Formulate a **language** that describes the above problem.

ECE-374-B: Lecture 1 - Regular Languages

Lecturer: Nickvash Kani August 29, 2024

University of Illinois at Urbana-Champaign

Formulate a **language** that describes the above problem.

Formulate a **language** that describes the above problem.

$$L_{AND_N} = \begin{cases} 0|0, & 1|1, \\ 0 \cdot 0|0, & 0 \cdot 1|0, & 1 \cdot 0|0, & 1 \cdot 1|1 \\ \vdots & \vdots & \vdots & \vdots \\ (0 \cdot)^n |0, & (0 \cdot)^{n-1} 1|0, & \dots & (1 \cdot)^n |1 \dots \end{cases}$$

(1)

Formulate a **language** that describes the above problem.

$$L_{AND_N} = \begin{cases} 0|0, & 1|1, \\ 0 \cdot 0|0, & 0 \cdot 1|0, & 1 \cdot 0|0, & 1 \cdot 1|1 \\ \vdots & \vdots & \vdots & \vdots \\ (0 \cdot)^n |0, & (0 \cdot)^{n-1} 1|0, & \dots & (1 \cdot)^n |1 \dots \end{cases}$$
(1)

This is an example of a regular language which we'll be discussing today.

Terminology Review

- A character(*a*, *b*, *c*, *x*) is a unit of information represented by a symbol: (letters, digits, whitespace)
- A $alphabet(\Sigma)$ is a set of characters
- A string(w) is a sequence of characters
- A language(A, B, C, L) is a set of strings

Terminology Review

- A character(*a*, *b*, *c*, *x*) is a unit of information represented by a symbol: (letters, digits, whitespace)
- A $alphabet(\Sigma)$ is a set of characters
- A string(w) is a sequence of characters
- A language(A, B, C, L) is a set of strings

How do we define a language? Through grammars!

What is a grammar?

Definition A CFG is a quadruple G = (V, T, P, S)

• V is a finite set of non-terminal (variable) symbols

$$G = \left(Variables, Terminals, Productions, Start var \right)$$

Definition A CFG is a quadruple G = (V, T, P, S)

- V is a finite set of non-terminal (variable) symbols
- *T* is a finite set of terminal symbols (alphabet)

$$G = \left(Variables, Terminals, Productions, Start var \right)$$

Definition A CFG is a quadruple G = (V, T, P, S)

- V is a finite set of non-terminal (variable) symbols
- *T* is a finite set of terminal symbols (alphabet)
- *P* is a finite set of productions, each of the form

```
A \rightarrow \alpha
where A \in V and \alpha is a string in (V \cup T)^*.
Formally, P \subset V \times (V \cup T)^*.
```

$$G = \left(Variables, Terminals, Productions, Start var \right)$$

Definition A CFG is a quadruple G = (V, T, P, S)

- V is a finite set of non-terminal (variable) symbols
- *T* is a finite set of terminal symbols (alphabet)
- *P* is a finite set of productions, each of the form

```
\mathsf{A} \to \alpha
```

where $A \in V$ and α is a string in $(V \cup T)^*$. Formally, $P \subset V \times (V \cup T)^*$.

• $S \in V$ is a start symbol

$$G = \left(Variables, Terminals, Productions, Start var \right)$$

L = all strings with 000 as a substring

 $V = \{S, A, B\}$ $T = \{0, 1\}$ $P = \begin{cases} S \to 0S|1S|A \\ A \to 000B \\ B \to 0B|1B|\epsilon \end{cases}$ $(A \to B|C \text{ is abbreviation for } A \to B, A \to C)$

L = all strings with 000 as a substring

 $V = \{S, A, B\}$ $T = \{0, 1\}$ $P = \begin{cases} S \to 0S|1S|A \\ A \to 000B \\ B \to 0B|1B|\epsilon \end{cases}$ $(A \to B|C \text{ is abbreviation for } A \to B, A \to C)$

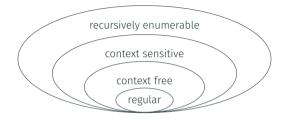
What strings can S generate like this?

