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Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous lecture.

Why did we choose lists of size 5? Will lists of size 3 work?

(Hint) Write a recurrence to analyze the algorithm’s running time if we choose a list of
size k.
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Median of medians time analysis
Median-of-medians(A, i):

sublists = [A[j:j+5] for j 2range(0, len(A), 5)]
medians = [sorted (sublist)[len (sublist)/2] for sublist 2sublists]

// Base Case
if len (A)  5 return sorted (a)[i]

// Find median of medians
if len (medians)  5

pivot = sorted (medians)[len (medians)/2]
else

pivot = Median-of-medians (medians, len/2)

// Partitioning Step
low = [j for j 2A if j < pivot]
high = [j for j 2A if j > pivot]

k = len (low)
if i < k

return Median-of-medians (low, i)
elseif i > k

return Median-of-medians (low, i-k-1)
else
return pivot

T (n) = T (
1
5n) + T (

7
10n) + cn
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Brain teaser

We saw a linear time selection algorithm in the previous lecture.

Why did we choose lists of size 5? Will lists of size 3 work?
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On different techniques for recursive
algorithms



Recursion

Reduction: Reduce one problem to another

Recursion
A special case of reduction

• reduce problem to a smaller instance of itself
• self-reduction

• Problem instance of size n is reduced to one or more instances of size n � 1 or less.
• For termination, problem instances of small size are solved by some other method

as base cases.
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Recursion in Algorithm Design

• Tail Recursion: problem reduced to a single recursive call after some work. Easy to
convert algorithm into iterative or greedy algorithms.
Examples: Interval scheduling, MST algorithms....

• Divide and Conquer: Problem reduced to multiple independent sub-problems that are
solved separately. Conquer step puts together solution for bigger problem.
Examples: Closest pair, median selection, quick sort.

• Backtracking: Refinement of brute force search. Build solution incrementally by invoking
recursion to try all possibilities for the decision in each step.

• Dynamic Programming: problem reduced to multiple (typically) dependent or overlapping
sub-problems. Use memorization to avoid recomputation of common solutions leading to
iterative bottom-up algorithm.
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Search trees and backtracking



The queens problem

Q: How many queens can one place on the board?

Q: Can one place 8 queens on the board?
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The queens problem
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The queens problem
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The queens problem

Q: How many queens can one place on the board?

Q: Can one place 8 queens on the board? How many permutations?

8
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The eight queens puzzle

Problem published in 1848, solved in 1850.

Q: How to solve problem for general n?

9
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The eight queens puzzle

Problem published in 1848, solved in 1850.

Q: How to solve problem for general n?
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Introducing concept of state tree

What if we attempt to find all the possible permutations and then check?
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Search tree for 5 queens

Let’s be a bit smarter and recognize that:

• Queens can’t be on the same row, column or diagonal
• Can have n queens max.
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Search tree for 5 queens

s

1 2 3 4 5
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Backtracking: Informal definition

Recursive search over an implicit tree, where we “backtrack” if certain possibilities do
not work.
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n queens C++ code

void   generate_permutations( int  * permut, int  row, int  n )
{
    if  ( row == n ) {
        print_board( permut, n );
        return;
    }

    for  ( int  val = 1; val <= n; val++ ) 
        if  ( isValid( permut, row, val ) ) {
            permut[ row ] = val;
            generate_permutations( permut, row + 1, n );
        }
}

generate_permutations( permut, 0, 8 );
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Quick note: n queens - number of solutions

N Number of Solutions Number of Unique Solutions
1 1 1
2 0 0
3 0 0
4 2 1
5 10 2
6 4 1
7 40 6
8 92 12
9 352 46
10 724 92
11 2,680 341
12 14,200 1,787
13 73,712 9,233
14 365,596 45,752
15 2,279,184 285,053
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Sudoku



Sudoku problem

2 5 1 9
8 2 3 6

3 6 7
1 6

5 4 1 9
2 7

9 3 8
2 8 4 7

1 9 7 6
Unsolved Sudoku

2 5 1 9
8 2 3 6

3 6 7
1 6

5 4 1 9
2 7

9 3 8
2 8 4 7

1 9 7 6
Solved Sudoku

4 6 7 3 8
5 7 9 1 4

1 9 4 8 2 5
9 7 3 8 5 2 4

3 7 2 6 8
6 8 1 4 9 5 3
7 4 6 2 5 1

6 5 1 9 3
3 8 5 4 2
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Variable Sized Sudoku
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Naive Enumeration

