Pre-lecture brain teaser

Write a (very simple) recursive algorithm that calcuates the Fibonnacci n^{th} number.

$$F_n = F_{n-1} + F_{n-2}$$
 where $F_0 = 0, F_1 = 1$

ECE-374-B: Lecture 12 - Dynamic Programming I

Instructor: Nickvash Kani

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

Write a (very simple) recursive algorithm that calcuates the Fibonnacci *n*th number.

$$F_n = F_{n-1} + F_{n-2}$$
 where $F_0 = 0, F_1 = 1$

Recursion and Memoization

Fibonacci Numbers

Fibonacci numbers defined by recurrence:

$$F(n) = F(n-1) + F(n-2)$$
 and $F(0) = 0, F(1) = 1$.

These numbers have many interesting properties. A journal <u>The Fibonacci</u> Quarterly¹!

Fibonacci Numbers

Fibonacci numbers defined by recurrence:

$$F(n) = F(n-1) + F(n-2)$$
 and $F(0) = 0, F(1) = 1$.

These numbers have many interesting properties. A journal <u>The Fibonacci</u> <u>Quarterly</u>¹!

- Binet's formula: $F(n) = \frac{\varphi^n (1-\varphi)^n}{\sqrt{5}} \approx \frac{1.618^n (-0.618)^n}{\sqrt{5}} \approx \frac{1.618^n}{\sqrt{5}}$ φ is the golden ratio $(1+\sqrt{5})/2 \simeq 1.618$.
- $\lim_{n\to\infty} F(n+1)/F(n) = \varphi$

Question: Given n, compute F(n).

```
Fib(n):

if (n = 0)

return 0

else if (n = 1)

return 1

else

return Fib(n - 1) + Fib(n - 2)
```

Question: Given n, compute F(n).

```
Fib(n):

if (n = 0)

return 0

else if (n = 1)

return 1

else

return Fib(n-1) + Fib(n-2)
```

Running time? Let T(n) be the number of additions in Fib(n). $^{-1}$

Question: Given n, compute F(n).

```
Fib(n):

if (n = 0)

return 0

else if (n = 1)

return 1

else

return Fib(n - 1) + Fib(n - 2)
```

Running time? Let T(n) be the number of additions in Fib(n).

$$T(n) = T(n-1) + T(n-2) + 1$$
 and $T(0) = T(1) = 0$

Question: Given n, compute F(n).

```
Fib(n):

if (n = 0)

return 0

else if (n = 1)

return 1

else

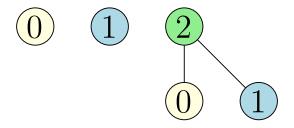
return Fib(n - 1) + Fib(n - 2)
```

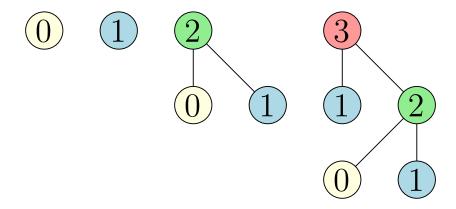
Running time? Let T(n) be the number of additions in Fib(n).

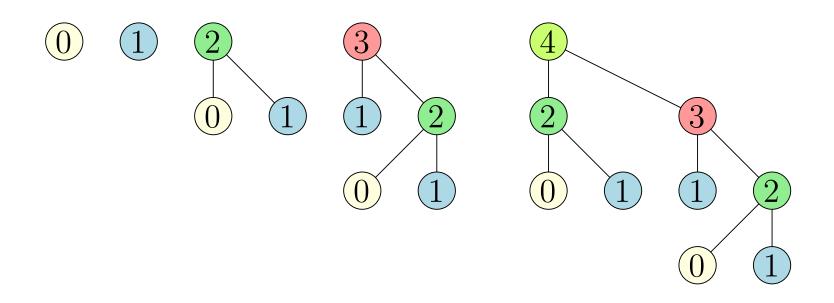
$$T(n) = T(n-1) + T(n-2) + 1$$
 and $T(0) = T(1) = 0$

