
ECE 374 B Lab 13 - Dynamic Programming II - Solutions Fall 2024

1. Coin Change Let’s say you have at your disposable a wide assortment of (not neccessarily dollar)
coins and you need to make change for a particular value x . As you’re doing so, you wonder to
yourself how many different ways can I make change for x . Well I think that’s a excellent question
so let’s figure it out.

Problem: You are give an integer value x and an array A where each element of the array
represents a coin denomination:

Example: A= [1,2, 3] and x = 5. Output is 5 ({1,1, 1,1, 1}, {1, 1,1, 2}, {1,1, 3}, {1,2, 2}, {2,3}).

Solution: Let CC(i, j) denote the number of different ways to make change for j
using the first i types of coins(A[1 .. i]).

Observe that you can categorize the ways to make change for j using A[1..i] into
two mutually exclusive cases: either by including at least one of A[i] or not including
any A[i] at all. The number of different ways to make change for j with A[1 .. i] while
having at least one A[i] is equal to the number of different ways to make change for
j−A[i] with A[1 .. i], since adding one A[i] to j−A[i] would give j while guaranteeing
that there is at least one A[i] in the change. The number of different ways to make
change for j with A[1 .. i] while not using any A[i] is equal to the number of different
ways to make change for j with A[1 .. i − 1], since you are not using A[i] anyways.

Based on the observation, we obtain the following recurrence.

CC(i, j) =











1 if j = 0

0 if j < 0 or ( j > 0 and i = 0)
CC(i, j − A[i]) + CC(i − 1, j) otherwise

The first base case is for j = 0 and it would be 1 since we always have exactly one way
to make change for 0. The second base case corresponds to either making negative
change, or making positive change while not using any coin, which would be 0. The
recursive case comes from the observation above.

To formulate a dynamic programming solution, we construct a 2D array CC[i, j]
of size (n+1)× (x +1), where n is the size of the array A, and x is the target amount
of change. We evaluate both i and j in increasing order, and return CC[n, x] at the
end. The pseudocode for the dynamic programming solution would be the following.

CoinChange(A[1..n], x):
for i← 0 to n

CC[i, 0]← 1
for j← 1 to x

CC[0, j]← 0
for i← 1 to n

for j← 1 to x
if j < A[i]

CC[i, j]← CC[i − 1, j]
else

CC[i, j]← CC[i, j − A[i]] + CC[i − 1, j]
return CC[n, x]

Since we are evaluating an array of size O(nx) and the evaluation of a single
subproblem takes O(1), the runtime of the algorithm is O(nx).
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2. Subset sum: You are given an array A of n natural numbers and a number m and we have to find
whether there exists a non-empty subset with sum divisble by m.

Example: A= [7,4, 6,3].

• There exists no subset divisible by 12

• There exists a subset that is divisible by 8 ({7,3, 6})

Solution: Let MSum(i, s) represent whether it is possible to achieve the modular
sum of s with a non-empty subset of A[i .. n]. If MSum(i, s) is True, then there exists
a non-empty subset B ⊂ A[i .. n] with the modular sum Σb∈B b mod m = s. This
function obeys the following recurrence:

MSum(i, s) =



















False if i > n

True if i ≤ n and
A[i] mod m= s

MSum(i + 1, (s− A[i]) mod m)∨MSum(i + 1, s) otherwise

Intuitively, if we could achieve themodular sum of s−A[i]with the elements A[i+1 .. n],
then we can achieve the modular sum of s by adding A[i] to the subset. Also, if we
could achieve the modular sum of s with the elements A[i+1 .. n], then we can simply
exclude A[i] and keep the same subset to achieve the modular sum of s.
We use a 2-D array MSum[1 .. n+ 1,0 .. m− 1] for memoization. The pseudo-code for
the algorithm is given below:

MSum(A[1..n], m):
for s← 0 to m− 1

MSum[n+ 1, s]← False
for i← n down to 1

for s← 0 to m− 1
if A[i] mod m= s

MSum[i][s]← True
else

MSum[i][s]← MSum(i + 1, (s− A[i]) mod m)∨MSum(i + 1, s)
return MSum[1, 0]

There are O(mn) subproblems and solving each subproblem takes O(1). Therefore,
the overall runtime is O(mn) time. ■
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3. KnapSack Problem: This problem describes a situation where you have a bunch of items that
have a corresponding weight and value and your goal is to fit a collection of items with the greatest
value into a “knapsack” with a finite capacity.

