
ECE 374 B Lab 20 - NP-hardness I - Solutions Fall 2024

1. This is to help you recall Boolean formulae. A Boolean function f over r variables
a1, a2, . . . , ar is a function f : {0, 1}r → {0,1} which assigns 0 or 1 to each possible
assignment of values to the variables. One can specify a Boolean function in several ways
including a truth table. Here is a truth table for a function on 3 variables a1, a2, a3.

a1 a2 a3 f
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Suppose we are given a Boolean function on r variables a1, a2, . . . , ar via a truth table.
We wish to express f as a CNF formula using variables a1, a2, . . . , ar .

It may be easier to first think about expressing using a DNF formula (a disjunction of
one more conjunctions of a set of literals). For instance the function above can be expressed
as

(ā1 ∧ ā2 ∧ a3)∨ (ā1 ∧ a2 ∧ ā3)∨ (a1 ∧ ā2 ∧ a3)∨ (a1 ∧ a2 ∧ ā3)∨ (a1 ∧ a2 ∧ a3).

• What is a CNF formula for the function? Hint: Think of the complement function and
complement the DNF formula.

• Describe how one can express an arbitrary Boolean function f over r variables as a
CNF formula over the variables using at most 2r clauses.

Solution: We consider the Boolean function f̄ which is the complement of f . We
can express f̄ in DNF form using at most 2r terms. We then complement the resulting
DNF formula to obtain our desired CNF formula which has at most 2r clauses.

For the example function we obtain a DNF formula for f̄ as

(ā1 ∧ ā2 ∧ ā3)∨ (ā1 ∧ a2 ∧ a3)∨ (a1 ∧ ā2 ∧ ā3).

Thus the CNF formula for f is obtained by complementing this DNF formula and we
obtain:

(a1 ∨ a2 ∨ a3)∧ (a1 ∨ ā2 ∨ ā3)∧ (ā1 ∨ a2 ∨ a3).

■

1

ECE 374 B Lab 20 - NP-hardness I - Solutions Fall 2024

2. A Hamiltonian cycle in a graph G is a cycle that goes through every vertex of G exactly
once. Deciding whether an arbitrary graph contains a Hamiltonian cycle is NP-hard.

A tonian cycle in a graph G is a cycle that goes through at least half of the vertices of G.
Prove that deciding whether a graph contains a tonian cycle is NP-hard.

Solution (duplicate the graph): I’ll describe a polynomial-time reduction fromHamil-
tonianCycle. Let G be an arbitrary graph. Let H be a graph consisting of two disjoint
copies of G, with no edges between them; call these copies G1 and G2. I claim that G
has a Hamiltonian cycle if and only if H has a tonian cycle.

=⇒ Suppose G has a Hamiltonian cycle C . Let C1 be the corresponding cycle in G1.
C1 contains exactly half of the vertices of H, and thus is a tonian cycle in H.

⇐= On the other hand, suppose H has a tonian cycle C . Because there are no edges
between the subgraphs G1 and G2, this cycle must lie entirely within one of these
two subgraphs. G1 and G2 each contain exactly half the vertices of H, so C must
also contain exactly half the vertices of H, and thus is a Hamiltonian cycle in
either G1 or G2. But G1 and G2 are just copies of G. We conclude that G has a
Hamiltonian cycle.

Given G, we can construct H in polynomial time easily. ■

Solution (add n new vertices): I’ll describe a polynomial-time reduction fromHamil-
tonianCycle. Let G be an arbitrary graph, and suppose G has n vertices. Let H be a
graph obtained by adding n new vertices to G, but no additional edges. I claim that G
has a Hamiltonian cycle if and only if H has a tonian cycle.

=⇒ Suppose G has a Hamiltonian cycle C . Then C visits exactly half the vertices of
H, and thus is a tonian cycle in H.

⇐= On the other hand, suppose H has a tonian cycle C . This cycle cannot visit any of
the new vertices, so it must lie entirely within the subgraph G. Since G contains
exactly half the vertices of H, the cycle C must visit every vertex of G, and thus
is a Hamiltonian cycle in G.

Given G, we can construct H in polynomial time easily. ■

2

ECE 374 B Lab 20 - NP-hardness I - Solutions Fall 2024

3. Big Clique is the following decision problem: given a graph G = (V, E), does G have a clique
of size at least n/2 where n= |V | is the number of nodes? Prove that Big Clique is NP-hard.

Solution: Recall that an instance of Clique consists of a graph G = (V, E) and integer
k. (G, k) is a YES instance if G has a clique of size at least k, otherwise it is a NO
instance. For simplicity we will assume n is an even number.

