
1

Pre-lecture brain teaser

Consider the problem of a n-input AND function. The input (x) is a string n-digits
long with Σ = {0, 1} and has an output (y) which is the logical AND of all the
elements of x.

Formulate a language that describes the above problem.

1

ECE-374-B: Lecture 1 - Regular Languages

Lecturer: Nickvash Kani
August 29, 2024

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

Consider the problem of a n-input AND function. The input (x) is a string n-digits
long with Σ = {0, 1} and has an output (y) which is the logical AND of all the
elements of x.

Formulate a language that describes the above problem.

LANDN =

0|0, 1|1,
0 · 0|0, 0 · 1|0, 1 · 0|0, 1 · 1|1

...
...

...
...

(0·)n|0, (0·)n−11|0, . . . (1·)n|1 . . .

 (1)

This is an example of a regular language which we’ll be discussing today.

2

Pre-lecture brain teaser

Consider the problem of a n-input AND function. The input (x) is a string n-digits
long with Σ = {0, 1} and has an output (y) which is the logical AND of all the
elements of x.

Formulate a language that describes the above problem.

LANDN =

0|0, 1|1,
0 · 0|0, 0 · 1|0, 1 · 0|0, 1 · 1|1

...
...

...
...

(0·)n|0, (0·)n−11|0, . . . (1·)n|1 . . .

 (1)

This is an example of a regular language which we’ll be discussing today.

2

Pre-lecture brain teaser

Consider the problem of a n-input AND function. The input (x) is a string n-digits
long with Σ = {0, 1} and has an output (y) which is the logical AND of all the
elements of x.

Formulate a language that describes the above problem.

LANDN =

0|0, 1|1,
0 · 0|0, 0 · 1|0, 1 · 0|0, 1 · 1|1

...
...

...
...

(0·)n|0, (0·)n−11|0, . . . (1·)n|1 . . .

 (1)

This is an example of a regular language which we’ll be discussing today.

2

Terminology Review

• A character(a,b, c, x) is a unit of information represented by a symbol:
(letters, digits, whitespace)

• A alphabet(Σ) is a set of characters
• A string(w) is a sequence of characters
• A language(A,B, C, L) is a set of strings

3

Terminology Review

• A character(a,b, c, x) is a unit of information represented by a symbol:
(letters, digits, whitespace)

• A alphabet(Σ) is a set of characters
• A string(w) is a sequence of characters
• A language(A,B, C, L) is a set of strings

3

Defining a language

How do we define a language? Through grammars!

What is a grammar?

4

Grammar (CFG) Definition

Definition
A CFG is a quadruple G = (V, T,P, S)

• V is a finite set of non-terminal (variable) symbols

• T is a finite set of terminal symbols (alphabet)
• P is a finite set of productions, each of the form
A→ α

where A ∈ V and α is a string in (V ∪ T)∗.
Formally, P ⊂ V × (V ∪ T)∗.

• S ∈ V is a start symbol

G =
(

Variables, Terminals, Productions, Start var
)

5

Grammar (CFG) Definition

Definition
A CFG is a quadruple G = (V, T,P, S)

• V is a finite set of non-terminal (variable) symbols
• T is a finite set of terminal symbols (alphabet)

• P is a finite set of productions, each of the form
A→ α

where A ∈ V and α is a string in (V ∪ T)∗.
Formally, P ⊂ V × (V ∪ T)∗.

• S ∈ V is a start symbol

G =
(

Variables, Terminals, Productions, Start var
)

5

Grammar (CFG) Definition

Definition
A CFG is a quadruple G = (V, T,P, S)

• V is a finite set of non-terminal (variable) symbols
• T is a finite set of terminal symbols (alphabet)
• P is a finite set of productions, each of the form
A→ α

where A ∈ V and α is a string in (V ∪ T)∗.
Formally, P ⊂ V × (V ∪ T)∗.

• S ∈ V is a start symbol

G =
(

Variables, Terminals, Productions, Start var
)

5

Grammar (CFG) Definition

Definition
A CFG is a quadruple G = (V, T,P, S)

• V is a finite set of non-terminal (variable) symbols
• T is a finite set of terminal symbols (alphabet)
• P is a finite set of productions, each of the form
A→ α

where A ∈ V and α is a string in (V ∪ T)∗.
Formally, P ⊂ V × (V ∪ T)∗.