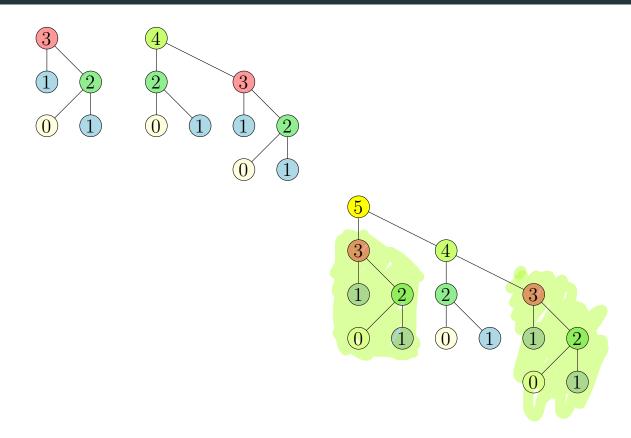
Roughly same as
$$F(n)$$
: $T(n) = \Theta(\varphi^n)$.

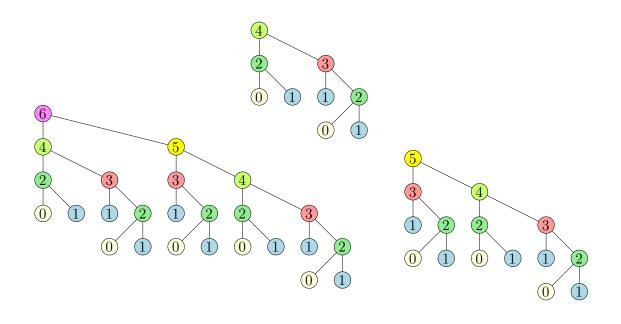
The number of additions is exponential in n. Can we do better?

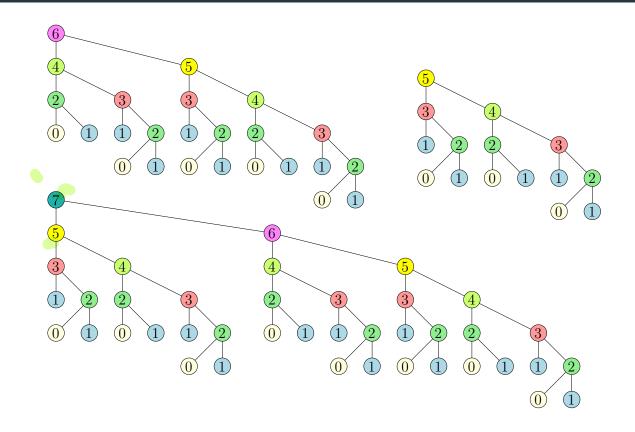












An iterative algorithm for Fibonacci numbers

```
FibIter(n):
    if (n = 0) then
         return 0
    if (n = 1) then
         return 1
    F[0] = 0
    F[1] = 1
    for i = 2 to n do
         F[i] = F[i-1] + F[i-2]
     return F[n]
```

An iterative algorithm for Fibonacci numbers

```
FibIter(n):
    if (n = 0) then
         return 0
    if (n = 1) then
         return 1
    F[0] = 0
    F[1] = 1
    for i = 2 to n do
         F[i] = F[i-1] + F[i-2]
     return F[n]
```

What is the running time of the algorithm?

An iterative algorithm for Fibonacci numbers

```
FibIter(n):
    if (n = 0) then
         return 0
    if (n = 1) then
         return 1
    F[0] = 0
    F[1] = 1
    for i = 2 to n do
         F[i] = F[i-1] + F[i-2]
     return F[n]
```

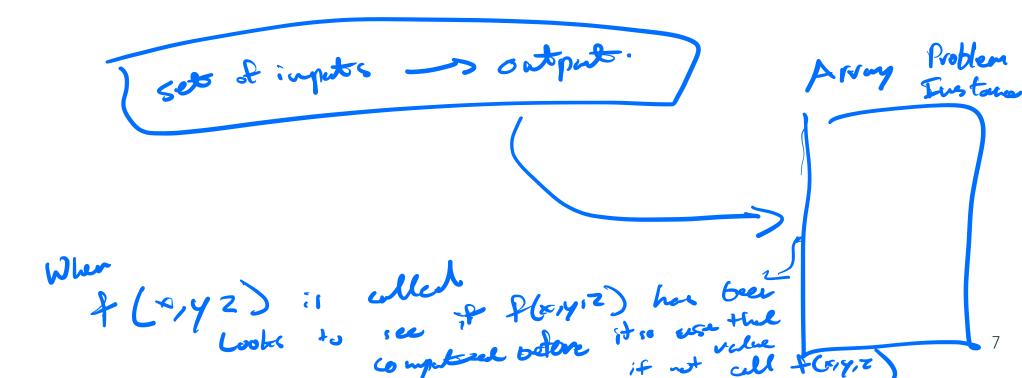
What is the running time of the algorithm? O(n) additions.