Example

 $V = \{S, A, B\}$ $T = \{0, 1\}$ $P = \begin{cases} S \to 0S|1S|A \\ A \to 000B \\ B \to 0B|1B|\epsilon \end{cases}$ $(A \to B|C \text{ is abbreviation for } A \to B, A \to C)$

 $S \rightsquigarrow 1S \rightsquigarrow 10S \rightsquigarrow 10A \rightsquigarrow 10000B \rightsquigarrow 10000\varepsilon \rightsquigarrow 10000$

Chomsky Hierarchy



Grammar	Languages	Production Rules	Automation	Examples
Type-0	Recursively enumerable	$\gamma ightarrow \alpha$ (no constraints)	Turing machine	$L = \{ \langle M, w \rangle M \text{ is a TM which halts on } w \}$
Type-1	Context-sensitive	$\alpha A\beta \to \alpha \gamma \beta$	Linear bounded Non-deterministic Turing machine	$L = \{a^n b^n c^n n > 0\}$
Type-2	Context-free	$A \to \alpha$	Non-deterministic Push-down automata	$L = \{a^n b^n n > 0\}$
Type-3	Regular	$A \rightarrow aB$	Finite State Machine	$L = \{a^n n > 0\}$

 $\text{Meaning of symbols:} \quad \cdot \ a = \text{terminal} \quad \cdot \ A, B = \text{variables} \quad \cdot \ \alpha, \beta, \gamma = \text{string of } \{a \cup A\}^* \quad \cdot \ \alpha, \beta = \text{maybe empty} - \gamma = \text{never empty}$

 $\cdot \texttt{Table borrowed from wikipedia: https://en.wikipedia.org/wiki/Chomsky_hierarchy}$

Regular Languages

Theorem (Kleene's Theorem)

A language is regular if and only if it can be obtained from finite languages by applying the three operations:

- Union
- Concatenation
- Repetition

a finite number of times.

A class of simple but useful languages. The set of regular languages over some alphabet Σ is defined inductively.

Base Case

- $\cdot \ \emptyset$ is a regular language.
- $\{\epsilon\}$ is a regular language.
- $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.

Inductive step:

We can build up languages using a few basic operations:

- If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
- If L_1, L_2 are regular then L_1L_2 is regular.
- If *L* is regular, then $L^* = \bigcup_{n \ge 0} L^n$ is regular. The \cdot^* operator name is <u>Kleene star</u>.
- If *L* is regular, then so is $\overline{L} = \Sigma^* \setminus L$.

Regular languages are closed under operations of union, concatenation and Kleene star.

Some simple regular languages

Lemma If w is a string then $L = \{w\}$ is regular.

```
Example: {aba} or {abbabbab}. Why?
```

Some simple regular languages

Lemma If w is a string then $L = \{w\}$ is regular.

```
Example: {aba} or {abbabbab}. Why?
```

Lemma Every finite language L is regular.

Examples: $L = \{a, abaab, aba\}$. $L = \{w \mid |w| \le 100\}$. Why?

Have basic operations to build regular languages.

Important: Any language generated by a finite sequence of such operations is regular.

Lemma

Let L_1, L_2, \ldots , be regular languages over alphabet Σ . Then the language $\bigcup_{i=1}^{\infty} L_i$ is not necessarily regular.

Have basic operations to build regular languages.

Important: Any language generated by a finite sequence of such operations is regular.

Lemma

Let L_1, L_2, \ldots , be regular languages over alphabet Σ . Then the language $\cup_{i=1}^{\infty} L_i$ is not necessarily regular.

Note:Kleene star (repetition) is a single operation!

Regular Languages - Example

Example: The language $L_{01} = 0^i 1^j$ for all $i, j \ge 0$ is regular:

1.
$$L_1 = \left\{ 0^i \mid i = 0, 1, \dots, \infty \right\}$$
. The language L_1 is regular. T/F?

Rapid-fire questions - regular languages

1.
$$L_1 = \left\{ 0^i \mid i = 0, 1, \dots, \infty \right\}$$
. The language L_1 is regular. T/F?
2. $L_2 = \left\{ 0^{17i} \mid i = 0, 1, \dots, \infty \right\}$. The language L_2 is regular. T/F?

Rapid-fire questions - regular languages

1.
$$L_1 = \left\{ 0^i \mid i = 0, 1, \dots, \infty \right\}$$
. The language L_1 is regular. T/F?
2. $L_2 = \left\{ 0^{17i} \mid i = 0, 1, \dots, \infty \right\}$. The language L_2 is regular. T/F?
3. $L_3 = \left\{ 0^i \mid i \text{ is divisible by } 2, 3, \text{ or } 5 \right\}$. L_3 is regular. T/F?

