
ECE 374 B Lab 19 - Reductions Fall 2024

This lab is on reductions. The first problem emphasizes the care one needs in making sure
that a reduction is correct. The second one is about the notion of self-reductions; how one can
reduce search and optimization problems to decision versions in many settings.

1. Let G = (V, E) be a graph. A set of edges M ⊆ E is said to be a matching if no two edges in
M intersect at a vertex. A matching M is perfect if every vertex in V is incident to some
edge in M ; alternatively M is perfect if |M | = |V |/2 (which in particular implies |V | is
even). See Wikipedia article for some example graphs and further background.

The PerfectMatching problem is the following: does the given graph G have a
perfect matching? This can be solved in polynomial time which is a fundamental result in
combinatorial optimization with many applications in theory and practice. It turns out that
the PerfectMatching problem is easier to solve in bipartite graphs. A graph G = (V, E) is
bipartite if its vertex set V can be partitioned into two sets L, R (left and right say) such
that all edges are between L and R (in other words L and R are independent sets). Here is
an attempted reduction from general graphs to bipartite graphs.

Given a graph G = (V, E) create a bipartite graph H = (V × {1, 2}, EH) as follows. Each
vertex u is made into two copies (u, 1) and (u, 2) with V1 = {(u, 1) | u ∈ V} as one side
and V2 = {(u, 2) | u ∈ V} as the other side. Let EH = {((u, 1), (v, 2)) | (u, v) ∈ E}. In
other words we add an edge betwen (u, 1) and (v, 2) iff (u, v) is an edge in E. Note that
((u, 1), (u, 2)) is not an edge in H for any u ∈ V since there are no self-loops in G.

Is the preceding reduction correct? To prove it is correct we need to check that H has a
perfect matching if and only if G has one.

• Prove that if G has perfect matching then H has a perfect matching.
• Consider G to be K3 the complete graph on 3 vertices (a triangle). Show that G has

no perfect matching but H has a perfect matching.
• Extend the previous example to obtain a graph G with an even number of vertices

such that G has no perfect matching but H has.

Thus the reduction is incorrect although one of the directions is true.

2. The traveling salesman problem can be defined in two ways:

• The Traveling Salesman Problem
– Input: A weighted graph G
– Output: Which tour (v1, v2, . . . , vn) minimizes

∑n−1
i=1 (d[vi , vi + 1]) + d[vn, v1]

• The Traveling Salesman Decision Problem
– Input: A weighted graph G and an integer k
– Output: Does there exist and TSP tour with cost ≤ k

Suppose we are given an algorithm that can solve the traveling salesman decision problem
in (say) linear time. Give an efficient algorithm to find the actual TSP tour by making a
polynomial number of calls to this subroutine.

1

https://en.wikipedia.org/wiki/Matching_(graph_theory)

ECE 374 B Lab 19 - Reductions Fall 2024

3. An independent set in a graph G is a subset S of the vertices of G, such that no two vertices
in S are connected by an edge in G. Suppose you are given a magic black box that somehow
answers the following decision problem in polynomial time:

• Input: An undirected graph G and an integer k.
• Output: True if G has an independent set of size k, and False otherwise.

(a) Using this black box as a subroutine, describe algorithms that solves the following
optimization problem in polynomial time:
• Input: An undirected graph G.
• Output: The size of the largest independent set in G.

(b) Using this black box as a subroutine, describe algorithms that solves the following
search problem in polynomial time:
• Input: An undirected graph G.
• Output: An independent set in G of maximum size.

To think about later:

4. Formally, a proper coloring of a graph G = (V, E) is a function c : V → {1,2, . . . , k}, for
some integer k, such that c(u) ̸= c(v) for all uv ∈ E. Less formally, a valid coloring assigns
each vertex of G a color, such that every edge in G has endpoints with different colors. The
chromatic number of a graph is the minimum number of colors in a proper coloring of G.

Suppose you are given a magic black box that somehow answers the following decision
problem in polynomial time:

• Input: An undirected graph G and an integer k.
• Output: True if G has a proper coloring with k colors, and False otherwise.

Using this black box as a subroutine, describe an algorithm that solves the following
coloring problem in polynomial time:

• Input: An undirected graph G.
• Output: A valid coloring of G using the minimum possible number of colors.

[Hint: You can use the magic box more than once. The input to the magic box is a graph
and only a graph, meaning only vertices and edges.]

2

