
ECE 374 B Lab 14 - Intro to graphs - Solutions Fall 2024

For each of the problems below, transform the input into a graph and apply a standard graph
algorithm that you’ve seen in class. Whenever you use a standard graph algorithm, you must
provide the following information. (I recommend actually using a bulleted list.)

• What are the vertices?

• What are the edges? Are they directed or undirected?

• If the vertices and/or edges have associated values, what are they?

• What problem do you need to solve on this graph?

• What standard algorithm are you using to solve that problem?

• What is the running time of your entire algorithm, including the time to build the graph, as
a function of the original input parameters?

1. You are planning the seating arrangement for a wedding given a list of guests, V . For each
guest g you have a list of all other guests who are on bad terms with them. Feelings are
reciprocal: if h is on bad terms with g, then g is on bad terms with h. Your goal is to
arrange the seating such that no pair of guests sitting at the same table are on bad terms
with each other. There will be only two tables at the wedding. Give an efficient algorithm
to find an acceptable seating arrangement if one exists.

Solution: Let E = {(h, g) | h, g ∈ V, h is on bad terms with g} be the set of unordered
pairs that represents the feelings of the guests. Let G = (V, E) be an undirected graph
with V as the vertices, and E as the edges. The algorithm must return two sets
X , Y ⊆ V such that V \ X = Y and ∀(h, g) ∈ E, h ∈ X and g ∈ Y (or equivalently g ∈ Y
and h ∈ X , since the edges are undirected). That is, it must divide V into two parts so
that edges connects one vertex from one part and on vertex from the other part.

There are multiple ways to solve the problem, one would be running DFS on a modified
graph. We define a modified graph G′ = (V ′, E′) where V ′ = V × {red, blue} and
E′ = {
�

(v1, w1), (v2, w2)
�

| (v1, v2) ∈ E, w1, w2 ∈ {red, blue}, w1 ̸= w2}, as described
in the figure below.

1

ECE 374 B Lab 14 - Intro to graphs - Solutions Fall 2024

We choose an arbitrary node u ∈ V such that both (u, red) and (u, blue) are not visited,
and run DFS on G′ starting from (u, red) until for every v ∈ V , at least one of (v, red)
and (v, blue) is visited. Then, we check if there is a node u such that both (u, red)
and (u, blue) were visited. If there exists such u, then there exists no acceptable
seating arrangement. Otherwise, we return X = {u ∈ V | (u, red) is visited} and
Y = {u ∈ V | (u, blue) is visited}. Since |V ′| = 2|V | and |E′| = 2|E|, the runtime of
the algorithm is O(V + E).

■

2

ECE 374 B Lab 14 - Intro to graphs - Solutions Fall 2024

2. Plum blossom poles are a Kung Fu training technique, consisting of n large posts partially
sunk into the ground, with each pole pi at position (xi, yi). Students practice martial arts
techniques by stepping from the top of one pole to the top of another pole. In order to
keep balance, each step must be more than d meters but less than 2d meters. Give an
efficient algorithm to find a safe path from pole ps to pt if it exists.

Solution: We will have an input of list of n xy-coordinates, the value for minimum
distance d, source coordinate and destination coordinate. We will use this data to
build a graph by calculating the Euclidean distance between every pair of coordinates
and adding an undirected edge between pairs where the distance lies in the range of
d to 2d. This algorithm will take O(n2). We will use a BlackBox algorithm BFSPath
that takes a Graph, source and destination vertices and returns True if a path exists
between the two points and False if path does not exist. The runtime complexity of
running the BFS algorithm will be O(V + E) where V is the number of vertices and E
is the number of edges.

• Each vertex is (x i , yi) representing the xy coordinates of the Plum blossom poles

• An edge between 2 vertices indicates that the distance between the vertices is
between d and 2d. They are undirected.

• Since we are determining whether a path exists, we do not need to have a value
associated with the edge.

• The problem we are trying to solve is whether a path lies between two points
in the graph. Whether we can start at a given vertex and traverse through the
graph and reach the destination vertex.

• We can use a DFS or BFS algorithm to check whether a path exists between two
vertices.

BuildGraph(A[(x1, y1), (x2, y2), ...(xn, yn)], d):
Let g ← Empty Graph with n nodes
for i← 1 to n− 1

for j← i + 1 to n
dist = SquareRoot((x i − x j)2 + (yi − y j)2)
if d <= dist <= 2d

add an Undirected edge between node i and j

return g

PlumBlossomPath(A[(x1, y1), (x2, y2), ...(xn, yn)], d, src, dest):
graph = BuildGraph(A, d)
PathExists = BFSPath(graph, src, dest)
return PathExists

■

3

ECE 374 B Lab 14 - Intro to graphs - Solutions Fall 2024

3. The knight’s tour is a classic problem that asks given a n× n board, and a knight with a
particular starting position (x , y), is there a sequence of moves that the knight can make
so that it visits every square exactly once. Divise an algorithm that finds a knight’s tour (if
there is one). Don’t worry about your algorithm being efficient.

Solution: First we construct the graph representation of the moves a knight can have
on any given square. Each square becomes a vertex and we connect 2 vertices together
if the knight can move between the corresponding squares on the board.

Now we need to generate an algorithm to determine if there is a Hamiltonian path
starting from a given vertex. To do this we use a modified DFS algorithm where when
the first depth terminates (i.e. runs out of vertices to visit) we check to see how many
edges were used. If the number is not n2 − 1, then we go back one vertex and rerun
DFS from a different neighbor. If none of these neighbors yield a n2−1 edges then we
go back one more vertex. Repeat until all iterations are checked or until the criteria is
satisfied. This is effectively checking all the different permutations that could come
from the DFS algorithm to see if one is a path.

CheckPath(G, v):
N ← neighbors(v)
M ← size(G)
a← 0
if (N is not empty)

for y in N
if (a ̸= M − 1)

b← 1+CheckPath(G − v, y)
a←max {a, b}

return a

4

ECE 374 B Lab 14 - Intro to graphs - Solutions Fall 2024

Where G is a graph and v is a vertex in that graph. We would then run this
algorithm on the graph we generated earlier for some given vertex.

There are at most 8 moves a knight can do from a square. This means that
constructing the graph will have at most 8 edges for each of the n2 vertices. So the
graph construction takes O(n2) time. Because there are at most 8 moves, there are at
most 8n2−1 permutations for the DFS. The algorithm has constant work done during
each iteration which means the algorithm takes O(8n2) time. ■

5