2 5 1 9
8 2 3 6

3 6 7
1 6

5 4 1 9
2 7

9 3 8
2 8 4 7

1 9 7 6

algSudokuNaive(S[0..n � 1, 0..n � 1]):
for possible value (X) in empty space do

if SudokuValid? == True then
return X

return NULL

Running time: O(n29n2
).

n2 time to check all rows/columns/squares contain values 1 through n

9 possibilities per square for n2 squares
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Better Enumeration

2 5 1 9
8 2 3 6

3 6 7
1 6

5 4 1 9
2 7

9 3 8
2 8 4 7

1 9 7 6

Initialize Bitmap (BM) to contain only
values available for each square

algSudoku-smaller(S[0..n � 1, 0..n � 1], BM[0..n � 1, 0..n � 1]):
for each empty space X do

for each possible value x for X according to BM do
S-new = S(Assign X = x)
BM-new = Modify BM removing x from same

row/column/square
if no more empty squares

return X
else

algSudoku-smaller(S, BM)

return NULL

Running time: O(9n2
).

9 possibilities per square for n2 squares
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Longest Increasing Sub-sequence



Sequences

Definition
Sequence: an ordered list a1, a2, . . . , an. Length of a sequence is number of elements in
the list.

Definition
ai1 , . . . , aik is a subsequence of a1, . . . , an if 1  i1 < i2 < . . . < ik  n.

Definition
A sequence is increasing if a1 < a2 < . . . < an. It is non-decreasing if
a1  a2  . . .  an. Similarly decreasing and non-increasing.
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Sequences - Example...

Example
• Sequence: 6, 3, 5, 2, 7, 8, 1, 9
• Subsequence of above sequence: 5, 2, 1
• Increasing sequence: 3, 5, 9, 17, 54
• Decreasing sequence: 34, 21, 7, 5, 1
• Increasing subsequence of the first sequence: 2, 7, 9.
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Longest Increasing Subsequence Problem

Input A sequence of numbers a1, a2, . . . , an

Goal Find an increasing subsequence ai1 , ai2 , . . . , aik of maximum length

Example
• Sequence: 6, 3, 5, 2, 7, 8, 1
• Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc
• Longest increasing subsequence: 3, 5, 7, 8
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Longest Increasing Subsequence Problem

Input A sequence of numbers a1, a2, . . . , an

Goal Find an increasing subsequence ai1 , ai2 , . . . , aik of maximum length

Example
• Sequence: 6, 3, 5, 2, 7, 8, 1
• Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc
• Longest increasing subsequence: 3, 5, 7, 8
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Naive Enumeration

Assume a1, a2, . . . , an is contained in an array A
algLISNaive(A[1..n]):

max = 0
for each subsequence B of A do

if B is increasing and |B| > max then
max = |B|

Output max
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Naive Recursion Enumeration - State Tree

A = [6, 3, 5, 2, 7]
ss = []

A = [6, 3, 5, 2]
ss = [7]

A = [6, 3, 5]
ss = [2, 7]

A = [6, 3]
ss = [5, 2, 7]

A = [6]
ss = [3, 5, 2, 7]

A = []
ss = [6, 3, 5, 2, 7]

A = []
ss = [3, 5, 2, 7]

A = [6]
ss = [5, 2, 7]

A = []
ss = [6, 5, 2, 7]

A = []
ss = [5, 2, 7]

A = [6, 3]
ss = [2, 7]

A = [6]
ss = [3, 2, 7]

A = []
ss = [6, 3, 2, 7]

A = []
ss = [3, 2, 7]

A = [6]
ss = [2, 7]

A = []
ss = [6, 2, 7]

A = []
ss = [2, 7]

A = [6, 3, 5]
ss = [7]

A = [6, 3]
ss = [5, 7]

A = [6]
ss = [3, 5, 7]

A = []
ss = [6, 3, 5, 7]

A = []
ss = [3, 5, 7]

A = [6]
ss = [5, 7]

A = []
ss = [6, 5, 7]

A = []
ss = [5, 7]

A = [6, 3]
ss = [7]

A = [6]
ss = [3, 7]

A = []
ss = [6, 3, 7]

A = []
ss = [3, 7]

A = [6]
ss = [7]

A = []
ss = [6, 7]

A = []
ss = [7]

A = [6, 3, 5, 2]
ss = []

A = [6, 3, 5]
ss = [2]

