Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous lecture.

Why did we choose lists of size 5? Will lists of size 3 work?

(Hint) Write a recurrence to analyze the algorithm's running time if we choose a list of size k.

1

ECE-374-B: Lecture 11 - Backtracking and memorization

Instructor: Nickvash Kani

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous lecture.

Why did we choose lists of size 5? Will lists of size 3 work?

(Hint) Write a recurrence to analyze the algorithm's running time if we choose a list of size k.

Median of medians time analysis

```
Median-of-medians (A, i):
   sublists = [A[i:i+5] for i \in range(0, len(A), 5)]
   medians = [sorted (sublist)[len (sublist)/2] for sublist (sublists]
   // Base Case
   if len (A) < 5 return sorted (a)[i]
   // Find median of medians
   if len (medians) ≤ 5
        pivot = sorted (medians)[len (medians)/2]
   else
        pivot = Median-of-medians (medians, len/2)
   // Partitioning Step
   low = [i for i ∈A if i < pivot]
   high = [i for i ∈A if i > pivot]
   k = len (low)
   if i < k
        return Median-of-medians (low, i)
   elseif i > k
        return Median-of-medians (low, i-k-1)
   معام
   return pivot
```

Median of medians time analysis

```
Median-of-medians (A, i):
    sublists = [A[i:i+5] for i Frange(0, len(A), 5)]
   medians = [sorted (sublist)[len (sublist)/2] for sublist (sublists]
   // Base Case
   if len (A) < 5 return sorted (a)[i]
   // Find median of medians
   if len (medians) ≤ 5
        pivot = sorted (medians)[len (medians)/2]
    else
        pivot = Median-of-medians (medians, len/2)
   // Partitioning Step
   low = [i for i ∈A if i < pivot]
   high = [i for i ∈A if i > pivot]
   k = len (low)
   if i < k
        return Median-of-medians (low, i)
   elseif i > k
        return Median-of-medians (low, i-k-1)
    معام
   return pivot
```

$$T(n) = T(\frac{1}{5}n) + T(\frac{7}{10}n) + cn$$

We saw a linear time selection algorithm in the previous lecture.

Why did we choose lists of size 5? Will lists of size 3 work?

We saw a linear time selection algorithm in the previous lecture.

Why did we choose lists of size 5? Will lists of size 3 work?

$$T(n) = T(\frac{1}{3}n) + T(\frac{4}{6}n) + cn$$

We saw a linear time selection algorithm in the previous lecture.

Why did we choose lists of size 5? Will lists of size 3 work?

$$T(n) = T(\frac{1}{3}n) + T(\frac{4}{6}n) + cn$$

What about k = 7?

4

We saw a linear time selection algorithm in the previous lecture.

Why did we choose lists of size 5? Will lists of size 3 work?

$$T(n) = T(\frac{1}{3}n) + T(\frac{4}{6}n) + cn$$

What about k = 7?

$$T(n) = T(\frac{1}{7}n) + T(\frac{10}{14}n) + cn$$

On different techniques for recursive

algorithms

Recursion

Reduction: Reduce one problem to another

Recursion

A special case of reduction

- reduce problem to a <u>smaller</u> instance of <u>itself</u>
- self-reduction
- Problem instance of size n is reduced to one or more instances of size n-1 or less.
- For termination, problem instances of small size are solved by some other method as base cases.

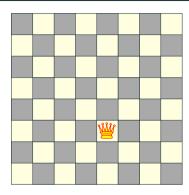
Recursion in Algorithm Design

• <u>Tail Recursion</u>: problem reduced to a <u>single</u> recursive call after some work. Easy to convert algorithm into iterative or greedy algorithms.

Examples: Interval scheduling, MST algorithms....

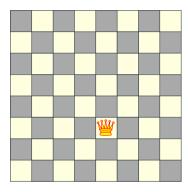
- <u>Divide and Conquer</u>: Problem reduced to multiple independent sub-problems that are solved separately. Conquer step puts together solution for bigger problem.
 Examples: Closest pair, median selection, quick sort.
- Backtracking: Refinement of brute force search. Build solution incrementally by invoking recursion to try all possibilities for the decision in each step.
- <u>Dynamic Programming</u>: problem reduced to multiple (typically) <u>dependent or overlapping</u> sub-problems. Use memorization to avoid recomputation of common solutions leading to iterative bottom-up algorithm.

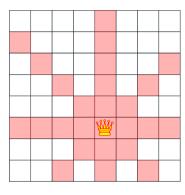
Search trees and backtracking

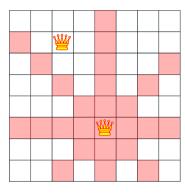


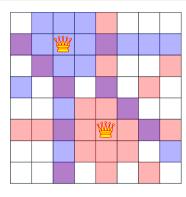
Q: How many queens can one place on the board?