Rapid-fire questions - regular languages

1.
$$L_1 = \left\{ 0^i \mid i = 0, 1, ..., \infty \right\}$$
. The language L_1 is regular. T/F?
2. $L_2 = \left\{ 0^{17i} \mid i = 0, 1, ..., \infty \right\}$. The language L_2 is regular. T/F?
3. $L_3 = \left\{ 0^i \mid i \text{ is divisible by } 2, 3, \text{ or } 5 \right\}$. L_3 is regular. T/F?
4. $L_4 = \{ w \in \{0, 1\}^* \mid w \text{ has at most } 2 \text{ 1s} \}$. L_4 is regular. T/F?

Regular Expressions

A way to denote regular languages

- simple patterns to describe related strings
- \cdot useful in
 - text search (editors, Unix/grep, emacs)
 - compilers: lexical analysis
 - compact way to represent interesting/useful languages
 - dates back to 50's: Stephen Kleene who has a star names after him¹.

A regular expression r over an alphabet $\boldsymbol{\Sigma}$ is one of the following: Base cases:

- $\cdot \ \emptyset$ denotes the language \emptyset
- ϵ denotes the language $\{\epsilon\}$.
- a denote the language $\{a\}$.

Inductive cases: If r_1 and r_2 are regular expressions denoting languages R_1 and R_2 respectively then,

- $(\mathbf{r_1} + \mathbf{r_2})$ denotes the language $R_1 \cup R_2$
- $(\mathbf{r_1} \cdot \mathbf{r_2}) = r_1 \cdot r_2 = (\mathbf{r_1} \mathbf{r_2})$ denotes the language $R_1 R_2$
- \cdot (**r**₁)^{*} denotes the language R_1^*

Regular Languages vs Regular Expressions

Regular Languages

 \emptyset regular $\{\epsilon\}$ regular $\{a\}$ regular for $a \in \Sigma$ $R_1 \cup R_2$ regular if both are R_1R_2 regular if both are R^* is regular if R is

Regular Expressions

 \emptyset denotes \emptyset ϵ denotes $\{\epsilon\}$ **a** denote $\{a\}$ $\mathbf{r_1} + \mathbf{r_2}$ denotes $R_1 \cup R_2$ $\mathbf{r_1} \cdot \mathbf{r_2}$ denotes R_1R_2 \mathbf{r}^* denote R^*

Regular expressions denote regular languages — they explicitly show the operations that were used to form the language

Notation and Parenthesis

For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language!
 Example: (0 + 1) and (1 + 0) denotes same language {0,1}

Notation and Parenthesis

- For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language!
 Example: (0 + 1) and (1 + 0) denotes same language {0,1}
- Two regular expressions \mathbf{r}_1 and \mathbf{r}_2 are equivalent if $L(\mathbf{r}_1) = L(\mathbf{r}_2)$.

- For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language!
 Example: (0 + 1) and (1 + 0) denotes same language {0,1}
- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.
- Omit parenthesis by adopting precedence order: *, •, +. **Example:** $r^*s + t = ((r^*)s) + t$

- For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language!
 Example: (0 + 1) and (1 + 0) denotes same language {0,1}
- Two regular expressions \mathbf{r}_1 and \mathbf{r}_2 are equivalent if $L(\mathbf{r}_1) = L(\mathbf{r}_2)$.
- Omit parenthesis by adopting precedence order: *, •, +. **Example:** $r^*s + t = ((r^*)s) + t$
- Omit parenthesis by associativity of each operation. **Example:** rst = (rs)t = r(st), r + s + t = r + (s + t) = (r + s) + t.

- For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language!
 Example: (0 + 1) and (1 + 0) denotes same language {0,1}
- Two regular expressions \mathbf{r}_1 and \mathbf{r}_2 are equivalent if $L(\mathbf{r}_1) = L(\mathbf{r}_2)$.
- Omit parenthesis by adopting precedence order: *, •, +. **Example:** $r^*s + t = ((r^*)s) + t$
- Omit parenthesis by associativity of each operation. **Example:** rst = (rs)t = r(st), r + s + t = r + (s + t) = (r + s) + t.
- Superscript +. For convenience, define $\mathbf{r}^+ = \mathbf{r}\mathbf{r}^*$. Hence if $L(\mathbf{r}) = R$ then $L(\mathbf{r}^+) = R^+$.