What is the difference?

- · Recursive algorithm is computing the same numbers again and again.
- Iterative algorithm is storing computed values and building bottom up the final value.

What is the difference?

- · Recursive algorithm is computing the same numbers again and again.
- Iterative algorithm is storing computed values and building bottom up the final value. Memoization.



What is the difference?

- · Recursive algorithm is computing the same numbers again and again.
- Iterative algorithm is storing computed values and building bottom up the final value. Memoization.

Dynamic Programming: Finding a recursion that can be effectively/efficiently memorized.

Leads to polynomial time algorithm if number of sub-problems is polynomial in input size.

Automatic/implicit memoization

Automatic Memorization

Can we convert recursive algorithm into an efficient algorithm without explicitly doing an iterative algorithm?

Automatic Memorization

Can we convert recursive algorithm into an efficient algorithm without explicitly doing an iterative algorithm?

```
Fib(n):
    if (n = 0)
        return 0
    if (n = 1)
        return 1
    if (Fib(n) was previously computed)
        return stored value of Fib(n)
    else
        return Fib(n - 1) + Fib(n - 2)
```

How do we keep track of previously computed values? Two methods: explicitly and implicitly (via data structure)

Automatic implicit memoization

Initialize a (dynamic) dictionary data structure *D* to empty

```
Fib(n):
         if (n = 0)
              return 0
         if (n = 1)
              return 1
         if (n is already in D)
              return value stored with n in D
         val \leftarrow Fib(n-1) + Fib(n-2)
         Store (n, val) in D
         return val
```

Use hash-table or a map to remember which values were already computed.

Explicit memoization (not automatic)

- Initialize table/array M of size n: M[i] = -1 for i = 0, ..., n.
- Resulting code:

```
Fib(n):

if (n = 0)

return 0

if (n = 1)

return 1

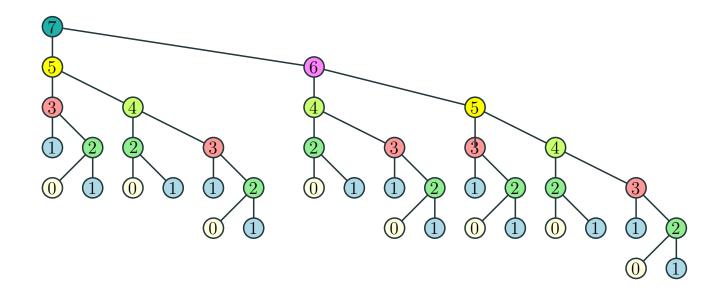
if (M[n] \neq -1) // M[n]: stored value of Fib(n)

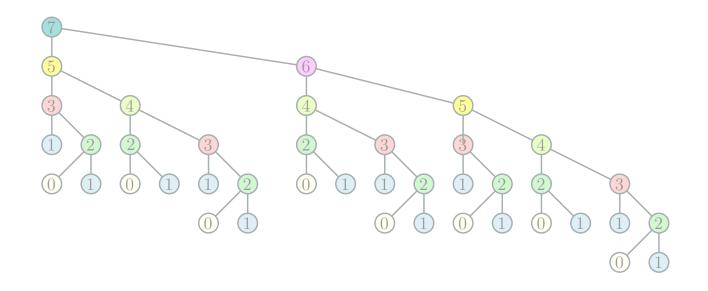
return M[n]

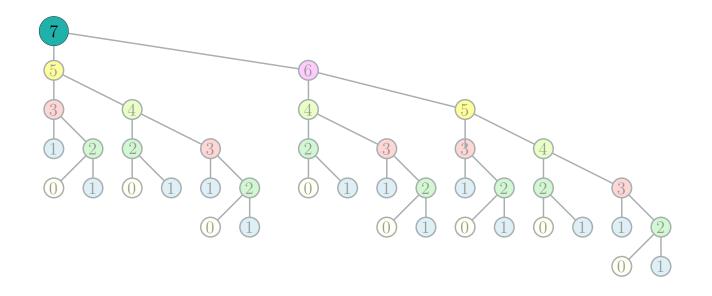
M[n] \Leftarrow Fib(n - 1) + Fib(n - 2)

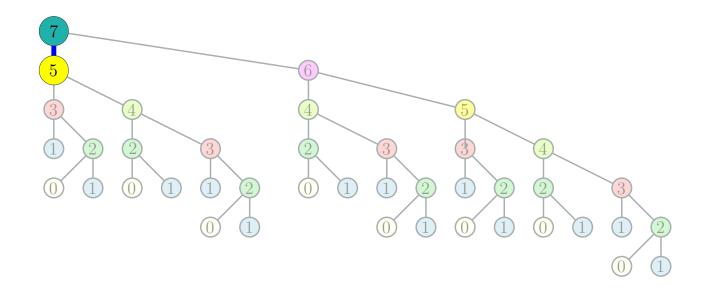
return M[n]
```