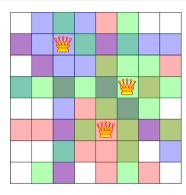
Q: Can one place 8 queens on the board?

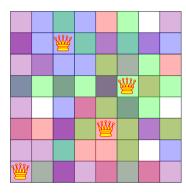


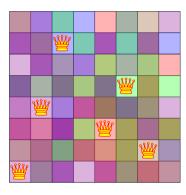


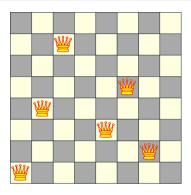










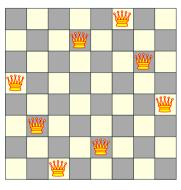


Q: How many queens can one place on the board?

Q: Can one place 8 queens on the board? How many permutations?

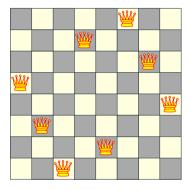
The eight queens puzzle

Problem published in 1848, solved in 1850.



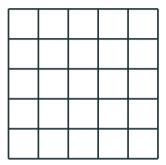
The eight queens puzzle

Problem published in 1848, solved in 1850.



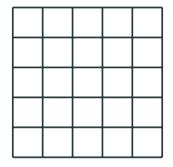
Q: How to solve problem for general n?

Introducing concept of state tree



What if we attempt to find all the possible permutations and then check?

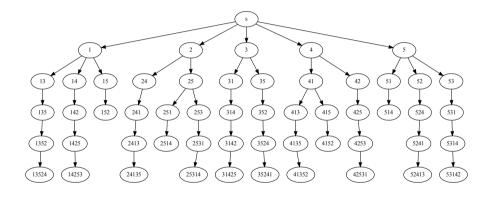
Search tree for 5 queens



Let's be a bit smarter and recognize that:

- Queens can't be on the same row, column or diagonal
- Can have *n* queens max.

Search tree for 5 queens



Backtracking: Informal definition

Recursive search over an implicit tree, where we "backtrack" if certain possibilities do not work.

n queens C++ code

```
generate permutations( int * permut, int row, int n )
  if (row == n) {
    print board( permut, n );
    return:
  for (int val = 1; val <= n; val++)
    if (isValid(permut, row, val)) {
       permut[ row ] = val;
       generate permutations (permut, row + 1, n);
generate permutations(permut, 0, 8);
```

Quick note: n queens - number of solutions

N	Number of Solutions	Number of Unique Solutions
1	1	1
2	0	0
3	0	0
4	2	1
5	10	2
6	4	1
7	40	6
8	92	12
9	352	46
10	724	92
11	2,680	341
12	14,200	1,787
13	73,712	9,233
14	365,596	45,752
15	2,279,184	285,053
10 11 12 13 14	724 2,680 14,200 73,712 365,596	9; 34: 1,78; 9,23; 45,75;

Sudoku

Sudoku problem

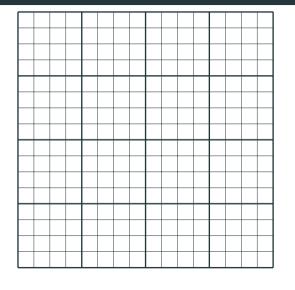
	2		5		1		9	
8			2		3			6
	3			6			7	
		1				6		
5	4						1	9
		2				7		
	9			3			8	
2			8		4			7
	1		9		7		6	

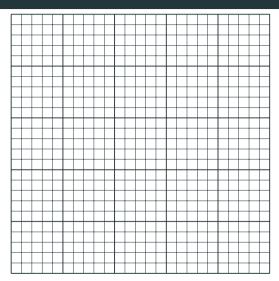
Unsolved Sudoku

4	2	6	5	7	1	3	9	8
8	5	7	2	9	3	1	4	6
1	3	9	4	6	8	2	7	<i>5</i>
9	7	1	3	8	<u>5</u>	6	2	4
5	4	3	7	2	6	8	1	9
6	8	2	1	4	9	7	5	3
7	9	4	6	3	2	5	8	1
2	6	5	8	1	4	9	3	7
3	1	8	9	5	7	4	6	2

Solved Sudoku

Variable Sized Sudoku





Naive Enumeration

	2		5		1		9	
8			2		3			6
	3			6			7	
		1				6		
5	4						1	9
		2				7		
	9			3			8	
2			8		4			7
	1		9		7		6	

```
algSudokuNaive(S[0..n-1,0..n-1]):
   for possible value (X) in empty space do
      if SudokuValid? == True then
         return X
```