So let’s formalize this problem: you are given:

• a array of values V where each element corresponds to item i with value V [i]

• an array of integer weights W where each elements corresponds to item i with weight W [i]

• a integer x which corresponds to the capacity of the knapsack.

Problem: Find maximum value of items that can be fit into knapsack of the defined capacity.

Solution: Let there be n items, (i.e. V [1, ..., n],W [1, ..., n]). We define the function
Sack(i, j) which is the maximum value of items that can fit in a sack with capacity
j, with items i, ..., n. If the capacity can contain item i we can then choose if we
include item i or not. If we include item i then we increase the value and decrease
the capacity accordingly then move on to item i + 1. If we do not include item i then
we move on to item i + 1. This yields the following recurrence relation:

Sack(i, j) =











0 i > n

Sack(i + 1, j) W [i]> j

max {V [i] + Sack(i + 1, j −W [i]), Sack(i + 1, j)} W [i]≤ j

(1)

To implement this we use memiozation.

Sack(n, x):
for k← 1 to x

Sack[n+ 1, k]← 0
for k← 1 to n

Sack[k, 0]← 0
for i← n down to 1

for j← 1 to x
if W [i]> j

Sack[i, j]← Sack[i + 1, j]
else

Sack[i, j]←max {V [i] + Sack[i + 1, j −W [i]], Sack[i + 1, j]}

return Sack[1, x]

The resulting algorithm runs in O(nx ) time.
■
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4. Largest Square of 1’s You are given a n× n bitonic array A and the goal is to find the set of
elements within that array that form a square filled with only 1’s.

































































i→

←
j

1 1 1 1 0 0 0 0 1 0
0 0 1 1 1 1 1 1 1 0
1 1 1 1 0 0 1 1 0 1
1 1 1 1 0 0 1 1 0 0
1 1 1 1 1 1 1 0 1 0
1 1 1 1 1 1 0 1 1 1
1 1 1 1 1 1 0 1 1 0
1 1 0 0 0 1 1 1 1 1
1 0 0 0 1 0 1 1 1 0
0 1 1 1 1 0 1 1 1 0

Figure 1. Example: The output is the sidelength of the largest square of 1’s (4 in the case of the graph above, yes
there can be multiple squares of the greatest size).

Solution: We observe that a square of size n is composed of 3 squares of size n− 1
plus the corner piece (assuming it’s value is a 1). For example we can re-imagine the
example above as:

































































j→

←
i 1 1 1 1 0 0 0 0 1 0

0 0 1 1 1 1 1 1 1 0
1 1 1 1 0 0 1 1 0 1
1 1 1 1 0 0 1 1 0 0
1 1 1 1 1 1 1 0 1 0
1 1 1 1 1 1 0 1 1 1
1 1 1 1 1 1 0 1 1 0
1 1 0 0 0 1 1 1 1 1
1 0 0 0 1 0 1 1 1 0
0 1 1 1 1 0 1 1 1 0

So we can construct the recurrence as follows:

LSq(i, j) =























0 if A[i, j] = 0 (2a)
A[i, j] if i = n or j = n (2b)

1+min







LSq(i + 1, j)
LSq(i, j + 1)
LSq(i + 1, j + 1)







otherwise (2c)

LSq(i, j) describes the maximum square of 1’s whose top left corner is at coordinate
index [i, j]. Each of the recurrence cases can be described as:

• 2a is a base case. If A[i, j] = 0, then it can’t be part of a square of 1’s and hence
the maximum square size is 0.

• 2b is another base case. The values on the bottom row can have a square (whose
top-left is at a point on that row) or more than 1. So we set the values accordingly.
Same logic applies for the rightmost column.
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• 2c is the recurrence. If A[i, j] = 1, then there is the possibility we can connect
it to the neighboring squares to form a new even larger square. We do this by
taking the minimum sized square from the neighbors to bottom/right since we
can only have 1’s inside the new square.