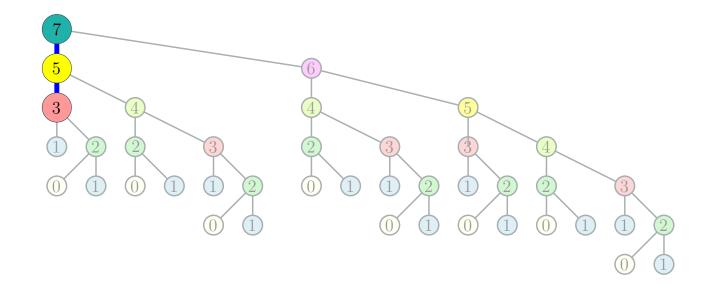
Need to know upfront the number of sub-problems to allocate memory.

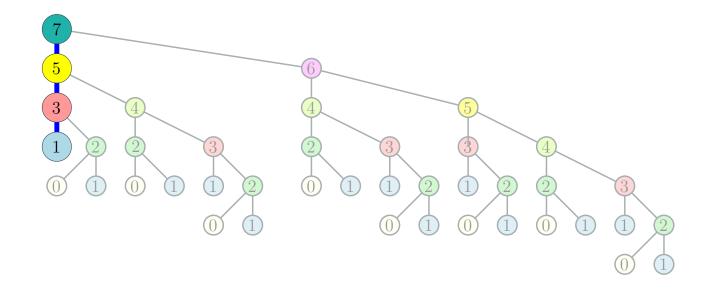


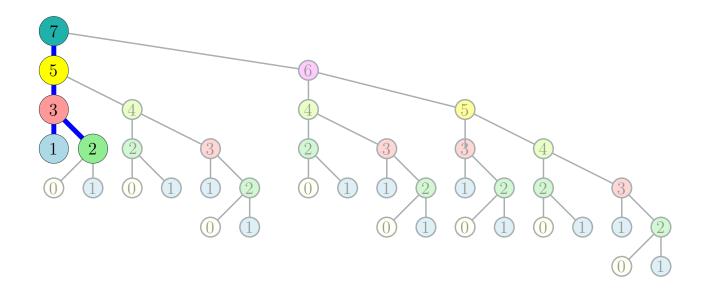


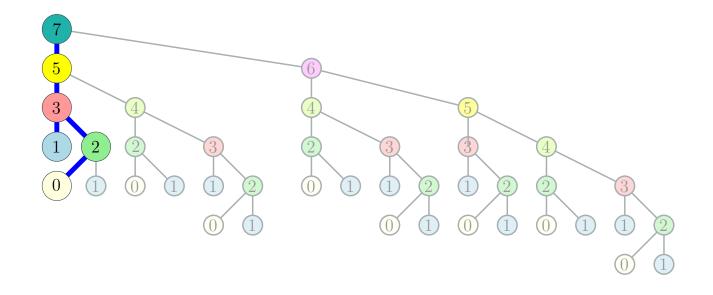


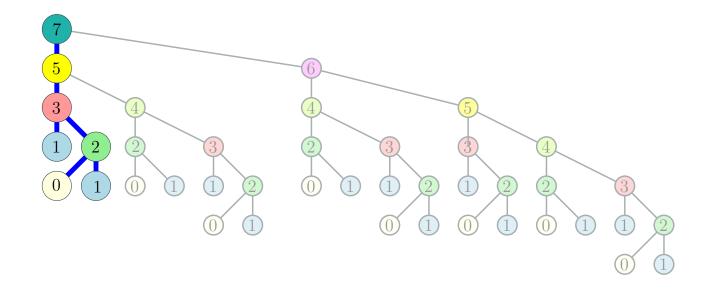


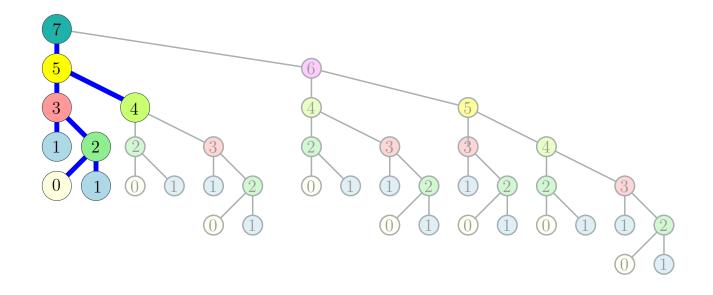


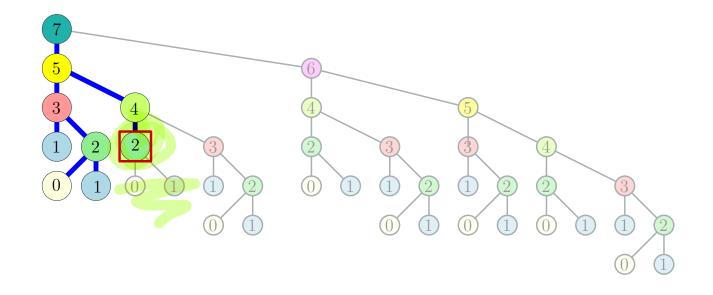


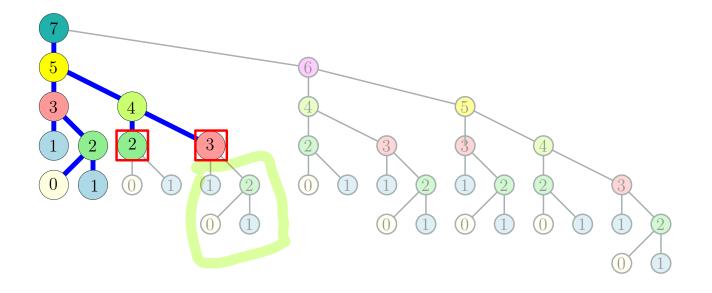


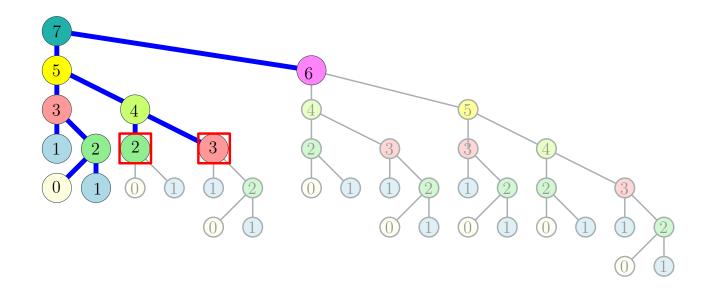


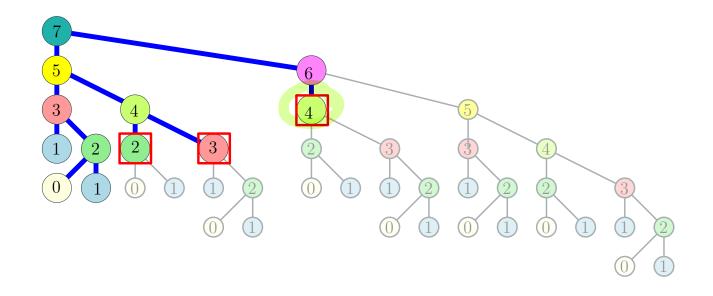


