

Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous lecture.
Why did we choose lists of size 57 Will lists of size 3 work?

(Hint) Write a recurrence to analyze the algorithm’s running time if we choose a list of
size k.

ECE-374-B: Lecture 11 - Backtracking and memorization

Instructor: Nickvash Kani

University of lllinois at Urbana-Champaign

Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous lecture.
Why did we choose lists of size 57 Will lists of size 3 work?

(Hint) Write a recurrence to analyze the algorithm’s running time if we choose a list of
size k.

Median of medians time analysis

Median-of-medians (A, i):
n 000

sublists = [A[j:j+5] for j €range(0, len(A), 5
medians = [sorted (sublist)[len (sublist)/2] for sublist Esublists] A(“ w- l]

-8 = '
// Base Case 0(') /‘ - ocm) ; ¢

if len (4) < 5 return sorted (a)[i] / ’ , l]

// Find median of medians
if len (medians) < 5

| pivot = sorted (medians) [len (medians)/2] ‘\\J’k
else

pivot = Median-of-medians (medians, len/2) ‘ré‘/ﬁw | —]j r j
// Partitioning Step 1_————

low = [j for j €A if j < pivot]

high = [j for j €A if j > pivot] AUW A “f’v

i{f=1 I:an (low) H k
T (%

return Median-of-medians (low, T
eif i > k

’(:7/‘;“t el

return Median-of-medians (low, i-k-1)
eturn pivot
- %——M B
o A A

4

Median of medians time analysis

Median-of-medians (A, i):

sublists = [A[j:j+? for j €range(0, len(A) ,‘g] 06‘>

medians = [sorted (sublist)[len (sublist)/2] for sublist Esublists]

oM

// Base Case
1,," if len (1) < return sorted (a)[i]

// Find median of medians

‘ﬁﬁ/ if len (medians) <

pivot = sorted (medians) [len (medians)/2] —
/7 ~— else

o 0 ° o o ivot = Median-of-medians (medians, len/2) H)
“’hglgoo c®#0°09° p TC(7
// Partitioning Ste
6 00 00 o low = [j for jgeA ifpj < pivot]

high = [j for j €A if j > pivot]

v k = len (low)
if i <k
return Median-of-medians (low, i) 4r l %“
1. elseif i > k
Ao N 4 return Median-of-medians (low, i-k-1)

k—Hf ‘ else
Y. v v return pivot

Brain teaser

We saw a linear time selection algorithm in the previous lecture.

Why did we choose lists of size 57 Will lists of size 3 work?

7).

-

Brain teaser

We saw a linear time selection algorithm in the previous lecture.

Why did we choose lists of size 57 Will lists of size 3 work?

Sl O 1(n) = T(%n)+T(%n)+cn 206G
%w %lﬂ - - 0@> '03(’9 N
< % 4/ N0
9 4 7

Brain teaser

We saw a linear time selection algorithm in the previous lecture.
Why did we choose lists of size 57 Will lists of size 3 work?
1 4
—n

T(n) = T(5n) +T(

3) +cn

What about kK = 77

T = T(‘lyh\ ~T %“\ Y eu

Y’L
~N
o 2
a o
g S °
(o I~} %
O s o
o 9 o
QO

Brain teaser

We saw a linear time selection algorithm in the previous lecture.

Why did we choose lists of size 57 Will lists of size 3 work?

1 4
T(n) = T(gn) + T(gn) + cn
What about k — 77 " @
N
o W .‘j W
10 A '+

On different techniques for recursive
algorithms

Recursion

Reduction: Reduce one problem to another

Recursion
A special case of reduction

reduce problem to a smaller instance of itself

m self-reduction

s Problem instance of size n is reduced to one or more instances of size n — 1 or less.

= For termination, problem instances of small size are solved by some other method
as base cases.

Recursion in Algorithm Design

= Tail Recursion: problem reduced to a single recursive call after some work. Easy to
convert algorithm into iterative or greedy algorithms.
Examples: Interval scheduling, MST algorithms....

» Divide and Conquer: Problem reduced to multiple independent sub-problems that are
solved separately. Conquer step puts together solution for bigger problem.
Examples: Closest pair, median selection, quick sort.