• S ∈ V is a start symbol

G =
(

Variables, Terminals, Productions, Start var
)

5

Example

L = all strings with 000 as a substring

• V = {S,A,B}
• T = {0, 1}

• P =

S→ 0S|1S|A
A→ 000B
B→ 0B|1B|ε

(A→ B|C is abbreviation for A→ B,A→ C)

What strings can S generate like this?

6

Example

L = all strings with 000 as a substring

• V = {S,A,B}
• T = {0, 1}

• P =

S→ 0S|1S|A
A→ 000B
B→ 0B|1B|ε

(A→ B|C is abbreviation for A→ B,A→ C)

What strings can S generate like this?

6

Example

• V = {S,A,B}
• T = {0, 1}

• P =

S→ 0S|1S|A
A→ 000B
B→ 0B|1B|ε

(A→ B|C is abbreviation for A→ B,A→ C)

S 1S 10S 10A 10000B 10000ε 10000

7

Chomsky Hierarchy

regular

context free

context sensitive

recursively enumerable

Grammar Languages Production Rules Automation Examples

Type-0 Recursively enumerable γ → α

(no constraints)
Turing machine L = {〈M,w〉|M is a TM which halts on w}

Type-1 Context-sensitive αAβ → αγβ

Linear bounded
Non-deterministic
Turing machine

L = {anbncn|n > 0}

Type-2 Context-free A→ α
Non-deterministic
Push-down automata

L = {anbn|n > 0}

Type-3 Regular A→ aB Finite State Machine L = {an|n > 0}

Meaning of symbols: • a = terminal • A,B = variables • α, β, γ = string of {a ∪ A}∗ • α, β = maybe empty —– γ = never empty

· Table borrowed from wikipedia: https://en.wikipedia.org/wiki/Chomsky_hierarchy
8

https://en.wikipedia.org/wiki/Chomsky_hierarchy

Regular Languages

Regular Languages

Theorem (Kleene’s Theorem)

A language is regular if and only if it can be obtained from finite languages by
applying the three operations:

• Union
• Concatenation
• Repetition

a finite number of times.

9

Regular Languages

A class of simple but useful languages.
The set of regular languages over some alphabet Σ is defined inductively.

Base Case

• ∅ is a regular language.
• {ε} is a regular language.
• {a} is a regular language for each a ∈ Σ. Interpreting a as string of length 1.

10

Regular Languages

Inductive step:

We can build up languages using a few basic operations:

• If L1, L2 are regular then L1 ∪ L2 is regular.
• If L1, L2 are regular then L1L2 is regular.
• If L is regular, then L∗ = ∪n≥0Ln is regular.
The ·∗ operator name is Kleene star.

• If L is regular, then so is L = Σ∗ \ L.

Regular languages are closed under operations of union, concatenation and
Kleene star.

11

Some simple regular languages

Lemma
If w is a string then L = {w} is regular.

Example: {aba} or {abbabbab}. Why?

Lemma
Every finite language L is regular.

Examples: L = {a,abaab,aba}. L = {w | |w| ≤ 100}. Why?

12

Some simple regular languages

Lemma
If w is a string then L = {w} is regular.

Example: {aba} or {abbabbab}. Why?

Lemma
Every finite language L is regular.

Examples: L = {a,abaab,aba}. L = {w | |w| ≤ 100}. Why?

12

Regular Languages

Have basic operations to build regular languages.

Important: Any language generated by a finite sequence of such operations is
regular.

Lemma
Let L1, L2, . . . , be regular languages over alphabet Σ. Then the language ∪∞

i=1Li is
not necessarily regular.

Note:Kleene star (repetition) is a single operation!

13

Regular Languages

Have basic operations to build regular languages.

Important: Any language generated by a finite sequence of such operations is
regular.

Lemma
Let L1, L2, . . . , be regular languages over alphabet Σ. Then the language ∪∞

i=1Li is
not necessarily regular.

Note:Kleene star (repetition) is a single operation!