Naive Enumeration

	2		5		1		9	
8			2		3			6
	3			6			7	
		1				6		
5	4						1	9
		2				7		
	9			3			8	
2			8		4			7
	1		9		7		6	

```
algSudokuNaive(S[0..n-1,0..n-1]):
   for possible value (X) in empty space do
      if SudokuValid? == True then
         return X
```

Running time:

Naive Enumeration

	2		5		1		9	
8			2		3			6
	3			6			7	
		1				6		
5	4						1	9
		2				7		
	9			3			8	
2			8		4			7
	1		9		7		6	

```
algSudokuNaive(S[0..n-1,0..n-1]):
   for possible value (X) in empty space do
      if SudokuValid? == True then
         return X
```

Running time: $O(n^29^{n^2})$.

 n^2 time to check all rows/columns/squares contain values 1 through n

9 possibilities per square for n^2 squares

18

Better Enumeration

	2		5		1		9	
8			2		3			6
	3			6			7	
		1				6		
5	4						1	9
		2				7		
	9			3			8	
2			8		4			7
	1		9		7		6	

```
Initialize Bitmap (BM) to contain only
    values available for each square
algSudoku-smaller(S[0..n-1,0..n-1], BM[0..n-1,0..n-1]):
   for each empty space X do
        for each possible value x for X according to BM do
            S-new = S(Assign X = x)
            BM-new = Modify BM removing x from same
                        row/column/square
            if no more empty squares
                return X
            else
                algSudoku-smaller(S, BM)
```

return NULL

Better Enumeration

	2		5		1		9	
8			2		3			6
	3			6			7	
		1				6		
5	4						1	9
		2				7		
	9			3			8	
2			8		4			7
	1		9		7		6	

```
Initialize Bitmap (BM) to contain only
    values available for each square
algSudoku-smaller(S[0..n-1,0..n-1], BM[0..n-1,0..n-1]):
   for each empty space X do
        for each possible value x for X according to BM do
            S-new = S(Assign X = x)
            BM-new = Modify BM removing x from same
                        row/column/square
            if no more empty squares
                return X
            else
                algSudoku-smaller(S, BM)
```

return NULL

Running time:

Better Enumeration

	2		5		1		9	
8			2		3			6
	3			6			7	
		1				6		
5	4						1	9
		2				7		
	9			3			8	
2			8		4			7
	1		9		7		6	

```
Initialize Bitmap (BM) to contain only
    values available for each square
algSudoku-smaller(S[0..n-1,0..n-1], BM[0..n-1,0..n-1]):
    for each empty space X do
        for each possible value x for X according to BM do
            S-new = S(Assign X = x)
            BM-new = Modify BM removing x from same
                        row/column/square
            if no more empty squares
                return X
            else
                algSudoku-smaller(S, BM)
```

return NULL

Running time: $O(9^{n^2})$.

19

Longest Increasing Sub-sequence

Sequences

Definition

<u>Sequence</u>: an ordered list a_1, a_2, \ldots, a_n . <u>Length</u> of a sequence is number of elements in the list.

Definition

 a_{i_1}, \ldots, a_{i_k} is a subsequence of a_1, \ldots, a_n if $1 \le i_1 < i_2 < \ldots < i_k \le n$.

Definition

A sequence is increasing if $a_1 < a_2 < \ldots < a_n$. It is non-decreasing if $a_1 \le a_2 \le \ldots \le a_n$. Similarly decreasing and non-increasing.

Sequences - Example...

Example

- Sequence: 6, 3, 5, 2, 7, 8, 1, 9
- Subsequence of above sequence: 5, 2, 1
- Increasing sequence: 3, 5, 9, 17, 54
- Decreasing sequence: 34, 21, 7, 5, 1
- Increasing subsequence of the first sequence: 2, 7, 9.

Longest Increasing Subsequence Problem

Input A sequence of numbers a_1, a_2, \ldots, a_n

Goal Find an increasing subsequence $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$ of maximum length

Longest Increasing Subsequence Problem

Input A sequence of numbers a_1, a_2, \ldots, a_n

Goal Find an increasing subsequence $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$ of maximum length

Example

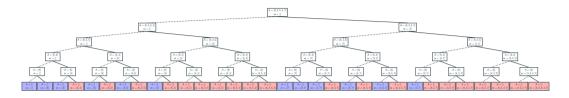
- Sequence: 6, 3, 5, 2, 7, 8, 1
- Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc
- Longest increasing subsequence: 3, 5, 7, 8

Naive Enumeration

Assume a_1, a_2, \ldots, a_n is contained in an array A

```
\begin{aligned} & \textbf{algLISNaive}(A[1..n]): \\ & \textit{max} = 0 \\ & \textbf{for} \text{ each subsequence } B \text{ of } A \textbf{ do} \\ & \textbf{if } B \text{ is increasing and } |B| > \textit{max} \textbf{ then} \\ & \textit{max} = |B| \end{aligned} Output \textit{max}
```

Naive Recursion Enumeration - State Tree



- This is just for [6,3,5,2,7]! (Tikz won't print larger trees)
- How many leafs are there for the full [6,3,5,2,7, 8, 1] sequence
- What is the running time?

