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Pre-lecture brain teaser

Consider the problem of a n-input AND function. The input (x) is a string n-digits
long with Σ = {0, 1} and has an output (y) which is the logical AND of all the
elements of x.

Formulate a language that describes the above problem.
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Pre-lecture brain teaser

Consider the problem of a n-input AND function. The input (x) is a string n-digits
long with Σ = {0, 1} and has an output (y) which is the logical AND of all the
elements of x.

Formulate a language that describes the above problem.

LANDN =


0|0, 1|1,
0 · 0|0, 0 · 1|0, 1 · 0|0, 1 · 1|1

...
...

...
...

(0·)n|0, (0·)n−11|0, . . . (1·)n|1 . . .

 (1)

This is an example of a regular language which we’ll be discussing today.
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Terminology Review

• A character(a,b, c, x) is a unit of information represented by a symbol:
(letters, digits, whitespace)

• A alphabet(Σ) is a set of characters
• A string(w) is a sequence of characters
• A language(A,B, C, L) is a set of strings
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Defining a language

How do we define a language? Through grammars!

What is a grammar?
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Grammar (CFG) Definition

Definition
A CFG is a quadruple G = (V, T,P, S)

• V is a finite set of non-terminal (variable) symbols

• T is a finite set of terminal symbols (alphabet)
• P is a finite set of productions, each of the form
A→ α

where A ∈ V and α is a string in (V ∪ T)∗.
Formally, P ⊂ V × (V ∪ T)∗.

• S ∈ V is a start symbol

G =
(

Variables, Terminals, Productions, Start var
)
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Example

L = all strings with 000 as a substring

• V = {S,A,B}
• T = {0, 1}

• P =


S→ 0S|1S|A
A→ 000B
B→ 0B|1B|ε


(A→ B|C is abbreviation for A→ B,A→ C)

What strings can S generate like this?
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Example

• V = {S,A,B}
• T = {0, 1}

• P =


S→ 0S|1S|A
A→ 000B
B→ 0B|1B|ε


(A→ B|C is abbreviation for A→ B,A→ C)

S 1S 10S 10A 10000B 10000ε 10000
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Chomsky Hierarchy

regular

context free

context sensitive

recursively enumerable

Grammar Languages Production Rules Automation Examples

Type-0 Recursively enumerable γ → α

(no constraints)
Turing machine L = {〈M,w〉|M is a TM which halts on w}

Type-1 Context-sensitive αAβ → αγβ

Linear bounded
Non-deterministic
Turing machine

L = {anbncn|n > 0}

Type-2 Context-free A→ α
Non-deterministic
Push-down automata

L = {anbn|n > 0}

Type-3 Regular A→ aB Finite State Machine L = {an|n > 0}

Meaning of symbols: • a = terminal • A,B = variables • α, β, γ = string of {a ∪ A}∗ • α, β = maybe empty —– γ = never empty

· Table borrowed from wikipedia: https://en.wikipedia.org/wiki/Chomsky_hierarchy
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Regular Languages

Theorem (Kleene’s Theorem )

A language is regular if and only if it can be obtained from finite languages by
applying the three operations:

• Union
• Concatenation
• Repetition

a finite number of times.

9



Regular Languages

A class of simple but useful languages.
The set of regular languages over some alphabet Σ is defined inductively.

Base Case

• ∅ is a regular language.
• {ε} is a regular language.
• {a} is a regular language for each a ∈ Σ. Interpreting a as string of length 1.

10



Regular Languages

Inductive step:

We can build up languages using a few basic operations:

• If L1, L2 are regular then L1 ∪ L2 is regular.
• If L1, L2 are regular then L1L2 is regular.
• If L is regular, then L∗ = ∪n≥0Ln is regular.
The ·∗ operator name is Kleene star.

• If L is regular, then so is L = Σ∗ \ L.

Regular languages are closed under operations of union, concatenation and
Kleene star.
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Some simple regular languages

Lemma
If w is a string then L = {w} is regular.

Example: {aba} or {abbabbab}. Why?

Lemma
Every finite language L is regular.

Examples: L = {a,abaab,aba}. L = {w | |w| ≤ 100}. Why?
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Regular Languages

Have basic operations to build regular languages.

Important: Any language generated by a finite sequence of such operations is
regular.

Lemma
Let L1, L2, . . . , be regular languages over alphabet Σ. Then the language ∪∞

i=1Li is
not necessarily regular.

Note:Kleene star (repetition) is a single operation!
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Regular Languages - Example

Example: The language L01 = 0i1j| for all i, j ≥ 0 is regular:
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Rapid-fire questions - regular languages

1. L1 =
{
0i

∣∣∣ i = 0, 1, . . . ,∞
}
. The language L1 is regular. T/F?