13

Regular Languages - Example

Example: The language L01 = 0i1j| for all i, j ≥ 0 is regular:

14

Rapid-fire questions - regular languages

1. L1 =
{
0i

∣∣∣ i = 0, 1, . . . ,∞
}
. The language L1 is regular. T/F?

2. L2 =
{
017i

∣∣∣ i = 0, 1, . . . ,∞
}
. The language L2 is regular. T/F?

3. L3 =
{
0i

∣∣∣ i is divisible by 2, 3,or 5}. L3 is regular. T/F?
4. L4 = {w ∈ {0, 1}∗ | w has at most 2 1s}. L4 is regular. T/F?

15

Rapid-fire questions - regular languages

1. L1 =
{
0i

∣∣∣ i = 0, 1, . . . ,∞
}
. The language L1 is regular. T/F?

2. L2 =
{
017i

∣∣∣ i = 0, 1, . . . ,∞
}
. The language L2 is regular. T/F?

3. L3 =
{
0i

∣∣∣ i is divisible by 2, 3,or 5}. L3 is regular. T/F?
4. L4 = {w ∈ {0, 1}∗ | w has at most 2 1s}. L4 is regular. T/F?

15

Rapid-fire questions - regular languages

1. L1 =
{
0i

∣∣∣ i = 0, 1, . . . ,∞
}
. The language L1 is regular. T/F?

2. L2 =
{
017i

∣∣∣ i = 0, 1, . . . ,∞
}
. The language L2 is regular. T/F?

3. L3 =
{
0i

∣∣∣ i is divisible by 2, 3,or 5}. L3 is regular. T/F?

4. L4 = {w ∈ {0, 1}∗ | w has at most 2 1s}. L4 is regular. T/F?

15

Rapid-fire questions - regular languages

1. L1 =
{
0i

∣∣∣ i = 0, 1, . . . ,∞
}
. The language L1 is regular. T/F?

2. L2 =
{
017i

∣∣∣ i = 0, 1, . . . ,∞
}
. The language L2 is regular. T/F?

3. L3 =
{
0i

∣∣∣ i is divisible by 2, 3,or 5}. L3 is regular. T/F?
4. L4 = {w ∈ {0, 1}∗ | w has at most 2 1s}. L4 is regular. T/F?

15

Regular Expressions

Regular Expressions

A way to denote regular languages

• simple patterns to describe related strings
• useful in

• text search (editors, Unix/grep, emacs)
• compilers: lexical analysis
• compact way to represent interesting/useful languages
• dates back to 50’s: Stephen Kleene
who has a star names after him 1.

16

Inductive Definition

A regular expression r over an alphabet Σ is one of the following:
Base cases:

• ∅ denotes the language ∅
• ε denotes the language {ε}.
• a denote the language {a}.

Inductive cases: If r1 and r2 are regular expressions denoting languages R1 and R2
respectively then,

• (r1 + r2) denotes the language R1 ∪ R2
• (r1·r2) = r1·r2 = (r1r2) denotes the language R1R2
• (r1)∗ denotes the language R∗1

17

Regular Languages vs Regular Expressions

Regular Languages Regular Expressions

∅ regular ∅ denotes ∅
{ε} regular ε denotes {ε}
{a} regular for a ∈ Σ a denote {a}
R1 ∪ R2 regular if both are r1 + r2 denotes R1 ∪ R2
R1R2 regular if both are r1·r2 denotes R1R2
R∗ is regular if R is r∗ denote R∗

Regular expressions denote regular languages — they explicitly show the
operations that were used to form the language

18

Notation and Parenthesis

• For a regular expression r, L(r) is the language denoted by r. Multiple regular
expressions can denote the same language!
Example: (0+ 1) and (1+ 0) denotes same language {0, 1}

• Two regular expressions r1 and r2 are equivalent if L(r1) = L(r2).
• Omit parenthesis by adopting precedence order: ∗, ·, +.
Example: r∗s+ t = ((r∗)s) + t

• Omit parenthesis by associativity of each operation.
Example: rst = (rs)t = r(st), r + s+ t = r + (s+ t) = (r + s) + t.

• Superscript +. For convenience, define r+ = rr∗. Hence if L(r) = R then
L(r+) = R+.