Naive Enumeration

Assume a_1, a_2, \ldots, a_n is contained in an array A

```
\begin{aligned} & \textbf{algLISNaive}(A[1..n]): \\ & \textit{max} = 0 \\ & \textbf{for} \text{ each subsequence } B \text{ of } A \textbf{ do} \\ & \textbf{if } B \text{ is increasing and } |B| > \textit{max} \textbf{ then} \\ & \textit{max} = |B| \end{aligned}
```

Running time:

Naive Enumeration

Assume a_1, a_2, \ldots, a_n is contained in an array A

```
\begin{aligned} & \textbf{algLISNaive}(A[1..n]): \\ & \textit{max} = 0 \\ & \textbf{for} \text{ each subsequence } B \text{ of } A \textbf{ do} \\ & \textbf{if } B \text{ is increasing and } |B| > \textit{max} \textbf{ then} \\ & \textit{max} = |B| \end{aligned} Output \textit{max}
```

Running time: $O(n2^n)$.

 2^n subsequences of a sequence of length n and O(n) time to check if a given sequence is increasing.

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):

Can we find a recursive algorithm for LIS?

```
LIS(A[1..n]):
```

- Case 1: Does not contain A[n] in which case LIS(A[1..n]) = LIS(A[1..(n-1)])
- Case 2: contains A[n] in which case LIS(A[1..n]) is

Can we find a recursive algorithm for LIS?

```
LIS(A[1..n]):
```

- Case 1: Does not contain A[n] in which case LIS(A[1..n]) = LIS(A[1..(n-1)])
- Case 2: contains A[n] in which case LIS(A[1..n]) is not so clear.

Can we find a recursive algorithm for LIS?

```
LIS(A[1..n]):
```

- Case 1: Does not contain A[n] in which case LIS(A[1..n]) = LIS(A[1..(n-1)])
- Case 2: contains A[n] in which case LIS(A[1..n]) is not so clear.

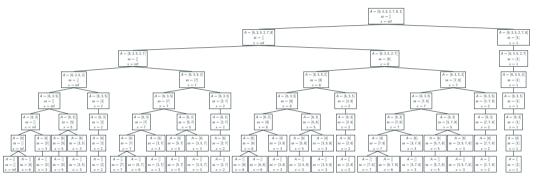
Observation

For second case we want to find a subsequence in A[1..(n-1)] that is restricted to numbers less than A[n]. This suggests that a more general problem is

LIS_smaller(A[1..n], x) which gives the longest increasing subsequence in A where each number in the sequence is less than x.

Example

Sequence: A[0..6] = 6, 3, 5, 2, 7, 8, 1



Recursive Approach

LIS_smaller(A[1..n], x): length of longest increasing subsequence in A[1..n] with all numbers in subsequence less than x

```
\begin{split} \textbf{LIS\_smaller}(A[1..n], x): \\ & \textbf{if} \ \ (n=0) \ \ \textbf{then} \ \ \textbf{return} \ \ 0 \\ & m = \textbf{LIS\_smaller}(A[1..(n-1)], x) \\ & \textbf{if} \ \ (A[n] < x) \ \ \textbf{then} \\ & m = max(m, 1 + \textbf{LIS\_smaller}(A[1..(n-1)], A[n])) \\ & \textbf{Output} \ \ m \end{split}
```

```
 \begin{split} \textbf{LIS}(A[1..n]): \\ \textbf{return LIS\_smaller}(A[1..n], \infty) \end{split}
```

Running time analysis

```
\begin{split} \textbf{LIS\_smaller}(A[1..n], x) : \\ & \textbf{if } (n=0) \textbf{ then return } 0 \\ & m = \textbf{LIS\_smaller}(A[1..(n-1)], x) \\ & \textbf{if } (A[n] < x) \textbf{ then} \\ & m = max(m, 1 + \textbf{LIS\_smaller}(A[1..(n-1)], A[n])) \\ & \texttt{Output } m \end{split}
```

```
 \begin{split} \textbf{LIS}(A[1..n]): \\ \textbf{return LIS\_smaller}(A[1..n], \infty) \end{split}
```

Lemma LIS_smaller runs in $O(2^n)$ time.

Lemma LIS_smaller *runs in* $O(2^n)$ *time*.

Improvement: From $O(n2^n)$ to $O(2^n)$.

```
Lemma LIS_smaller runs in O(2^n) time.
```

Improvement: From $O(n2^n)$ to $O(2^n)$.

....one can do much better using memorization!