We describe a polynomial-time reduction from Clique to Big Clique. We consider
two cases depending on whether k ≤ n/2 or not. If k ≤ n/2 we obtain a graph
G′ = (V ′, E′) as follows. We add a set of X new vertices where |X | = n− 2k; thus
V ′ = V ⊎ X . We make X a clique by adding all possible edges between vertices of
X . In addition we connect each vertex v ∈ X to each vertex u ∈ V . In other words
E′ = E ∪ {(u, v) | u ∈ V, v ∈ X } ∪ {(a, b) | a, b ∈ X }. If k > n/2 we let G′ = (V ′, E′)
where V ′ = V ⊎ X and E′ = E, where |X |= 2k− n. In other words we add 2k− n new
vertices which are isolated and have no edges incident on them.

We make the following relatively easy claims that we leave as exercises.

Claim 1. Suppose k ≤ n/2. Then for any clique S in G, S ∪ X is a clique in G′. For
any clique S′ ∈ G′ the set S′ \ X is a clique in G.

Claim 2. Suppose k > n/2. Then S is a clique in G′ iff S ∩ X = ; and S is a clique in
G.

Now we prove the correctness of the reduction. We need to show that G has a
clique of size k if and only if G′ has a clique of size n′/2 where n′ is the number of
nodes in G′.

=⇒ Suppose G has a clique S of size k. We consider two cases. If k > n/2 then
n′ = n+ 2k− n = 2k; note that S is a clique in G′ as well and hence S is a big
clique in G′ since |S|= k ≥ n′/2. If k ≤ n/2, by the first claim, S ∪ X is a clique
in G′ of size k+ |X |= k+ n− 2k = n− k. Moreover, n′ = n+ n− 2k = 2n− 2k
and hence S ∪ X is a big clique in G′. Thus, in both cases G′ has a big clique.

⇐= Suppose G′ has a clique of size at least n′/2 in G′. Let it be S′; |S′| ≥ n′/2. We
consider two cases again. If k ≤ n/2, we have n′ = 2n− 2k and |S′| ≥ n− k. By
the first claim, S = S′ \ X is a clique in G. |S| ≥ |S′| − |X | ≥ n− k− (n− 2k)≥ k.
Hence G has a clique of size k. If k > n/2, by the second claim S′ is a clique in
G and |S′| ≥ n′/2= (n+ 2k− n)/2= k. Therefore, in this case as well G has a
clique of size k.

■

3

ECE 374 B Lab 20 - NP-hardness I - Solutions Fall 2024

4. A strongly independent set is a subset of vertices S in a graph G such that for any two
vertices in S, there is no path of length two in G. Prove that Strongly Independent Set is
NP-hard.

Solution: To show that strongly independent set is NP-hard we do a reduction from
independent set.

For any graph G we construct a new graph H where we add vertices that correspond
to each edge, these edge vertices are connected to the vertices that the original edges
were connected to and to any edge vertex where the original edges shared a vertex.

→ Let G have an independent set X , then X is a strongly independent set in H.
If u, v in G are 2 length away, then the path in H is u connects to the edge vertex of
u, which connects to the edge vertex of v which connects to v, so u, v are 3 length
away in H. Therefore if G has an independent set of size k, then H has a strongly
independent set of size k.

← Let H have a strongly independent set Y . Then let w be an edge vertex in Y
where the original edge in G connects to vertices a, b. The path from any vertex z
(not a) to w is less than or equal to the path from z to a (or b). This is because a
connects only to the edge vertices that represent the edges a connects to in G, but
these edge vertices that connect to a are all connected to one another. So any path to
a has to go through one of these edge vertices. If this edge vertex is w then the path
to w is 1 shorter then the path to a. If this edge vertex is not w then this path could
go to w instead of a next so the path to w is the same as the path to a. This mean for
every edge vertex in Y we can swap it out for a vertex that the edge connected to in G
and preserve strong independence. Let Y ′ be the strongly independent set obtained
from swapping out all of the edge vertices. Y ′ is an independent set in G because
if all of the paths from u to v in Y ′ are greater than 2 in H then u and v cannot be
adjacent in G. Therefore if H has a strongly independent set of size k, then G has an
independent set of size k.

We have proved both directions in the reduction and constructing the new graph is
polynomial time. Therefore because independent set is NP-hard, strongly independent
set must also be NP-hard.

■

4

ECE 374 B Lab 20 - NP-hardness I - Solutions Fall 2024

5. Recall the following kColor problem: Given an undirected graph G, can its vertices be
colored with k colors, so that every edge touches vertices with two different colors?

(a) Describe a direct polynomial-time reduction from 3Color to 4Color.

Solution: Suppose we are given an arbitrary graph G. Let H be the graph
obtained from G by adding a new vertex a (called an apex) with edges to every
vertex of G. I claim that G is 3-colorable if and only if H is 4-colorable.

=⇒ Suppose G is 3-colorable. Fix an arbitrary 3-coloring of G, and call the
colors “red”, “green”, and “blue”. Assign the new apex a the color “plaid”.
Let uv be an arbitrary edge in H.
– If both u and v are vertices in G, they have different colors.
– Otherwise, one endpoint of uv is plaid and the other is not, so u and v

have different colors.
We conclude that we have a valid 4-coloring of H, so H is 4-colorable.