• Other notation: r + s, r ∪ s, r|s all denote union. rs is sometimes written as
r·s.

19

Notation and Parenthesis

• For a regular expression r, L(r) is the language denoted by r. Multiple regular
expressions can denote the same language!
Example: (0+ 1) and (1+ 0) denotes same language {0, 1}

• Two regular expressions r1 and r2 are equivalent if L(r1) = L(r2).

• Omit parenthesis by adopting precedence order: ∗, ·, +.
Example: r∗s+ t = ((r∗)s) + t

• Omit parenthesis by associativity of each operation.
Example: rst = (rs)t = r(st), r + s+ t = r + (s+ t) = (r + s) + t.

• Superscript +. For convenience, define r+ = rr∗. Hence if L(r) = R then
L(r+) = R+.

• Other notation: r + s, r ∪ s, r|s all denote union. rs is sometimes written as
r·s.

19

Notation and Parenthesis

• For a regular expression r, L(r) is the language denoted by r. Multiple regular
expressions can denote the same language!
Example: (0+ 1) and (1+ 0) denotes same language {0, 1}

• Two regular expressions r1 and r2 are equivalent if L(r1) = L(r2).
• Omit parenthesis by adopting precedence order: ∗, ·, +.
Example: r∗s+ t = ((r∗)s) + t

• Omit parenthesis by associativity of each operation.
Example: rst = (rs)t = r(st), r + s+ t = r + (s+ t) = (r + s) + t.

• Superscript +. For convenience, define r+ = rr∗. Hence if L(r) = R then
L(r+) = R+.

• Other notation: r + s, r ∪ s, r|s all denote union. rs is sometimes written as
r·s.

19

Notation and Parenthesis

• For a regular expression r, L(r) is the language denoted by r. Multiple regular
expressions can denote the same language!
Example: (0+ 1) and (1+ 0) denotes same language {0, 1}

• Two regular expressions r1 and r2 are equivalent if L(r1) = L(r2).
• Omit parenthesis by adopting precedence order: ∗, ·, +.
Example: r∗s+ t = ((r∗)s) + t

• Omit parenthesis by associativity of each operation.
Example: rst = (rs)t = r(st), r + s+ t = r + (s+ t) = (r + s) + t.

• Superscript +. For convenience, define r+ = rr∗. Hence if L(r) = R then
L(r+) = R+.

• Other notation: r + s, r ∪ s, r|s all denote union. rs is sometimes written as
r·s.

19

Notation and Parenthesis

• For a regular expression r, L(r) is the language denoted by r. Multiple regular
expressions can denote the same language!
Example: (0+ 1) and (1+ 0) denotes same language {0, 1}

• Two regular expressions r1 and r2 are equivalent if L(r1) = L(r2).
• Omit parenthesis by adopting precedence order: ∗, ·, +.
Example: r∗s+ t = ((r∗)s) + t

• Omit parenthesis by associativity of each operation.
Example: rst = (rs)t = r(st), r + s+ t = r + (s+ t) = (r + s) + t.

• Superscript +. For convenience, define r+ = rr∗. Hence if L(r) = R then
L(r+) = R+.

• Other notation: r + s, r ∪ s, r|s all denote union. rs is sometimes written as
r·s.

19

Notation and Parenthesis

• For a regular expression r, L(r) is the language denoted by r. Multiple regular
expressions can denote the same language!
Example: (0+ 1) and (1+ 0) denotes same language {0, 1}

• Two regular expressions r1 and r2 are equivalent if L(r1) = L(r2).
• Omit parenthesis by adopting precedence order: ∗, ·, +.
Example: r∗s+ t = ((r∗)s) + t

• Omit parenthesis by associativity of each operation.
Example: rst = (rs)t = r(st), r + s+ t = r + (s+ t) = (r + s) + t.

• Superscript +. For convenience, define r+ = rr∗. Hence if L(r) = R then
L(r+) = R+.

• Other notation: r + s, r ∪ s, r|s all denote union. rs is sometimes written as
r·s.

19

Some examples of regular
expressions

Creating regular expressions

1. All strings that end in 1011?

2. All strings except 11?
3. All strings that do not contain 000 as a subsequence?
4. All strings that do not contain the substring 10?

