
ECE 374 B Lab 22 - Undecidability - Solutions Fall 2024

Prove that the following languages are undecidable.

1. AcceptIllini :=
�

〈M〉
�

� M accepts the string ILLINI
	

Solution: For the sake of argument, suppose there is an algorithmDecideAcceptIllini
that correctly decides the language AcceptIllini. Then we can solve the halting
problem as follows:

DecideHalt(〈M , w〉):
Encode the following Turing machine M ′:

M ′(x):
run M on input w
return True

if DecideAcceptIllini(〈M ′〉)
return True

else
return False

We prove this reduction correct as follows:

=⇒ Suppose M halts on input w.
Then M ′ accepts every input string x .
In particular, M ′ accepts the string ILLINI.
So DecideAcceptIllini accepts the encoding 〈M ′〉.
So DecideHalt correctly accepts the encoding 〈M , w〉.

⇐= Suppose M does not halt on input w.
Then M ′ diverges on every input string x .
In particular, M ′ does not accept the string ILLINI.
So DecideAcceptIllini rejects the encoding 〈M ′〉.
So DecideHalt correctly rejects the encoding 〈M , w〉.

In both cases, DecideHalt is correct. But that’s impossible, because Halt is undecid-
able. We conclude that the algorithm DecideAcceptIllini does not exist. ■

As usual for undecidablility proofs, this proof invokes four distinct Turing machines:

• The hypothetical algorithm DecideAcceptIllini.
• The new algorithm DecideHalt that we construct in the solution.
• The arbitrary machine M whose encoding is part of the input to DecideHalt.
• The special machine M ′ whose encoding DecideHalt constructs (from the

encoding of M and w) and then passes to DecideAcceptIllini.

1



ECE 374 B Lab 22 - Undecidability - Solutions Fall 2024

2. AcceptThree :=
�

〈M〉
�

� M accepts exactly three strings
	

Solution: For the sake of argument, suppose there is an algorithmDecideAcceptThree
that correctly decides the language AcceptThree. Then we can solve the halting
problem as follows:

DecideHalt(〈M , w〉):
Encode the following Turing machine M ′:

M ′(x):
run M on input w
if x = ϵ or x = 0 or x = 1

return True
else

return False
if DecideAcceptThree(〈M ′〉)

return True
else

return False

We prove this reduction correct as follows:

=⇒ Suppose M halts on input w.
Then M ′ accepts exactly three strings: ϵ, 0, and 1.
So DecideAcceptThree accepts the encoding 〈M ′〉.
So DecideHalt correctly accepts the encoding 〈M , w〉.

⇐= Suppose M does not halt on input w.
Then M ′ diverges on every input string x .
In particular, M ′ does not accept exactly three strings (because 0 ̸= 3).
So DecideAcceptThree rejects the encoding 〈M ′〉.
So DecideHalt correctly rejects the encoding 〈M , w〉.

In both cases, DecideHalt is correct. But that’s impossible, because Halt is undecid-
able. We conclude that the algorithm DecideAcceptThree does not exist. ■

2



ECE 374 B Lab 22 - Undecidability - Solutions Fall 2024

3. AcceptPalindrome :=
�

〈M〉
�

� M accepts at least one palindrome
	

Solution: For the sake of argument, suppose there is an algorithmDecideAcceptPalindrome
that correctly decides the language AcceptPalindrome. Then we can solve the
halting problem as follows:

DecideHalt(〈M , w〉):
Encode the following Turing machine M ′:

M ′(x):
run M on input w
return True

if DecideAcceptPalindrome(〈M ′〉)
return True

else
return False

We prove this reduction correct as follows:

=⇒ Suppose M halts on input w.
Then M ′ accepts every input string x .
In particular, M ′ accepts the palindrome RACECAR.
So DecideAcceptPalindrome accepts the encoding 〈M ′〉.
So DecideHalt correctly accepts the encoding 〈M , w〉.

⇐= Suppose M does not halt on input w.
Then M ′ diverges on every input string x .
In particular, M ′ does not accept any palindromes.
So DecideAcceptPalindrome rejects the encoding 〈M ′〉.
So DecideHalt correctly rejects the encoding 〈M , w〉.

In both cases, DecideHalt is correct. But that’s impossible, because Halt is un-
decidable. We conclude that the algorithm DecideAcceptPalindrome does not
exist.

Yes, this is exactly the same proof as for problem 1. ■

3


