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Pre-lecture brain teaser

Merge Sort splits into 2 (roughly) equal sized arrays. Can we do better by splitting into
more than 2 arrays? Say k arrays of size n/k each?
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Quick Sort



Quick Sort

Quick Sort [Hoare]
1. Pick a pivot element from array
2. Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and

the pivot itself.

Linear scan of array does it. Time is O(n)

3. Recursively sort the subarrays, and concatenate them.
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Quick Sort: Example

• example array: 16, 12, 14, 20, 5, 3, 18, 19, 1
• worst case array: 3, 7, 5, 1, 2, 4, 6, 8

See visualizer:
https://www.hackerearth.com/practice/algorithms/sorting/quick-sort/visualize/
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Time Analysis

• Let k be the rank of the chosen pivot. Then, T (n) = T (k − 1)+T (n− k)+O(n)
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Time Analysis

• Let k be the rank of the chosen pivot. Then, T (n) = T (k − 1)+T (n− k)+O(n)
• If k = dn/2e then T (n) = T (dn/2e − 1) + T (bn/2c) + O(n) ≤ 2T (n/2) + O(n).

Then, T (n) = O(n log n).
• Typically, pivot is the first or last element of array. Then,

T (n) = max
1≤k≤n

(T (k − 1) + T (n − k) + O(n))

In the worst case T (n) = T (n − 1) + O(n), which means T (n) = O(n2).
Happens if array is already sorted and pivot is always first element.
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Selecting in Unsorted Lists



The Selection Problem

Big problem with QuickSort is that the pivot might not be the median.

How long would it take us to find the median of an unsorted list?

Sort, then A[n/2]. Is this the optimal way?
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Rank of element in an array

A: an unsorted array of n integers

For 0 ≤ j ≤ n − 1, element of rank j is the j + 1-th smallest element in A.
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Problem - Selection

Input Unsorted array A of n integers and integer j
Goal Find the j-th smallest number in A (rank j number)

Median: j = bn/2c

Simplifying assumption for sake of notation: elements of A are distinct
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Algorithm I

• Sort the elements in A
• Pick jth element in sorted order

Time taken = O(n log n)

Do we need to sort? Is there an O(n) time algorithm?
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Algorithm II

If j is small or n − j is small then

• Find j smallest/largest elements in A in O(jn) time. (How?)
• Time to find median is O(n2).
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QuickSelect

• Pick a pivot element a from A
• Partition A based on a.

Aless = {x ∈ A | x ≤ a} and Agreater = {x ∈ A | x > a}
• |Aless| = j: return a
• |Aless| > j: recursively find jth smallest element in Aless

• |Aless| < j: recursively find kth smallest element in Agreater where k = j − |Aless|.
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Example

16 1214 20 534 3 19 11
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Time Analysis

• Partitioning step: O(n) time to scan A
• How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be A[1].

Say A is sorted in increasing order and j = n.
How long does this new algorithm take?
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Does this help with QuickSort?

Should we combine this with QuickSort

Of course not! It takes O(n2) which is already the worse case of QuickSort. Need
another method....
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Does this help with QuickSort?

Looking at the quicksort recurrence again:

T (n) = T (k − 1) + T (n − k) + O(n)

Does k need to be n/2?

What if k = 3
5n?

What if k = 7
10n?

we only need to be able to find a rough median! .... How do we do that?
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Median of Medians



Divide and Conquer Approach

Idea
• Break input A into many subarrays: L1, . . . Lk .
• Find median mi in each subarray Li .
• Find the median x of the medians m1, . . . ,mk .
• Intuition: The median x should be close to being a good median of all the

numbers in A.
• Use x as pivot in previous algorithm.

16



Deterministic selection - example

Given an array A = [0, ..., n − 1] of n numbers and an index i , where 0 ≤ i ≤ n − 1,
find the ith smallest element of A.

For instance, assume n = 20 and i = 10.

3 2 14 6 0 16 8 9 13 12 7 17 10 1 11 15 5 18 4 19

The smallest element of rank 10 would be 10. But how do we figure that out?

Do median of medians.....

Call Median-of-Medians(A, 10)

First thing we need to do is find the pivot!
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Deterministic selection - example

First we reorganize:

3 16 7 15

2 8 17 5

14 0 10 18

6 13 1 4

0 12 11 19

Then we sort each column:

0 8 1 4

2 9 7 5

3 12 10 15

6 13 11 18

14 16 17 19

Still need the pivot. Find median of medians
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Deterministic selection - example

0 8 1 4

2 9 7 5

3 12 10 15

6 13 11 18

14 16 17 19

• Call Median-of-Medians([3,12,10,15],
floor(len/2) = 2)

• Can sort this in linear time.
• Get back 12.
• 12 is our new pivot!
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Deterministic selection - example

Back to our original array! Use the pivot (=12) to break it up into two.