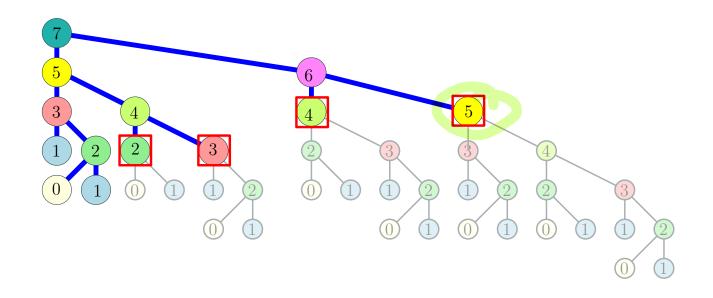












Dynamic programming

Removing the recursion by filling the table in the right order

```
Fib(n):

if (n = 0)

return 0

if (n = 1)

return 1

if (M[n] \neq -1)

return M[n]

M[n] \Leftarrow Fib(n - 1) + Fib(n - 2)

return M[n]
```

```
FibIter(n):
    if (n=0) then
         return 0
    if (n=1) then
         return 1
    F[0] = 0
    F[1] = 1
    for i = 2 to n do
         F[i] = F[i-1] + F[i-2]
    return F[n]
```

Dynamic programming: Saving space!