- For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language!
 Example: (0 + 1) and (1 + 0) denotes same language {0,1}
- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.
- Omit parenthesis by adopting precedence order: *, •, +. **Example:** $r^*s + t = ((r^*)s) + t$
- Omit parenthesis by associativity of each operation. **Example:** rst = (rs)t = r(st), r + s + t = r + (s + t) = (r + s) + t.
- Superscript +. For convenience, define $\mathbf{r}^+ = \mathbf{r}\mathbf{r}^*$. Hence if $L(\mathbf{r}) = R$ then $L(\mathbf{r}^+) = R^+$.
- Other notation: r + s, $r \cup s$, r|s all denote union. rs is sometimes written as $r \cdot s$.

Some examples of regular expressions

1. All strings that end in 1011?

- 1. All strings that end in 1011?
- 2. All strings except 11?

- 1. All strings that end in 1011?
- 2. All strings except 11?
- 3. All strings that do not contain 000 as a subsequence?

- 1. All strings that end in 1011?
- 2. All strings except 11?
- 3. All strings that do not contain 000 as a subsequence?
- 4. All strings that do not contain the substring 10?

Interpreting regular expressions

1. (**0** + **1**)*:

Interpreting regular expressions

- 1. (**0** + **1**)*:
- 2. $(0 + 1)^* 001(0 + 1)^*$:

Interpreting regular expressions

- 1. (**0** + **1**)*:
- 2. (0 + 1)*001(0 + 1)*:
- 3. **0*** + (**0***1**0***1**0***1**0***)*:

- 4. $(\epsilon + 1)(01)^*(\epsilon + 0)$:
- (0+1)*001(0+1)*:
 0* + (0*10*10*10*)*:
- 1. (**0** + **1**)*:

Tying everything together

Consider the problem of a n-input <u>AND</u> function. The input (x) is a string n-digits long with an input alphabet $\Sigma_i = \{0, 1\}$ and has an output (y) which is the logical <u>AND</u> of all the elements of x. We know the language used to describe it is:

$$L_{AND_N} = \begin{cases} 0 \cdot |0, & 1 \cdot |1, \\ 0 \cdot 0 \cdot |0, & 0 \cdot 1 \cdot |0, & 1 \cdot 0 \cdot |0, & 1 \cdot 1 \cdot |1 \\ \vdots & \vdots & \vdots & \vdots \\ (0 \cdot)^n |0, & (0 \cdot)^{n-1} 1 |0, & \dots & (1 \cdot)^n |1 \dots \end{cases}$$

Formulate the regular expression which describes the above language:

Consider the problem of a n-input <u>AND</u> function. The input (x) is a string n-digits long with an input alphabet $\Sigma_i = \{0, 1\}$ and has an output (y) which is the logical <u>AND</u> of all the elements of x. We know the language used to describe it is:

$$L_{AND_N} = \begin{cases} 0 \cdot |0, & 1 \cdot |1, \\ 0 \cdot 0 \cdot |0, & 0 \cdot 1 \cdot |0, & 1 \cdot 0 \cdot |0, & 1 \cdot 1 \cdot |1 \\ \vdots & \vdots & \vdots & \vdots \\ (0 \cdot)^n |0, & (0 \cdot)^{n-1} 1 |0, & \dots & (1 \cdot)^n |1 \dots \end{cases}$$

Formulate the regular expression which describes the above language: all output 1 instances

$$\Sigma = \{0, 1, `\cdot`, `|`\} r_{AND_N} = \underbrace{("0." + "1.")^* "0." ("0." + "1.")^* "|0"}_{\text{all output 0 instances}} + \underbrace{("1.")^* "|1"}_{\text{("1.")}^* "|1"}$$

Regular expressions in programming

One last expression....

Bit strings with odd number of 0s and 1s

Bit strings with odd number of 0s and 1s

The regular expression is

$$(00 + 11)^*(01 + 10)$$

 $(00 + 11 + (01 + 10)(00 + 11)^*(01 + 10))^*$

The regular expression is

$$ig(00+11ig)^*(01+10)\ ig(00+11+(01+10)(00+11)^*(01+10)ig)^*$$

(Solved using techniques to be presented in the following lectures...)