» Backtracking: Refinement of brute force search. Build solution incrementally by invoking
recursion to try all possibilities for the decision in each step.

= Dynamic Programming: problem reduced to multiple (typically) dependent or overlapping
sub-problems. Use memorization to avoid recomputation of common solutions leading to

iterative bottom-up algorithm.

Search trees and backtracking

The queens problem
h L/
A

A

>

Q: How many queens can one place on the board?

Q: Can one place 8 queens on the board?

The queens problem

The queens problem

The queens problem

W

The queens problem

%

The queens problem

The queens problem

The queens problem

The queens problem

w

Wy

9

W

Q: How many queens can one place on the board? 6

Q: Can one place 8 queens on the board? How many permutations?

NN

The eight queens puzzle

Problem published in 1848, solved in 1850.

&

9

4

The eight queens puzzle

Problem published in 1848, solved in 1850.

&

9

4

9

w

Q: How to solve problem for general n?

Introducing concept of state tree

7\

e, =

What if we attempt to find all the possible permutations and then check?

10

Search tree for 5 queens

& e T Brobe B ”
“ ” Chesk A poc bl
V‘/' \ = e (:
_ \V! ‘ | ')aw#*e‘m d?' v~
L"‘r\ \/V" | % i + Guaems o~ e
2\ / é. buemed
S \ha Q ~Ched ¥ g oee

Let's be a bit smarter and recognizg that: Y.

A Ho-
= Queens can't be on the sam¢ row, column or diagonal - ry@’w '

= Can have n queens max.)
z u - 9»
(i > -0 Lu e ‘pc.y;wutc/&w
oLr&) - H

Search tree for 5 queens

=

Phoe W A OO © &

- oo@e ONOICEOROIOISIO
m,u.a‘tf @®®@®®¢®@@@¢®¢
W‘ @@ga@@@@@@@ GO G

@@ Q CXEICICONNCIERCIICT,
D

\

12

Backtracking: Informal definition

Recursive search over an implicit tree, where we “backtracﬂ if certain possibilities do

I

not work.

13

n queens C++ code

vold generate permutations(int * permut, int row, Int n)

if (row==n) {
print_board(permut, n);
return;

}

for (int val =1; val <= n; val++)
if (isValid(permut, row, val)) {
permut[row] = val;
) generate permutations(permut, row + 1, n);
}

generate_permutations(permut, 0O, 8);

D(wr> > O (‘""\

14

Quick note: n queens - number of solutions

N | Number of Solutions Number of Unique Solutions
1) — 1

> 0 0 >

< 3 0 0

~—— 2 1] |
5 10 2 N '
6 4 1 G
7 40 6
8 92 12
9 352 46
10 724 92
11 2,680 341
12 14,200 1,787
13 73,712 9,233
14 365,596 45,752
15 2,279,184 285,053

15

Sudoku

£
9
o)
o
b
S
S
~
@)
=)
S
g

OO M|~~~ N
O NN —H[O]oo|M|©
M~ N[OOI ~N|L O |
— NI IO IO|N ||~
N DO N ||~ |0
OIN MO IN~N]O | 0|
OND[HMH N[O |
N OOHIN ||| O]
o ~N[D|L|[OIN UM
O (o)) N~
(@) N~ — 0 O
© N~
— ™M < |~
O o™
O | N 00 | O
— q\
q\ o <t (o)) o
00 LO N

Solved Sudoku

Unsolved Sudoku

16

Variable Sized Sudoku

17

Naive Enumeration

2 5 1 9
8 2| |3 6 algSudokuNaive(S[0..n—1,0..n — 1)) :

3 6 I for possible value (X) in empty space do
ar 1 0 - if SudokuValid? == True then

5 7 return X

9 3 8
2 8 4 7 return NULL

1 9 7 6

18

Naive Enumeration

2 5 1 9
8 2| |3 6 algSudokuNaive(S[0..n—1,0..n — 1)) :

3 6 I for possible value (X) in empty space do
ar 1 0 - if SudokuValid? == True then

5 7 return X

9 3 8
2 8 4 7 return NULL

1 9 7 6

Running time:

18

Naive Enumeration

2 5 1 9
8 2| |3 6 algSudokuNaive(S[0..n—1,0..n — 1)) :