3 2 14 6 0 16 8 9 13 12 7 17 10 1 11 15 5 18 4 19

3 2 6 0 8 9 7 10 1 11 5 4 12 14 16 13 17 15 18 19

We know the following:

• len(ALower ) = 12
• len(AUpper ) = 7
• Want k = 10

Call Median-of-Medians(ALower , 10)
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Deterministic selection - example

Then we do this again:

3 2 6 0 8 9 7 10 1 11 5 4

First we reorganize:

3 9

2 7 5

6 10 4

0 1

8 11

Then we sort each column:

0 1

2 7 4

3 9 5

6 10

8 11
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Deterministic selection - example

0 1

2 7 4

3 9 5

6 10

8 11

• Call Median-of-Medians([3,9,5], floor(n/2) = 1)
• Can sort this in linear time.
• Get back 5.
• 5 is our new pivot!
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Deterministic selection - example

0 1

2 7 4

3 9 5

6 10

8 11

• Call Median-of-Medians([3,9,5], floor(n/2) = 1)
• Can sort this in linear time.
• Get back 5.
• 5 is our new pivot!
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Deterministic selection - example

Back to our original array! Use the pivot (=5) to break it up into two (well three).

3 2 6 0 8 9 7 10 1 11 5 4

3 2 0 1 4 5 6 8 9 7 10 11

We know the following:

• len(ALower ) = 5
• len(AUpper ) = 6
• Want k = 10 (pivot is of rank 5)

Call Median-of-Medians(AUpper , 10 − (5 + 1) = 4)
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Deterministic selection - example

Then we do this again:

6 8 9 7 10 11

First we reorganize:

6

8

9 11

7

10

Then we sort each column:

6

7

8 11

9

10
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Deterministic selection - example

6

7

8 11

9

10

• Call Median-of-Medians([8,11], floor(len/2) = 1)
• Can sort this in linear time.
• Get back 11.
• 11 is our new pivot!
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Deterministic selection - example

6

7

8 11

9

10

• Call Median-of-Medians([8,11], floor(len/2) = 1)
• Can sort this in linear time.
• Get back 11.
• 11 is our new pivot!
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Deterministic selection - example

Back to our original array! Use the pivot (=11) to break it up into partitions.

6 8 9 7 10 11

6 8 9 7 10 11

We know the following:

• len(ALower ) = 5
• len(AUpper ) = 0
• Want k = 4 (pivot is of rank 5)

Call Median-of-Medians(ALower , 4)
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Deterministic selection - example

Final Step!

6 8 9 7 10

Can sort in linear time!

6 7 8 9 10

Return Sorted(A[k] = A[4]) = 10
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Algorithm for Selection

select(A, j):
Form lists L1, L2, . . . , Ldn/5e where Li = {A[5i − 4], . . . ,A[5i]}
Find median bi of each Li using brute-force
Find median b of B = {b1, b2, . . . , bdn/5e}
Partition A into Aless and Agreater using b as pivot
if (|Aless|) = j return b
else if (|Aless|) > j)

return select(Aless, j)
else

return select(Agreater, j − |Aless|)

How do we find median of B?
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Running time of deterministic
median selection



Running time of deterministic median selection

T (n) ≤ T (dn/5e) + max{T (|Aless|),T (|Agreater)|}+ O(n)

From Lemma,

T (n) ≤ T (dn/5e) + T (b7n/10c) + O(n)

and
T (n) = O(1) n < 10

Exercise: show that T (n) = O(n)
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Recursion tree fill-in

If the workload is decreasing at every level, then total work is dominated by the root.
n

1
5n

1
25n

1
125n

...
...

7
250n

...
...

7
50n

7
250n

...
...

49
500n

...
...

7
10n

7
50n

7
250n

...
...

49
500n

...
...

49
100n

49
500n

...
...

343
1000n

...
...

n

9
10n

81
100n

729
1000n

· · ·

log(n)

T (n) ≤ T (dn/5e) + T (b7n/10c) + O(n) = O(n)
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What about QuickSort?

How would we use the median of medians approach for quicksort?

Just use MoM if find pivot!

• Original recurrence: T (n) = T (k − 1) + T (n − k) + O(n)
• With MoM: T (n) = T ( 3

10n) + T ( 7
10n) + O(n) + O(n)
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Median of Medians Algorithm

Due to:M. Blum, R. Floyd, D. Knuth, V. Pratt, R. Rivest, and R. Tarjan.

“Time bounds for selection”.
Journal of Computer System Sciences (JCSS), 1973.

How many Turing Award winners in the author list?

