
ECE 374 B Lab 13 - Dynamic Programming II Fall 2024

Describe and analyze dynamic programming algorithms for the following problems. Re-
member, the solution to a dynamic programming problem has three things:

• A recurrence relation

• A brief description of what your recurrence function represents and what each case
represents.

• A brief description of the memory element/storage and how it’s filled in.

For DP problems and other algorithmic problems as a whole, I want to emphasize that we will be
grading clarity and conciseness which admittedly is a subjective measure, but it is necessary. If
you need pages of text to describe your algorithm, you’re doing something wrong. You should be
editing and rewriting your solution multiple times before submission. Figures can do more in a
smaller space than pages of text, use them.

1. Coin Change Let’s say you have at your disposable a wide assortment of (not neccessarily
dollar) coins and you need to make change for a particular value x . As you’re doing so,
you wonder to yourself how many different ways can I make chnage for x . Well I think that’s
a excellent question so let’s figure it out.

Problem: You are give an integer value x and an array A where each element of the
array represents a coin denomination:

Example: A= [1,2, 3] and x = 5. Output is 5 ({1, 1,1, 1,1}, {1,1, 1,2}, {1, 1,3}, {1, 2,2}, {2, 3}).

2. Subset sum: You are given an array A of size n and a number m and we have to find
whether there exists a subset with sum divisble by m.

Example: A= [7, 4,6, 3].

• There exists no subset divisible by 12
• There exists a subset that is divisible by 8 ({7,3, 6})

3. Largest Square of 1’s You are given a n× n bitonic array A and the goal is to find the set
of elements within that array that form a square filled with only 1’s.

































































i→

←
j

1 1 1 1 0 0 0 0 1 0
0 0 1 1 1 1 1 1 1 0
1 1 1 1 0 0 1 1 0 1
1 1 1 1 0 0 1 1 0 0
1 1 1 1 1 1 1 0 1 0
1 1 1 1 1 1 0 1 1 1
1 1 1 1 1 1 0 1 1 0
1 1 0 0 0 1 1 1 1 1
1 0 0 0 1 0 1 1 1 0
0 1 1 1 1 0 1 1 1 0

Figure 1. Example: The output is the sidelength of the largest square of 1’s (4 in the case of the graph above, yes
there can be multiple squares of the greatest size).

1



ECE 374 B Lab 13 - Dynamic Programming II Fall 2024

4. KnapSack: This problem describes a situation where you have a bunch of items that have
a corresponding weight and value and your goal is to fit a collection of items with the
greatest value into a “knapsack” with a finite capacity.

So let’s formalize this problem: you are given:

• a array of values V where each element corresponds to item i with value V [i]

• an array of integer weights W where each elements corresponds to item i with weight
W [i]

• a integer X which corresponds to the capacity of the knapsack.

Problem: Find maximum value of items that can be fit into knapsack of the defined capacity.

5. Maximum rectangle: You are given a 2D array A that contains positive and negative
integer values. You need to find the rectangle that has the largest sum of elements.









































i→

←
j

2 1 -10 3 -4
10 -6 6 5 4
-1 0 9 -5 -9
-8 -2 7 8 -3
-7 -2 6 0 4

Figure 2. Example: The output is the sum of the greatest rectangle sum (30 in the case of the array above.).

6. Rod cutting: The rod cutting problem assumes you have some rod of length n that you need
to sell. The issue is that the market is illogical and rod price is not linearly proportional
with rod length.

Problem: You are given an integer x that represents the length of rod you have and an
array A where i corresponds to a rod length and A[i] corresponds to the price a rod of that
length would fetch. You need to determine the maximum value you can fetch from the rod
assuming you cut it optimally.

Figure 3. Example: A= [1,4, 6,7] and x = 4, output should be 8.

2



ECE 374 B Lab 13 - Dynamic Programming II Fall 2024

7. In lecture we discussed the following two problems:

• Longest increasing subsequence (LIS) - Given an array (A[1 .. n]) of n integers find
the longest increasing subsequence.

• Longest common subsequence (LCS) - Given two arrays (A[1 .. n] and B[1 .. n]),
what is the length of the longest subsequence present in both (for the sake of simplicity
let’s assume both arrays are of size n).

Now I want the Longest Common Increasing Sub-sequence: given two arrays (A and B)
each containing a sequence of n integers, what is the length of the longest subsequence
that is present in both arrays.

3


