
ECE 374 B Lab 18 - Minimum spanning trees - Solutions Fall 2024

1. Suppose we are given both an undirected graph G with weighted edges and a minimum
spanning tree T of G. In all cases, the input to your algorithm is the edge e and its
new weight; your algorithms should modify T so that it is still a minimum spanning
tree. Of course, we could just recompute the minimum spanning tree from scratch in
O(|E|+ |V | log |V |) time, but you can do better.

(a) Describe an efficient algorithm to update the minimum spanning tree when the weight
of one edge e ∈ T is decreased.

Solution: In this case, the given MST T is still a MST. While this may seem
obvious, we argue it carefully here. Let T be the MST, and W be the weight of
T . Let e = (u, v), and let the decrease in weight be d, so that the new cost of T
becomes W − d. Let Tu and Tv be the subtrees obtained by removing e. Now, if
T doesn’t remain an MST, then clearly any new MST T ′ must contain e, for if it
did not, then since w(T ′)<W − d <W = w(T), this contradicts the fact that T
was an MST with the original weights. But if T ′ contains e, then the only way it
can have cost lower than W − d is by either connecting the nodes of Tu with less
weight than w(Tu), or by connecting the nodes of Tv with less weight than w(Tv).
But Tu and Tv are both MSTs for their node sets, otherwise T would not have
been minimal to begin with. Thus, T ′ cannot have less weight than W − d. ■

(b) Describe an efficient algorithm to update the minimum spanning tree when the weight
of one edge e ̸∈ T is increased.

Solution: In this case, the given MST T is still a MST. To see this, consider a
run of Kruskal’s algorithm which produced T . All of the same decisions would
be made when e has a higher weight, and so the same tree will be produced.
(This assumes the edge weights are unique. A more subtle argument is needed if
the edge weights are not unique.) ■

(c) Describe an efficient algorithm to update the minimum spanning tree when the weight
of one edge e ∈ T is increased.

Solution: Let e = (u, v) and let Tu and Tv be the subtrees obtained by removing
e. By doing BFS (ignoring edge weights) from u and from v , we can determine
which vertices are in Tu and which are in Tv in time O(|V |+ |E|). (Actually, we
can do this in O(|V |), since we only need to consider edges of the tree T , but the
next step will take O(|E|) anyway.) Assume we have marked each node with its
membership. Now examine each edge, and keep the minimum weight edge e′

with one endpoint in Tu and the other in Tv. This can be done in O(|E|) time.
The total time is thus O(|V |+ |E|). (Okay, we could perhaps speed this up by
examining only those edges adjacent to vertices of Tu, thus ignoring edges with
both endpoints in Tv .) Can you argue why the resulting tree is an MST? ■

1

ECE 374 B Lab 18 - Minimum spanning trees - Solutions Fall 2024

(d) Describe an efficient algorithm to update the minimum spanning tree when the weight
of one edge e ̸∈ T is decreased.

Solution: Let e = (u, v). Add e to T which will create a unique cycle, which we
can find doing BFS in T ∪ {e} starting from u and ignoring weights. This takes
O(|T |) = O(|V |) time. Now remove the maximum weight edge on that cycle
(O(|V |)). Can you argue why the resulting tree is an MST? ■

2. Let G = (V, E) be an undirected graph where each edge has a weight from the set {1,10, 25}.
Describe a linear-time algorithm to find an MST of G.

There are two possible solutions, one using a modified Prim’s algorithm, and one using
meta-graphs of connected components.

Solution (Modified Prim’s): The idea behind this is that Prim’s grows the spanning
tree by maintaining a tree and adding one vertex to the tree at a time. This works
in linear time for us, because the choice of edge is made efficient without the need
to sort. First construct three bags containing 1-weight edges, 10-weight edges, and
25-weight edges respectively . It takes O(E) to build the lists, The find operation
is O(1), the decrease key operation is O(1). Thus, the algorithm runs in O(V + E)
time. ■

Solution (Connected Components): Find the connected components in the graph
with the smallest weight set of edges. Shrink them and find the connected components
again with edges of next weight, shrink them and so on. This algorithm also runs in
O(V + E) time since we only have 3 distinct edge weights. ■

2