All except Vaughan Pratt! Favorite Knuth quote: He once warned a correspondent,
”Beware of bugs in the above code; I have only proved it correct, not tried it.”
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Takeaway Points

• Recursion tree method and guess and verify are the most reliable methods to
analyze recursions in algorithms.

• Recursive algorithms naturally lead to recurrences.
• Some times one can look for certain type of recursive algorithms (reverse

engineering) by understanding recurrences and their behavior.
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Problem statement: Multiplying
numbers + a slow algorithm



The Problem: Multiplying numbers

Given two large positive integer numbers b and c, with n digits, compute the number
b ∗ c.

34



Egyptian multiplication: 1850BC (3870 years ago?)

76 35

76 34 + 1 76
76 34
152 17
152 16 + 1 152
152 16
304 8
608 4
1216 2
2432 1 2432

2660
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The problem: Multiplying Numbers

Problem Given two n-digit numbers x and y , compute their product.

Grade School Multiplication
Compute “partial product” by multiplying each digit of y with x and adding the partial
products.

3141
×2718
25128
3141

21987
6282
8537238
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Time Analysis of Grade School Multiplication

• Each partial product: Θ(n)
• Number of partial products: Θ(n)
• Addition of partial products: Θ(n2)

• Total time: Θ(n2)

37



Multiplication using Divide and
Conquer



Divide and Conquer

Assume n is a power of 2 for simplicity and numbers are in decimal.

Split each number into two numbers with equal number of digits

• b = bn−1bn−2 . . . b0 and c = cn−1cn−2 . . . c0

• b = bn−1 . . . bn/20 . . . 0 + bn/2−1 . . . b0

• b(x) = bLx + bR , where x = 10n/2, bL = bn−1 . . . bn/2 and bR = bn/2−1 . . . b0

• Similarly c(x) = cLx + cR where cL = cn−1 . . . cn/2 and cR = cn/2−1 . . . c0
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Example

1234 × 5678 = (12x + 34)× (56x + 78) for x = 100.
= 12 · 56 · x2 + (12 · 78 + 34 · 56)x + 34 · 78.

1234 × 5678 = (100 × 12 + 34)× (100 × 56 + 78)
= 10000 × 12 × 56

+100 × (12 × 78 + 34 × 56)
+34 × 78

39



Divide and Conquer for multiplication

Assume n is a power of 2 for simplicity and numbers are in decimal.

• b = bn−1bn−2 . . . b0 and c = cn−1cn−2 . . . c0

• b ≡ b(x) = bLx + bR
where x = 10n/2, bL = bn−1 . . . bn/2 and bR = bn/2−1 . . . b0

• c ≡ c(x) = cLx + cR where cL = cn−1 . . . cn/2 and cR = cn/2−1 . . . c0

Therefore, for x = 10n/2, we have

bc = b(x)c(x) = (bLx + bR)(cLx + cR)

= bLcLx2 + (bLcR + bRcL)x + bRcR

= 10nbLcL + 10n/2(bLcR + bRcL) + bRcR
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Time Analysis

bc = 10nbLcL + 10n/2(bLcR + bRcL) + bRcR

4 recursive multiplications of number of size n/2 each plus 4 additions and left shifts
(adding enough 0’s to the right)

T (n) = 4T (n/2) + O(n) T (1) = O(1)

T (n) = Θ(n2). No better than grade school multiplication!
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Faster multiplication: Karatsuba’s
Algorithm



A Trick of Gauss

Carl Friedrich Gauss: 1777–1855 “Prince of Mathematicians”

Observation: Multiply two complex numbers: (a + bi) and (c + di)

(a + bi)(c + di) = ac − bd + (ad + bc)i

How many multiplications do we need?

Only 3! If we do extra additions and subtractions.
Compute ac, bd , (a + b)(c + d). Then
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Gauss technique for polynomials

p(x) = ax + b and q(x) = cx + d .

p(x)q(x) = acx2 + (ad + bc)x + bd .

p(x)q(x) = acx2 +
(
(a + b)(c + d)− ac − bd

)
x + bd .
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Improving the Running Time

bc = b(x)c(x) = (bLx + bR)(cLx + cR)
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+ bR ∗ cR

Recursively compute only bLcL, bRcR , (bL + bR)(cL + cR).

Time Analysis
Running time is given by

T (n) = 3T (n/2) + O(n) T (1) = O(1)

which means T (n) = O(nlog2 3) = O(n1.585) 44



State of the Art

Schönhage-Strassen 1971: O(n log n log log n) time using Fast-Fourier-Transform
(FFT)

Martin Fürer 2007: O(n log n2O(log∗ n)) time

Conjecture: There is an O(n log n) time algorithm.
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