} otherwise

0 ifi>n
LAS™(i,j)=1{ LAS (i+1,)) ifi <nandA[i] = A[j]
max {LAS(i +1,j),1+LAST(i + 1,i)} otherwise

To simplify computation, we consider two different sentinel values A[0]. First
we set A[0] = —oo and let £t = LAS*(1,0). Then we set A[0] = +c0 and let
¢~ =LAS™(1,0). Finally, the length of the longest alternating subsequence of A is
max{{*,{"}. [|

Solution: We define two functions:

e Let LAS™(i) denote the length of the longest alternating subsequence of A[i..n]
that starts with A[i] and whose second element (if any) is larger than A[i].

* Let LAS™ (i) denote the length of the longest alternating subsequence of Ai..n]
that starts with A[i] and whose second element (if any) is smaller than A[i].

These two functions satisfy the following mutual recurrences:

SH) 1 ifA[j]1<A[i] forall j >i
LA 1)=
1+ max {LAS_(j) | j>iandA[j] >A[i]} otherwise

. 1 ifA[j]1=Ali] forall j > i
LAS™(i) = e | e . . .
1 +max{LAS (N | j>1iandA[j] <A[l]} otherwise

We need to compute max; max{LAS™ (i), LAS™(i)}. [|

ECE 374 B Lab 11 - Backtracking - Solutions Fall 2024

To think about later:

4. Given an array A[1..n] of integers, compute the length of a longest convex subsequence
of A.

Solution: Let LCS(i,j) denote the length of the longest convex subsequence of
A[i..n] whose first two elements are A[i] and A[j]. This function obeys the following
recurrence:

LCS(i,j) = 1+ max {LCS(j,k) | j < k < n and A[i]+A[k] > 24[j]}

Here we define max @ = 0; this gives us a working base case. The length of the longest
convex subsequence is max; <;<j<, LCS(i, j)- |

Solution (with sentinels): Assume without loss of generality that A[i] > O for all i.
(Otherwise, we can add |m| to each A[i], where m is the smallest element of A[1..n].)
Add two sentinel values A[0] = 2M + 1 and A[—1] = 4M + 3, where M is the largest
element of A[1..n].

Let LCS(i, j) denote the length of the longest convex subsequence of A[i .. n] whose
first two elements are A[i] and A[j]. This function obeys the following recurrence:

LCS(i,j) = 1+ max {LCS(j,k) | j < k < n and A[i]+A[k] > 24[j]}

Here we define max @ = 0; this gives us a working base case.

Finally, we claim that the length of the longest convex subsequence of A[1..n] is
LCS(—1,0)—2.
Proof: First, consider any convex subsequence S of A[1..n], and suppose its first
element is A[i]. Then we have A[—1] —2A[0] +A[i]=4M +3—-202M + 1)+ A[i] =
Ali]+ 1 > 0, which implies that A[—1]-A[0] - S is a convex subsequence of A[—1..n].
So the longest convex subsequence of A[1..n] has length at most LCS(—1,0) — 2.

On the other hand, removing A[—1] and A[0] from any convex subsequence of
A[—1..n] laves a convex subsequence of A[1..n]. So the longest subsequence of
A[1..n] has length at least LCS(—1,0) — 2. |

ECE 374 B Lab 11 - Backtracking - Solutions Fall 2024

5. Given an array A[1..n], compute the length of a longest palindrome subsequence of A.

Solution: Let LPS(i, j) denote the length of the longest palindrome subsequence of
A[i..j]. This function obeys the following recurrence:

(0 ifi>
1 ifi=j
LPS(i+1,j
ax{ (i+1.7) } if i < jand A[i] #A[j]
LPS(i, j) = { LPS(i,j—1)
24+LPS(i+1,j—1)
max LPS(i+1,j) otherwise
LPS(i,j—1)
We need to compute LPS(1,n). []

Solution: Let LPS(i, j) denote the length of the longest palindrome subsequence of
Ali..j]. Before stating a recurrence for this function, we make the following useful
observation.”

Claim 1. Ifi < jand Ali]=A[j], then LPS(i,j) =2+ LPS(i+1,j—1).

Proof: Suppose i < j and A[i] = A[j]. Fix an arbitrary longest palindrome sub-
sequence S of A[i..j]. There are four cases to consider.

 If S uses neither Ali] nor A[j], then A[i] * S * A[j] is a palindrome subsequence
of A[i..j] that is longer than S, which is impossible.

e Suppose S uses A[i] but not A[j]. Let A[k] be the last element of S. If k =i,
then A[i] * A[j] is a palindrome subsequence of A[i .. j] that is longer than S,
which is impossible. Otherwise, replacing A[k] with A[j] gives us a palindrome
subsequence of A[i .. j] with the same length as S that uses both A[i] and A[j].

e Suppose S uses A[j] but not Ali]. Let A[h] be the first element of S. If h = j,
then A[i] ® A[j] is a palindrome subsequence of A[i .. j] that is longer than S,
which is impossible. Otherwise, replacing A[h] with A[i] gives us a palindrome
subsequence of A[i .. j] with the same length as S that uses both A[i] and A[j].

¢ Finally, S might include both A[i] and A[j].

In all cases, we find either a contradiction or a longest palindrome subsequence of
A[i .. j] that uses both A[i] and A[j]. |

ECE 374 B Lab 11 - Backtracking - Solutions Fall 2024

Claim 1 implies that the function LPS satisfies the following recurrence:

0 ifi>j
1 ifi=j
LPS(i, j) = o SR
max {LPS(l +1,j), LPS(i,j — 1)} ifi <jandAli]#A[j]
2+LPS(i+1,j—1) otherwise
We need to compute LPS(1, n). [|

“And yes, optimizations like this require a proof of correctness, both in homework and on exams.
Premature optimization is the root of all evil.