The output is the max of all the possible square in the array max(LSq(1..n, 1..n))

We know that each computation of LSq(1..n, 1..n) looks at the values to the bottom
and right so we can memoize the array in reverse row-major order going from bottom
to top, right to left. The pseudo-code looks-like:

LSq(A[1 .. n, 1 .. n]):
LSq = zeros(n,n)
for i← 1 to n

LSq[n, i]← A[n, i]
LSq[i, n]← A[i, n]

for i← n− 1 down to 1
for j← n− 1 down to 1

if A[i, j] ̸= 0
LSq[i, j]←min {LSq[i + 1, j], LSq[i, j + 1], LSq[i + 1, j + 1]}

else
LSq[i, j]← 0

return max(LSq)

■
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5. Maximum rectangle: You are given a 2D array A that contains positive and negative integer
values. You need to find the rectangle that has the largest sum of elements.









































i→

←
j

2 1 -10 3 -4
10 -6 6 5 4
-1 0 9 -5 -9
-8 -2 7 8 -3
-7 -2 6 0 4

Figure 2. Example: The output is the sum of the greatest rectangle sum (30 in the case of the array above.).

Solution: Intutively, we know that to find the rectangle with largest sum of elements,
we need to compute the sum for all possible rectangles in the 2-D array and compare
them all to find the largest sum.

Maxsumle f t,ri ght =

max
1≤i≤rows

¨

sum[i] =

¨

0 sum[i − 1] + rowSum[i]< 0

sum[i − 1] + rowSum[i] otherwise

«

(3)
Step 1: The left and right border of our rectangle can be computed by iteratively

fixing a left column from 1 till the number of columns in the array and for every such
fixed left column we can set the right column to range from the fixed column till the
end to ensure that we cover all possible column ranges.

Step 2: Now for each of these left-right column bounds, in order to find the top
and bottom bounds for our rectangle, we compute the sum of the values for each row
ensuring that we only take the values that lie within these fixed columns.

Step 3: Now that we have a set of rowSum values we need to take a consecutive
set of these values, from top to bottom, that give the largest sum. If all the values
were positive, we would take a sum of all the values and our rectangle would start
from the first row till the end. But since we also have negative numbers, at one point
even if we have positive numbers, there could be larger negative numbers that result
in the total net sum becoming negative.

A simple solution in that case is to follow the Kadane algorithm, where we just
reset the sum to be 0 and consider only the next upcoming rows untill the last row for
our rectangle. We do this as we know that the sum so far cannot contribute positively
to the maximum total sum of consecutive rowSum values.

Step 4: Finally, we get the maximum sum of the rectangle where the left border
= leftColumn, right border = rightColumn, topBorder = latest restarted row/ first
row and bottomBorder = lastRow that the relative maxSum was found in.

Special Case: In the case where all the row sum values are negative, simple return
the smallest negative number as the sum and the rectangle only has the row of the
number in it.
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Step 5: In the end, all these rectangle sums are compared and we return the
relative largest sum.

KadaneSum(rowSum[1..R])
maxSum = −in f
finish = −1
sum = 0
localStart = 0
for (i← 1 : R)
sum = sum + rowSum[i]
if (sum < 0) then

sum = 0
localStart = i + 1

else if (sum > maxSum)
maxSum = sum
start = localStart
finish = i

if (finish ̸= −1) then
return {maxSum, start, finish}

maxSum = rowSum[1]
start = finish = 1 for (i← 2 : N)
if (rowSum[i] > maxSum) then

maxSum = rowSum[i] start = finish = 1
return {maxSum, start, finish}

MaximumRectangleSum(A[1..R][1..C])
maxRecSum = -inf
for (left← 1 : C)
temp[1..R]← 0
for (right← left : C)

for (i← 1 : R)
temp[i]← temp[i] + A[i][right]

result[] = kadaneSum(temp)
recSum = result[1]
startRow = result[2]
finishRow = result[3]
if (recSum > maxRecSum)then

maxRecSum = recSum
finalLeft = left
finalRight = right
finalTop =startRow
finalBottom = finishRow

return maxRecSum

■
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6. Rod cutting: The rod cutting problem assumes you have some rod of length n that you need
to sell. The issue is that the market is illogical and rod price is not linearly proportional with rod
length.

Problem: You are given an integer x that represents the length of rod you have and an array A
where i corresponds to a rod length and A[i] corresponds to the price a rod of that length would
fetch. You need to determine the maximum value you can fetch from the rod assuming you cut it
optimally.