Saving space. Do we need an array of *n* numbers? Not really.

```
FibIter(n):
    if (n = 0) then
          return 0
    if (n = 1) then
          return 1
    F[0] = 0
    F[1] = 1
    for i = 2 to n do
         F[i] = F[i-1] + F[i-2]
     return F[n]
```

```
FibIter(n):
    if (n = 0) then
         return 0
    if (n = 1) then
          return 1
     prev2 = 0
     prev1 = 1
    for i = 2 to n do
         temp = prev1 + prev2
          prev2 = prev1
          prev1 = temp
     return prev1
```

Dynamic programming – quick review

Dynamic Programming is smart recursion

Dynamic programming – quick review

Dynamic Programming is smart recursion

+ explicit memorization

Dynamic programming – quick review

Dynamic Programming is smart recursion

- + explicit memorization
- + filling the table in right order
- + removing recursion.

Suppose we have a recursive program foo(x) that takes an input x. $\bigcirc \subseteq X \subseteq \sim$

• On input of size n the number of distinct sub-problems that foo(x) generates foo(x) pends at most B(n) time not counting the time for its recursive calls. 700 (x) § find all poths from 0 to m? Zh x for (y < u)

Suppose we have a recursive program foo(x) that takes an input x.

- On input of size n the number of <u>distinct</u> sub-problems that foo(x) generates is at most A(n)
- foo(x) spends at most B(n) time not counting the time for its recursive calls.

Suppose we memorize the recursion.

Assumption: Storing and retrieving solutions to pre-computed problems takes O(1) time.

Suppose we have a recursive program foo(x) that takes an input x.

- On input of size n the number of distinct sub-problems that foo(x) generates is at most A(r)
- foo(x) spends at most B(n) me not counting the time for its recursive calls.

Suppose we memorize the recursion.

Assumption: Storing and retrieving solutions to pre-computed problems takes O(1) time.

Q: What is an upper bound on the running time of memorized version of foo(x) if

$$|x| = n$$
?

Suppose we have a recursive program foo(x) that takes an input x.

- On input of size n the number of distinct sub-problems that foo(x) generates is at most A(n)
- foo(x) spends at most B(n) time not counting the time for its recursive calls.

Suppose we memorize the recursion.

Assumption: Storing and retrieving solutions to pre-computed problems takes O(1) time.

Q: What is an upper bound on the running time of memorized version of foo(x) if

$$|x| = n$$
? $O(A(n)B(n))$.

Fibonacci numbers are big -

corrected running time analysis

Back to Fibonacci Numbers

T Is the iterative algorithm a polynomial time algorithm? Does it take O(n) time?

- input is n and hence input size is $\Theta(\log n)$
- output is F(n) and output size is $\Theta(n)$. Why?
- Hence output size is exponential in input size so no polynomial time algorithm possible!
- Running time of iterative algorithm: $\Theta(n)$ additions but number sizes are O(n) bits long! Hence total time is $O(n^2)$, in fact $\Theta(n^2)$. Why?

Longest Increasing Sub-sequence

Revisited

Sequences

Definition

<u>Sequence</u>: an ordered list a_1, a_2, \ldots, a_n . <u>Length</u> of a sequence is number of elements in the list.

Definition

 a_{i_1}, \ldots, a_{i_k} is a <u>sub-sequence</u> of a_1, \ldots, a_n if $1 \le i_1 < i_2 < \ldots < i_k \le n$.

Definition

A sequence is <u>increasing</u> if $a_1 < a_2 < ... < a_n$. It is <u>non-decreasing</u> if $a_1 \le a_2 \le ... \le a_n$. Similarly <u>decreasing</u> and <u>non-increasing</u>.

Sequences - Example...