20

Creating regular expressions

1. All strings that end in 1011?
2. All strings except 11?

3. All strings that do not contain 000 as a subsequence?
4. All strings that do not contain the substring 10?

20

Creating regular expressions

1. All strings that end in 1011?
2. All strings except 11?
3. All strings that do not contain 000 as a subsequence?

4. All strings that do not contain the substring 10?

20

Creating regular expressions

1. All strings that end in 1011?
2. All strings except 11?
3. All strings that do not contain 000 as a subsequence?
4. All strings that do not contain the substring 10?

20

Interpreting regular expressions

1. (0+ 1)∗:

2. (0+ 1)∗001(0+ 1)∗:
3. 0∗ + (0∗10∗10∗10∗)∗:
4. (ε+ 1)(01)∗(ε+ 0):

21

Interpreting regular expressions

1. (0+ 1)∗:
2. (0+ 1)∗001(0+ 1)∗:

3. 0∗ + (0∗10∗10∗10∗)∗:
4. (ε+ 1)(01)∗(ε+ 0):

21

Interpreting regular expressions

1. (0+ 1)∗:
2. (0+ 1)∗001(0+ 1)∗:
3. 0∗ + (0∗10∗10∗10∗)∗:

4. (ε+ 1)(01)∗(ε+ 0):

21

Interpreting regular expressions

1. (0+ 1)∗:
2. (0+ 1)∗001(0+ 1)∗:
3. 0∗ + (0∗10∗10∗10∗)∗:
4. (ε+ 1)(01)∗(ε+ 0):

21

Tying everything together

Consider the problem of a n-input AND function. The input (x) is a string n-digits
long with an input alphabet Σi = {0, 1} and has an output (y) which is the logical
AND of all the elements of x. We knwo the language used to describe it is:

LANDN =

0 · |0, 1 · |1,
0 · 0 · |0, 0 · 1 · |0, 1 · 0 · |0, 1 · 1 · |1

...
...

...
...

(0·)n|0, (0·)n−11|0, . . . (1·)n|1 . . .

Formulate the regular expression which describes the above language:

Σ = {0, 1, ‘·’, ‘|’} rANDN = (“0·” + “1·”)∗“0·”(“0·” + “1·”)∗“|0”︸ ︷︷ ︸
all output 0 instances

+

all output 1 instances︷ ︸︸ ︷
(“1·”)∗“|1”

22

Tying everything together

Consider the problem of a n-input AND function. The input (x) is a string n-digits
long with an input alphabet Σi = {0, 1} and has an output (y) which is the logical
AND of all the elements of x. We knwo the language used to describe it is:

LANDN =

0 · |0, 1 · |1,
0 · 0 · |0, 0 · 1 · |0, 1 · 0 · |0, 1 · 1 · |1

...
...

...
...

(0·)n|0, (0·)n−11|0, . . . (1·)n|1 . . .

Formulate the regular expression which describes the above language:

Σ = {0, 1, ‘·’, ‘|’} rANDN = (“0·” + “1·”)∗“0·”(“0·” + “1·”)∗“|0”︸ ︷︷ ︸
all output 0 instances

+

all output 1 instances︷ ︸︸ ︷
(“1·”)∗“|1”

22

Regular expressions in programming

One last expression....

Bit strings with odd number of 0s and 1s

The regular expression is(
00+ 11

)∗
(01+ 10)(

00+ 11+(01+ 10)(00+ 11)∗(01+ 10)
)∗

(Solved using techniques to be presented in the following lectures...)

23

Bit strings with odd number of 0s and 1s

The regular expression is(
00+ 11

)∗
(01+ 10)(

00+ 11+(01+ 10)(00+ 11)∗(01+ 10)
)∗

(Solved using techniques to be presented in the following lectures...)

23

Bit strings with odd number of 0s and 1s

The regular expression is(
00+ 11

)∗
(01+ 10)(

00+ 11+(01+ 10)(00+ 11)∗(01+ 10)
)∗

(Solved using techniques to be presented in the following lectures...)

23

	Regular Languages
	Regular Expressions
	Some examples of regular expressions
	Regular expressions in programming
	One last expression....