⇐= Suppose H is 4-colorable. Fix an arbitrary 4-coloring; call the apex’s color
“plaid” and the other three colors “red”, “green”, and “blue”. Each edge uv
in G is also an edge of H and therefore has endpoints of two different colors.
Each vertex v in G is adjacent to the apex and therefore cannot be plaid.
We conclude that by deleting the apex, we obtain a valid 3-coloring of G, so
G is 3-colorable.

We can easily transform G into H in polynomial time by brute force. ■

5

ECE 374 B Lab 20 - NP-hardness I - Solutions Fall 2024

(b) Prove that kColor problem is NP-hard for any k ≥ 3.

Solution (direct): The lecture notes include a proof that 3Color is NP-hard.
For any integer k > 3, I’ll describe a direct polynomial-time reduction from
3Color to kColor.

Let G be an arbitrary graph. Let H be the graph obtain from G by adding
k − 3 new vertices a1, a2, . . . , ak−3, each with edges to every other vertex in
H (including the other ai ’s). I claim that G is 3-colorable if and only if H is
k-colorable.

=⇒ Suppose G is 3-colorable. Fix an arbitrary 3-coloring of G. Color the new
vertices a1, a2, . . . , ak−3 with k − 3 new distinct colors. Every edge in H
is either an edge in G or uses at least one new vertex ai; in either case,
the endpoints of the edge have different colors. We conclude that H is
k-colorable.

⇐= Suppose H is k-colorable. Each vertex ai is adjacent to every other vertex
in H, and therefore is the only vertex of its color. Thus, the vertices of G
use only three distinct colors. Every edge of G is also an edge of H, so its
endpoints have different colors. We conclude that the induced coloring of G
is a proper 3-coloring, so G is 3-colorable.

Given G, we can construct H in polynomial time by brute force. ■

Solution (induction): Let k be an arbitrary integer with k ≥ 3. Assume that
jColor is NP-hard for any integer 3≤ j < k. There are two cases to consider.

• If k = 3, then kColor is NP-hard by the reduction from 3Sat in the lecture
notes.

• Suppose k = 3. The reduction in part (a) directly generalizes to a polynomial-
time reduction from (k−1)Color to kColor: To decide whether an arbitrary
graph G is (k − 1)-colorable, add an apex and ask whether the resulting
graph is k-colorable. The induction hypothesis implies that (k− 1)Color is
NP-hard, so the reduction implies that kColor is NP-hard.

In both cases, we conclude that kColor is NP-hard. ■

6

ECE 374 B Lab 20 - NP-hardness I - Solutions Fall 2024

To think about later:

6. Let G be an undirected graph with weighted edges. A Hamiltonian cycle in G is heavy if
the total weight of edges in the cycle is at least half of the total weight of all edges in G.
Prove that deciding whether a graph contains a heavy Hamiltonian cycle is NP-hard.

Solution (two new vertices): I’ll describe a polynomial-time a reduction from the
Hamiltonian path problem. Let G be an arbitrary undirected graph (without edge
weights). Let H be the edge-weighted graph obtained from G as follows:

• Add two new vertices s and t.

• Add edges from s and t to all the other vertices (including each other).

• Assign weight 1 to the edge st and weight 0 to every other edge.

The total weight of all edges in H is 1. Thus, a Hamiltonian cycle in H is heavy if and
only if it contains the edge st. I claim that H contains a heavy Hamiltonian cycle if
and only if G contains a Hamiltonian path.

=⇒ First, suppose G has a Hamiltonian path from vertex u to vertex v. By adding the
edges vs, st, and tu to this path, we obtain a Hamiltonian cycle in H. Moreover,
this Hamiltonian cycle is heavy, because it contains the edge st.

⇐= On the other hand, suppose H has a heavy Hamiltonian cycle. This cycle
must contain the edge st, and therefore must visit all the other vertices in H
contiguously. Thus, deleting vertices s and t and their incident edges from the
cycle leaves a Hamiltonian path in G.

Given G, we can easily construct H in polynomial time by brute force. ■

Solution (smartass): I’ll describe a polynomial-time a reduction from the standard
Hamiltonian cycle problem. Let G be an arbitrary graph (without edge weights).
Let H be the edge-weighted graph obtained from G by assigning each edge weight
0. I claim that H contains a heavy Hamiltonian cycle if and only if G contains a
Hamiltonian path.

=⇒ Suppose G has a Hamiltonian cycle C . The total weight of C is at least half the
total weight of all edges in H, because 0 ≥ 0/2. So C is a heavy Hamiltonian
cycle in H.

⇐= Suppose H has a heavy Hamiltonian cycle C . By definition, C is also a Hamilton-
ian cycle in G.

Given G, we can easily construct H in polynomial time by brute force. ■

7