Example

- Sequence: 6, 3, 5, 2, 7, 8, 1
- Subsequence of above sequence: 5, 2, 1
- Increasing sequence: 3, 5, 9, 17, 54
- Decreasing sequence: 34, 21, 7, 5, 1
- Increasing subsequence of the first sequence: 2, 7, 8.
- Longest Increasing subsequence of the first sequence: 3, 5, 7, 8.

Longest Increasing Subsequence Problem

Input A sequence of numbers a_1, a_1, \ldots, a_n

Goal Find an <u>increasing subsequence</u> $a_{i_0}, a_{i_1}, \ldots, a_{i_k}$ of maximum length

Longest Increasing Subsequence Problem

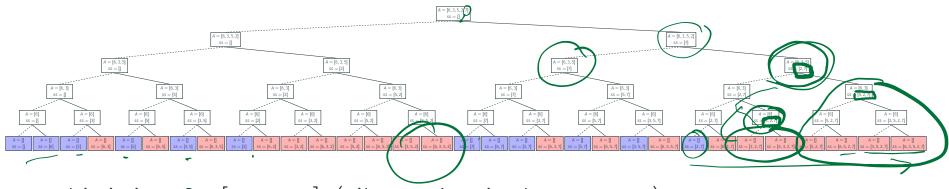
Input A sequence of numbers $a_0, a_1, \ldots, a_{n-1}$

Goal Find an increasing subsequence $a_{i_0}, a_{i_1}, \ldots, a_{i_k}$ of maximum length

Example

- Sequence: 6, 3, 5, 2, 7, 8, 1
- Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc
- Longest increasing subsequence: 3, 5, 7, 8

Naive Recursion Enumeration - State Tree



- This is just for [6,3,5,2,7]! (Tikz won't print larger trees)
- How many leafs are there for the full [6,3,5,2,7, 8, 1] sequence
- What is the running time?

Naive Recursion Enumeration - Code

Assume a_1, a_2, \ldots, a_n is contained in an array A

Running time: Q(n))

 2^n subsequences of a sequence of length n and O(n) ime to check if a given sequence is increasing.

Backtracking Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

Backtracking Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

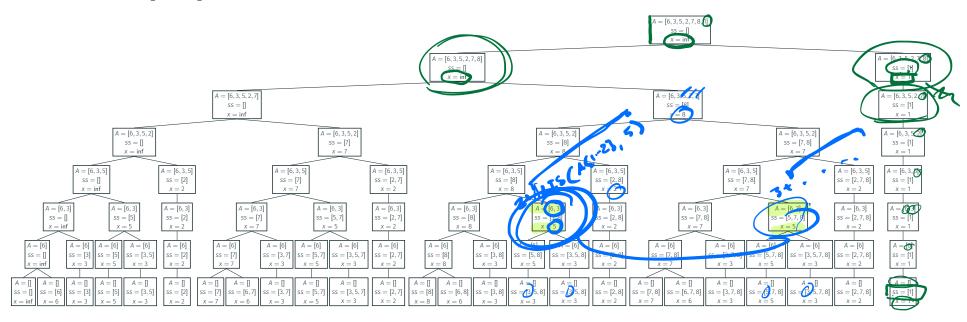
- Case 1: Does not contain A[n-1] in which case LIS(A[0..n-1]) =
 - LIS(A[0..(n-1)])
- Case 2: contains A[n-1] in which case LIS((2n-1)) is not so clear.

Observation

For second case we want to find a subsequence in A[1..(n-2)] that is restricted to numbers less than A[n-1]. This suggests that a more general problem is LIS_smaller(A[0..n-1) which gives the longest increasing subsequence in A where each number in the sequence is less than x.