3 6 I for possible value (X) in empty space do
ar 1 0 - if SudokuValid? == True then

5 7 return X

9 3 8
2 8 4 7 return NULL

1 9 7 6

Running time: O(n29™).
n’ time to check all rows/columns/squares contain values 1 through n

9 possibilities per square for n® squares

18

Better Enumeration

Initialize Bitmap (BM) to contain only

values available for each square

> : 7 5 algSudoku-smaller(S[0..n —1,0..n — 1], BM[0..n—1,0..n—1]):
for each empty space X do
3 2 3 6 , .
3 6 - for each possible value x for X according to BM do
1 5 S-new = S(Assign X = x)
BM-new = Modify BM removing x from same
514 119
row/column/square
2 ! if no more empty squares
9 3 3
return X
2 38 4 I else
1 9 ! 6 algSudoku-smaller (S, BM)

return NULL

19

Better Enumeration

Initialize Bitmap (BM) to contain only

values available for each square

> : 7 5 algSudoku-smaller(S[0..n —1,0..n — 1], BM[0..n—1,0..n—1]):
for each empty space X do
3 2 3 6 , .
3 6 - for each possible value x for X according to BM do
1 5 S-new = S(Assign X = x)
BM-new = Modify BM removing x from same
514 119
row/column/square
2 ! if no more empty squares
9 3 3
return X
2 38 4 I else
1 9 ! 6 algSudoku-smaller (S, BM)

return NULL

Running time: 19

Better Enumeration

Initialize Bitmap (BM) to contain only
values available for each square
> c 1 5 algSudoku-smaller(S[0..n —1,0..n — 1], BM[0..n—1,0..n—1]):
for each empty space X do
3 2 3 6 , .
3 6 - for each possible value x for X according to BM do
1 5 S-new = S(Assign X = x)
BM-new = Modify BM removing x from same
514 119
row/column/square
2 ! if no more empty squares
9 3 3
return X
2 38 4 I else
! 9 ! 6 algSudoku-smaller (S, BM)
return NULL
: : 2
Running time: O(9™). 19

P S S 2

Longest Increasing Sub-sequence

Sequences

Definition
Sequence: an ordered list a1, a, ..., a,. Length of a sequence is number of elements in
the list.

Definition
aj,...,aj is asubsequence of aj,...,ap, if1 < i < <...<i(<n

Definition
A sequence is increasing if a1 < a» < ... < a,. It is non-decreasing if

a1 < a» < ... < a,. Similarly decreasing and non-increasing.

20

Sequences - Example...

Example

Sequence: 6,3,5,2,7,8,1,9
Subsequence of above sequence: 5,2,1
Increasing sequence: 3,5,9,17,54
Decreasing sequence: 34,21,7,5,1

Increasing subsequence of the first sequence: 2,7, 9.

21

Longest Increasing Subsequence Problem

Input A sequence of numbers aj, as, ..., a,

Goal Find an increasing subsequence aj, aj,, ..., a;j, of maximum length

k

22

Longest Increasing Subsequence Problem

Input A sequence of numbers ay, ao, ..., an
Goal Find an increasing subsequence aj, aj,, .. ., aj, of maximum length
Example

= Sequence: 6, 3,5,2,7,8,1
= Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc

= Longest increasing subsequence: 3, 5, 7, 8

22

Naive Enumeration

Assume a1, ao, ..., a, is contained in an array A

algLISNaive (A[1..n)) :
max = 0
for each subsequence B of A do
if B is increasing and |B| > max then
max = | B|

OQutput max

23

Naive Recursion Enumeration - State Tree

EEEE L || oA || P G N R G W
s=) ss=1[6] || s=[3 |[ss=063 =[6.5 =[35) ||ss=[6:35 ss=1062) || ss=[32 ||s=1632]|| ss=[52 ||ss=16.52]||ss=[3.5.2]|[ss=[6.3.5.2]

= This is just for [6,3,5,2,7]! (Tikz won't print larger trees)
= How many leafs are there for the full [6,3,5,2,7, 8, 1] sequence Z“

= What is the running time? o(w ZII‘>

24

Naive Enumeration

Assume a1, ao, ..., a, is contained in an array A

algLISNaive (A[1..n)) :
max = 0
for each subsequence B of A do
if B is increasing and |B| > max then
max = | B|

OQutput max

Running time:

25

Naive Enumeration

Assume a1, ao, ..., a, is contained in an array A

algLISNaive (A[1..n)) :
max = 0
for each subsequence B of A do
if B is increasing and |B| > max then
max = | B|

OQutput max

Running time: O(n2").
2" subsequences of a sequence of length n and O(n) time to check if a given sequence

IS Increasing.