Figure 3. Example: A= [1,4, 6,7] and x = 4, output should be 8.

Solution: Suppose we decided to cut and sell a rod of length k out of the rod of
length n. The maximum value you can get in this scenario would be A[k] plus the
maximum value you can get from a rod of length n− k.

However, we do not know if selling a rod of length k actually maximizes the total
value. Therefore, to get the maximum total value for a rod of length n, we must try
every k ≤ n and choose the k that gives the greatest value. With the observation, we
can construct the following recurrence:

MV (n) = max
0≤i<n

�

A[i] +MV (n− i)
�

Where MV (i) denotes the maximum value we can get from a rod of length i.
For a DP algorithm, we can memoize the values of MV in a one dimensional array

MV [1 .. n]. Since we need the values of MV [ j] for all j < i to compute MV [i], we
can start by filling out MV [0] and proceed to the greater index. The pseudo-code of
the algorithm is given below:
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MV(n):
MV[0]← 0
for i← 1 to n:

v← 0
for j← 1 to i:

if A[ j] +MV[i − j]>v:
v← A[ j] +MV[i − j]

MV[i]← v
return MV[n]

Since we need to iterate through an array of size n, and each iteration takes O(n)
computation for computing the max, the runtime of the DP algorithm is O(n2).

■

10



ECE 374 B Lab 13 - Dynamic Programming II - Solutions Fall 2024

7. In lecture we discussed the following two problems:

• Longest increasing subsequence (LIS) - Given an array (A[1 .. n]) of n integers find the
longest increasing subsequence.

• Longest common subsequence (LCS) - Given two arrays (A[1 .. n] and B[1 .. n]), what
is the length of the longest subsequence present in both (for the sake of simplicity let’s
assume both arrays are of size n).

Now I want the Longest Common Increasing Sub-sequence: given two arrays (A and B) each
containing a sequence of n integers, what is the length of the longest subsequence that is present
in both arrays.

Solution: Let us write LCIS(i, j) the length of the longest common increasing sequence
of A[1 .. i] and B[1 .. j] that includes B[ j] for some 1≤ i, j ≤ n. There are two scenarios
to consider when computing LCIS(i, j): A[i] ̸= B[ j] and A[i] = B[ j].

When A[i] ̸= B[ j], A[i] and B[ j] cannot be paired to be attached on the sequence
which implies that B[ j] must be paired with one of the elements in A[1 .. i − 1].
Therefore, in this case, LCIS(i, j)=LCIS(i − 1, j).

When A[i] = B[ j], A[i] and B[ j] can be paired and attached to one of the common
increasing sequences in A[1 .. i − 1], B[1 .. j − 1]. However this is not possible for
every sequence in A[1 .. i − 1], B[1 .. j − 1], since A[i](= B[ j]) must be greater than
the last element in the sequence to form an increasing sequence. Therefore, if we
define S(i, j) = {k | 1 ≤ k < j, B[k] < A[i]} the set of indices k < j such that B[k] is
smaller than A[i], then we have the following recurrence.

LCIS(i, j) =











0 if i = 0 or j = 0

LCIS(i − 1, j) if i, j > 0 and A[i] ̸= B[ j]
1+ max

k∈S(i, j)
LCIS(i − 1, k) if i, j > 0 and A[i] = B[ j]

At a glance, we have n2 subproblems, and each subproblem seems to have time
complexity of O(n), due to the max over S(i, j). However, note that the max value
does not have to be computed everytime we call LCIS. For any indices a, b, c such that
b < c, we have

max
k∈S(a,b)

LCIS(i − 1, k)≤ max
k∈S(a,c)

LCIS(i − 1, k)

Therefore, for each value of i, we can keep track of the maximum value we observed
so far as we iterate through j, and directly access the value without recomputing the
max. The psuedo-code of the algorithm is given below:

LCIS(i, j):
for i← 1 to n:

m← 0
for j← 1 to n:

LCIS[i][ j]← LCIS[i − 1][ j]
if A[i]> B[ j] and LCIS[i][ j]> m then m← LCIS[i][ j]
if A[i] = B[ j] then LCIS[i][ j]← m+ 1

return max1≤ j≤n LCIS[n][ j]
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Since we have n2 subproblems, each with O(1) time complexity, the overall time
complexity of the algorithm is O(n2).

■
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