A = [6, 3]
ss = [5, 2]

A = [6]
ss = [3, 5, 2]

A = []
ss = [6, 3, 5, 2]

A = []
ss = [3, 5, 2]

A = [6]
ss = [5, 2]

A = []
ss = [6, 5, 2]

A = []
ss = [5, 2]

A = [6, 3]
ss = [2]

A = [6]
ss = [3, 2]

A = []
ss = [6, 3, 2]

A = []
ss = [3, 2]

A = [6]
ss = [2]

A = []
ss = [6, 2]

A = []
ss = [2]

A = [6, 3, 5]
ss = []

A = [6, 3]
ss = [5]

A = [6]
ss = [3, 5]

A = []
ss = [6, 3, 5]

A = []
ss = [3, 5]

A = [6]
ss = [5]

A = []
ss = [6, 5]

A = []
ss = [5]

A = [6, 3]
ss = []

A = [6]
ss = [3]

A = []
ss = [6, 3]

A = []
ss = [3]

A = [6]
ss = []

A = []
ss = [6]

A = []
ss = []

• This is just for [6,3,5,2,7]! (Tikz won’t print larger trees)
• How many leafs are there for the full [6,3,5,2,7, 8, 1] sequence
• What is the running time?

24
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Naive Enumeration

Assume a1, a2, . . . , an is contained in an array A
algLISNaive(A[1..n]):

max = 0
for each subsequence B of A do

if B is increasing and |B| > max then
max = |B|

Output max

Running time:

O(n2n).
2n subsequences of a sequence of length n and O(n) time to check if a given sequence
is increasing.
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Naive Enumeration
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Recursive Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):

• Case 1: Does not contain A[n] in which case LIS(A[1..n]) = LIS(A[1..(n � 1)])

• Case 2: contains A[n] in which case LIS(A[1..n]) is not so clear.

Observation
For second case we want to find a subsequence in A[1..(n � 1)] that is restricted to
numbers less than A[n]. This suggests that a more general problem is
LIS_smaller(A[1..n], x) which gives the longest increasing subsequence in A where
each number in the sequence is less than x.

26



Recursive Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):

• Case 1: Does not contain A[n] in which case LIS(A[1..n]) = LIS(A[1..(n � 1)])

• Case 2: contains A[n] in which case LIS(A[1..n]) is

not so clear.

Observation
For second case we want to find a subsequence in A[1..(n � 1)] that is restricted to
numbers less than A[n]. This suggests that a more general problem is
LIS_smaller(A[1..n], x) which gives the longest increasing subsequence in A where
each number in the sequence is less than x.

26



Recursive Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):

• Case 1: Does not contain A[n] in which case LIS(A[1..n]) = LIS(A[1..(n � 1)])

• Case 2: contains A[n] in which case LIS(A[1..n]) is not so clear.

Observation
For second case we want to find a subsequence in A[1..(n � 1)] that is restricted to
numbers less than A[n]. This suggests that a more general problem is
LIS_smaller(A[1..n], x) which gives the longest increasing subsequence in A where
each number in the sequence is less than x.

26



Recursive Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):

• Case 1: Does not contain A[n] in which case LIS(A[1..n]) = LIS(A[1..(n � 1)])

• Case 2: contains A[n] in which case LIS(A[1..n]) is not so clear.

Observation
For second case we want to find a subsequence in A[1..(n � 1)] that is restricted to
numbers less than A[n]. This suggests that a more general problem is
LIS_smaller(A[1..n], x) which gives the longest increasing subsequence in A where
each number in the sequence is less than x.

26



Example

Sequence: A[0..6] = 6, 3, 5, 2, 7, 8, 1
A = [6, 3, 5, 2, 7, 8, 1]

ss = []
x = inf

A = [6, 3, 5, 2, 7, 8]
ss = [1]
x = 1

A = [6, 3, 5, 2, 7]
ss = [1]
x = 1

A = [6, 3, 5, 2]
ss = [1]
x = 1

A = [6, 3, 5]
ss = [1]
x = 1

A = [6, 3]
ss = [1]
x = 1

A = [6]
ss = [1]
x = 1

A = []
ss = [1]
x = 1

A = [6, 3, 5, 2, 7, 8]
ss = []
x = inf

A = [6, 3, 5, 2, 7]
ss = [8]
x = 8

A = [6, 3, 5, 2]
ss = [7, 8]

x = 7

A = [6, 3, 5]
ss = [2, 7, 8]