25

Recursive Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):

26

Recursive Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):
= Case 1: Does not contain A[n| in which case LIS(A[1..n]) = LIS(A[1l..(n —1)])

= Case 2: contains A[n] in which case LIS(A[1..n]) is

26

Recursive Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):

= Case 1: Does not contain A[n] in which case LIS(A[1..n]) = LIS(A[1..(n —1)])

= Case 2: contains A[n] in which case LIS(A[1..n]) is not so clear.

26

Recursive Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):
= Case 1: Does not contain A[n| in which case LIS(A[1..n]) = LIS(A[1l..(n —1)])

= Case 2: contains A[n] in which case LIS(A[1..n]) is not so clear.

Observation
For second case we want to find a subsequence in A|l..(n — 1)] that is restricted to

numbers less than Aln|. This suggests that a more general problem is
LIS_smaller(A[l..n], x) which gives the longest increasing subsequence in A where
each number in the sequence is less than x.

26

Sequence: Al0..6] =6,3,5,2,7,8,1

A=1[6,3527.81]

o=
x = inf
A=1[63,5,2,7,8]
ss=[1]
x=1
[
A=1[63,5,27 A=1[6,3,527
ss = [8] ss=[1]
x =8 x=1
_ e — [
A=1[6,3,5,2] A=1[6,3,5,2]
ss=[7,8] ss = [1]
x =7 x=1
[
A=1[635|
ss=[1]
x=1
[
) A=1[6,3] — 63 A=63 A=1[63 A=16, A=1[6,3]
s = [2] ss=1[5,7] s = (8] ss=[7,8] ss=[5,7,8] [2,7, ss = [1]
X =2 X = x =8 x =T x =5 X =2 x=1
[[[
A= 6] A=6] |l A= 6] A= 6] A= 6] A= o] A= 6] A= 6]
] ss = [2] ss = [3,7]||ss = [5,7] ss = [3,8] =[7,8 ss=[5,7,8]||ss = (3,5,7,8]|[ss = [2,7,8] ss = [1]
X =2 x =3 x =5 x=3 x =T = x =3 X =2 x=1
[[[[[[[[
A=) A=l || A=l A=l A=l | A=) A=) A=l
ss=[2) ss=[3,7]||ss=1[5.7] ss=[3,8) ss = [7,8] |[ss = [6,7,8] 5.7,8] || ss = [3.5,7.8] || ss = [2,7,8] ss = [1]
X =2 x =3 x =5 x=3 x =6 X =3 X =2 x =1

Recursive Approach

LIS_smaller(A[l..n], x) : length of longest increasing subsequence in A[1l..n] with all

numbers in subsequence less than x

LIS_smaller (A[1..n], x) :
if (n=0) then return 0
m = LIS_smaller(A[1l..(n — 1)], x)
if (A[n] < x) then
m = max(m, 1+ LIS_smaller(A[l..(n —1)], A[n]))
OQutput m

LISCA[L..n]) :
return LIS_smaller(A[1..n], o0)

28

Running time analysis

Running time of LIS([1..n])

LIS_smaller (A[1..n], x) :
if (n=0) then return 0
m = LIS_smaller(A[1..(n —1)], x)
if (A[n] < x) then
m = max(m, 1+ LIS_smaller(A[l..(n —1)], A[n]))
OQutput m

LISCA[L..n]):
return LIS_smaller(A[1..n], o0)

Running time of LIS(|1..n])

Lemma \
LIS__smaller runs j ‘me.

30

Running time of LIS(|1..n])

Lemma
LIS_smaller runs in O(2") time.

Improvement: Fm@o

30

Running time of LIS(|1..n])

Lemma
LIS_smaller runs in O(2") time.

Improvement: From O(n2") to O(2").

....one can do much better using memorization!

P

AR Cw O (W=

30

