A *subsequence* of a sequence (for example, an array, linked list, or string), obtained by removing zero or more elements and keeping the rest in the same sequence order. A subsequence is called a *substring* if its elements are contiguous in the original sequence. For example:

- **SUBSEQUENCE**, **UBSEQU**, and the empty string ε are all substrings (and therefore subsequences) of the string **SUBSEQUENCE**;
- SBSQNC, SQUEE, and EEE are all subsequences of SUBSEQUENCE but not substrings;
- QUEUE, EQUUS, and DIMAGGIO are not subsequences (and therefore not substrings) of SUBSEQUENCE.

Describe recursive backtracking algorithms for the following problems. *Don't worry about running times*.

I. Given an array A[1..n] of integers, compute the length of a *longest increasing subsequence*. A sequence $B[1..\ell]$ is *increasing* if B[i] > B[i-1] for every index $i \ge 2$.

For example, given the array

$$\langle 3, \underline{1}, \underline{4}, 1, \underline{5}, 9, 2, \underline{6}, 5, 3, 5, \underline{8}, \underline{9}, 7, 9, 3, 2, 3, 8, 4, 6, 2, 7 \rangle$$

your algorithm should return the integer 6, because (1,4,5,6,8,9) is a longest increasing subsequence (one of many).

2. Given an array A[1..n] of integers, compute the length of a *longest decreasing subsequence*. A sequence $B[1..\ell]$ is *decreasing* if B[i] < B[i-1] for every index $i \ge 2$.

For example, given the array

$$\langle 3, 1, 4, 1, 5, \underline{9}, 2, \underline{6}, 5, 3, \underline{5}, 8, 9, 7, 9, 3, 2, 3, 8, \underline{4}, 6, \underline{2}, 7 \rangle$$

your algorithm should return the integer 5, because (9,6,5,4,2) is a longest decreasing subsequence (one of many).

3. Given an array A[1..n] of integers, compute the length of a *longest alternating subsequence*. A sequence $B[1..\ell]$ is alternating if B[i] < B[i-1] for every even index $i \ge 2$, and B[i] > B[i-1] for every odd index $i \ge 3$.

For example, given the array

$$\langle \underline{\mathbf{3}}, \underline{\mathbf{1}}, \underline{\mathbf{4}}, \underline{\mathbf{1}}, \underline{\mathbf{5}}, \mathbf{9}, \underline{\mathbf{2}}, \underline{\mathbf{6}}, \underline{\mathbf{5}}, \mathbf{3}, \mathbf{5}, \underline{\mathbf{8}}, \mathbf{9}, \underline{\mathbf{7}}, \underline{\mathbf{9}}, \underline{\mathbf{3}}, \mathbf{2}, \mathbf{3}, \underline{\mathbf{8}}, \underline{\mathbf{4}}, \underline{\mathbf{6}}, \underline{\mathbf{2}}, \underline{\mathbf{7}} \rangle$$

your algorithm should return the integer 17, because (3, 1, 4, 1, 5, 2, 6, 5, 8, 7, 9, 3, 8, 4, 6, 2, 7) is a longest alternating subsequence (one of many).

To think about later:

4. Given an array A[1..n] of integers, compute the length of a longest *convex* subsequence of A. A sequence $B[1..\ell]$ is *convex* if B[i] - B[i-1] > B[i-1] - B[i-2] for every index $i \ge 3$.

For example, given the array

$$\langle 3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 7 \rangle$$

your algorithm should return the integer 6, because (3,1,1,2,5,9) is a longest convex subsequence (one of many).

5. Given an array A[1..n], compute the length of a longest *palindrome* subsequence of A. Recall that a sequence $B[1..\ell]$ is a *palindrome* if $B[i] = B[\ell - i + 1]$ for every index i.

For example, given the array

$$\langle \underline{\mathbf{3}}, 1, 4, 1, 5, 9, \underline{\mathbf{2}}, 6, 5, \underline{\mathbf{3}}, 5, 8, \underline{\mathbf{9}}, \underline{\mathbf{7}}, \underline{\mathbf{9}}, \underline{\mathbf{3}}, \underline{\mathbf{2}}, \underline{\mathbf{3}}, 8, 4, 6, 2, 7 \rangle$$

your algorithm should return the integer 9, because (3,2,3,9,7,9,3,2,3) is a longest palindrome subsequence (there may be others).