x = 2

A = [6, 3]
ss = [2, 7, 8]

x = 2

A = [6]
ss = [2, 7, 8]

x = 2

A = []
ss = [2, 7, 8]

x = 2

A = [6, 3, 5]
ss = [7, 8]

x = 7

A = [6, 3]
ss = [5, 7, 8]

x = 5

A = [6]
ss = [3, 5, 7, 8]

x = 3

A = []
ss = [3, 5, 7, 8]

x = 3

A = [6]
ss = [5, 7, 8]

x = 5

A = []
ss = [5, 7, 8]

x = 5

A = [6, 3]
ss = [7, 8]

x = 7

A = [6]
ss = [3, 7, 8]

x = 3

A = []
ss = [3, 7, 8]

x = 3

A = [6]
ss = [7, 8]

x = 7

A = []
ss = [6, 7, 8]

x = 6

A = []
ss = [7, 8]

x = 7

A = [6, 3, 5, 2]
ss = [8]
x = 8

A = [6, 3, 5]
ss = [2, 8]

x = 2

A = [6, 3]
ss = [2, 8]

x = 2

A = [6]
ss = [2, 8]

x = 2

A = []
ss = [2, 8]

x = 2

A = [6, 3, 5]
ss = [8]
x = 8

A = [6, 3]
ss = [5, 8]

x = 5

A = [6]
ss = [3, 5, 8]

x = 3

A = []
ss = [3, 5, 8]

x = 3

A = [6]
ss = [5, 8]

x = 5

A = []
ss = [3, 5, 8]

x = 3

A = [6, 3]
ss = [8]
x = 8

A = [6]
ss = [3, 8]

x = 3

A = []
ss = [3, 8]

x = 3

A = [6]
ss = [8]
x = 8

A = []
ss = [6, 8]

x = 6

A = []
ss = [8]
x = 8

A = [6, 3, 5, 2, 7]
ss = []
x = inf

A = [6, 3, 5, 2]
ss = [7]
x = 7

A = [6, 3, 5]
ss = [2, 7]

x = 2

A = [6, 3]
ss = [2, 7]

x = 2

A = [6]
ss = [2, 7]

x = 2

A = []
ss = [2, 7]

x = 2

A = [6, 3, 5]
ss = [7]
x = 7

A = [6, 3]
ss = [5, 7]

x = 5

A = [6]
ss = [3, 5, 7]

x = 3

A = []
ss = [3, 5, 7]

x = 3

A = [6]
ss = [5, 7]

x = 5

A = []
ss = [5, 7]

x = 5

A = [6, 3]
ss = [7]
x = 7

A = [6]
ss = [3, 7]

x = 3

A = []
ss = [3, 7]

x = 3

A = [6]
ss = [7]
x = 7

A = []
ss = [6, 7]

x = 6

A = []
ss = [7]
x = 7

A = [6, 3, 5, 2]
ss = []
x = inf

A = [6, 3, 5]
ss = [2]
x = 2

A = [6, 3]
ss = [2]
x = 2

A = [6]
ss = [2]
x = 2

A = []
ss = [2]
x = 2

A = [6, 3, 5]
ss = []
x = inf

A = [6, 3]
ss = [5]
x = 5

A = [6]
ss = [3, 5]

x = 3

A = []
ss = [3, 5]

x = 3

A = [6]
ss = [5]
x = 5

A = []
ss = [5]
x = 5

A = [6, 3]
ss = []
x = inf

A = [6]
ss = [3]
x = 3

A = []
ss = [3]
x = 3

A = [6]
ss = []
x = inf

A = []
ss = [6]
x = 6

A = []
ss = []
x = inf
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Recursive Approach

LIS_smaller(A[1..n], x) : length of longest increasing subsequence in A[1..n] with all
numbers in subsequence less than x

LIS_smaller(A[1..n], x):
if (n = 0) then return 0
m = LIS_smaller(A[1..(n � 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS_smaller(A[1..(n � 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS_smaller(A[1..n],•)

28



Running time analysis



Running time of LIS([1..n])

LIS_smaller(A[1..n], x):
if (n = 0) then return 0
m = LIS_smaller(A[1..(n � 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS_smaller(A[1..(n � 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS_smaller(A[1..n],•)
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Running time of LIS([1..n])

Lemma
LIS_smaller runs in O(2n) time.

Improvement: From O(n2n) to O(2n).

....one can do much better using memorization!
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