2. L2 =
{
017i

∣∣∣ i = 0, 1, . . . ,∞
}
. The language L2 is regular. T/F?

3. L3 =
{
0i

∣∣∣ i is divisible by 2, 3,or 5}. L3 is regular. T/F?
4. L4 = {w ∈ {0, 1}∗ | w has at most 2 1s}. L4 is regular. T/F?
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Regular Expressions

A way to denote regular languages

• simple patterns to describe related strings
• useful in

• text search (editors, Unix/grep, emacs)
• compilers: lexical analysis
• compact way to represent interesting/useful languages
• dates back to 50’s: Stephen Kleene
who has a star names after him 1.
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Inductive Definition

A regular expression r over an alphabet Σ is one of the following:
Base cases:

• ∅ denotes the language ∅
• ε denotes the language {ε}.
• a denote the language {a}.

Inductive cases: If r1 and r2 are regular expressions denoting languages R1 and R2
respectively then,

• (r1 + r2) denotes the language R1 ∪ R2
• (r1·r2) = r1·r2 = (r1r2) denotes the language R1R2
• (r1)∗ denotes the language R∗1
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Regular Languages vs Regular Expressions

Regular Languages Regular Expressions

∅ regular ∅ denotes ∅
{ε} regular ε denotes {ε}
{a} regular for a ∈ Σ a denote {a}
R1 ∪ R2 regular if both are r1 + r2 denotes R1 ∪ R2
R1R2 regular if both are r1·r2 denotes R1R2
R∗ is regular if R is r∗ denote R∗

Regular expressions denote regular languages — they explicitly show the
operations that were used to form the language
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Notation and Parenthesis

• For a regular expression r, L(r) is the language denoted by r. Multiple regular
expressions can denote the same language!
Example: (0+ 1) and (1+ 0) denotes same language {0, 1}

• Two regular expressions r1 and r2 are equivalent if L(r1) = L(r2).
• Omit parenthesis by adopting precedence order: ∗, ·, +.
Example: r∗s+ t = ((r∗)s) + t

• Omit parenthesis by associativity of each operation.
Example: rst = (rs)t = r(st), r + s+ t = r + (s+ t) = (r + s) + t.

• Superscript +. For convenience, define r+ = rr∗. Hence if L(r) = R then
L(r+) = R+.

• Other notation: r + s, r ∪ s, r|s all denote union. rs is sometimes written as
r·s.
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Some examples of regular
expressions



Creating regular expressions

1. All strings that end in 1011?

2. All strings except 11?
3. All strings that do not contain 000 as a subsequence?
4. All strings that do not contain the substring 10?
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Interpreting regular expressions

1. (0+ 1)∗:

2. (0+ 1)∗001(0+ 1)∗:
3. 0∗ + (0∗10∗10∗10∗)∗:
4. (ε+ 1)(01)∗(ε+ 0):
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Tying everything together

Consider the problem of a n-input AND function. The input (x) is a string n-digits
long with an input alphabet Σi = {0, 1} and has an output (y) which is the logical
AND of all the elements of x. We knwo the language used to describe it is:

LANDN =


0 · |0, 1 · |1,
0 · 0 · |0, 0 · 1 · |0, 1 · 0 · |0, 1 · 1 · |1

...
...

...
...

(0·)n|0, (0·)n−11|0, . . . (1·)n|1 . . .


Formulate the regular expression which describes the above language:

Σ = {0, 1, ‘·’, ‘|’} rANDN = (“0·” + “1·”)∗“0·”(“0·” + “1·”)∗“|0”︸ ︷︷ ︸
all output 0 instances

+

all output 1 instances︷ ︸︸ ︷
(“1·”)∗“|1”
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Regular expressions in programming



One last expression....



Bit strings with odd number of 0s and 1s

The regular expression is(
00+ 11

)∗
(01+ 10)(

00+ 11+(01+ 10)(00+ 11)∗(01+ 10)
)∗

(Solved using techniques to be presented in the following lectures...)

23



Bit strings with odd number of 0s and 1s

The regular expression is(
00+ 11

)∗
(01+ 10)(

00+ 11+(01+ 10)(00+ 11)∗(01+ 10)
)∗

(Solved using techniques to be presented in the following lectures...)

23



Bit strings with odd number of 0s and 1s

The regular expression is(
00+ 11

)∗
(01+ 10)(

00+ 11+(01+ 10)(00+ 11)∗(01+ 10)
)∗

(Solved using techniques to be presented in the following lectures...)

23


	Regular Languages
	Regular Expressions
	Some examples of regular expressions
	Regular expressions in programming
	One last expression....