Example

Sequence: A[0..6] = 6, 3, 5, 2, 7, 8, 1



LIS(A[1..n]): the length of longest increasing subsequence in A

LIS_smaller(A[1..n], x): length of longest increasing subsequence in A[1..n] with all numbers in subsequence less than x

```
LIS_smaller(A[1..i], x):

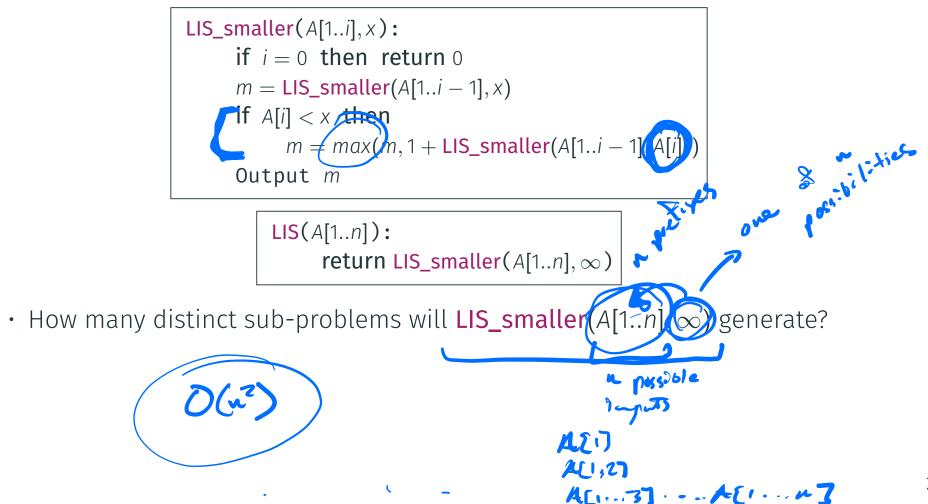
if i = 0 then return 0

m = LIS_smaller(A[1..i - 1], x)

if A[i] < x then

m = max(m, 1 + LIS_smaller(A[1..i - 1], A[i]))
Output m
```

```
LIS(A[1..n]):
return LIS_smaller(A[1..n], \infty)
```

```
LIS_smaller(A[1..i], x):

if i = 0 then return 0

m = LIS_smaller(A[1..i - 1], x)

if A[i] < x then

m = max(m, 1 + LIS_smaller(A[1..i - 1], A[i]))
Output m
```

```
LIS(A[1..n]):
return LIS_smaller(A[1..n], \infty)
```

• How many distinct sub-problems will LIS_smaller(A[1..n], ∞) generate? $O(n^2)$

```
LIS_smaller(A[1..i], x):

if i = 0 then return 0

m = LIS_smaller(A[1..i - 1], x)

if A[i] < x then

m = max(m, 1 + LIS_smaller(A[1..i - 1], A[i]))
Output m
```

```
LIS(A[1..n]):
return LIS_smaller(A[1..n], \infty)
```

- How many distinct sub-problems will LIS_smaller($A[1..n], \infty$) generate? $O(n^2)$
- What is the running time if we memorize recursion?

```
LIS_smaller(A[1..i], x):

if i = 0 then return 0

m = LIS_smaller(A[1..i - 1], x)

if A[i] < x then

m = max(m, 1 + LIS_smaller(A[1..i - 1], A[i]))
Output m
```

```
LIS(A[1..n]):
return LIS_smaller(A[1..n], \infty)
```

- How many distinct sub-problems will LIS_smaller($A[1..n], \infty$) generate? $O(n^2)$
- What is the running time if we memorize recursion? $O(n^2)$ since each call takes O(1) time to assemble the answers from to recursive calls and no other computation.

```
LIS_smaller(A[1..i], x):

if i = 0 then return 0

m = LIS_smaller(A[1..i - 1], x)

if A[i] < x then

m = max(m, 1 + LIS_smaller(A[1..i - 1], A[i]))
Output m
```

```
LIS(A[1..n]):
return LIS_smaller(A[1..n], \infty)
```

- How many distinct sub-problems will LIS_smaller($A[1..n], \infty$) generate? $O(n^2)$
- What is the running time if we memorize recursion? $O(n^2)$ since each call takes O(1) time to assemble the answers from to recursive calls and no other computation.
- How much space for memorization?

Recursive Approach

```
LIS_smaller(A[1..i], x):

if i = 0 then return 0

m = \text{LIS\_smaller}(A[1..i-1], x)

if A[i] < x then

m = max(m, 1 + \text{LIS\_smaller}(A[1..i-1], A[i]))

Output m

LIS(A[1..n]):

return LIS_smaller(A[1..n], \infty)
```

- How many distinct sub-problems will LIS_smaller($A[1..n], \infty$) generate? $O(n^2)$
- What is the running time if we memorize recursion? $O(n^2)$ since each call takes O(1) time to assemble the answers from to recursive calls and no other computation.
- How much space for memorization? $O(n^2)^{\ell}$

Naming sub-problems and recursive equation

After seeing that number of sub-problems is $O(n^2)$ we name them to help us understand the structure better. For notational ease we add ∞ at end of array (in position n+1)

LIS(i,j): length of longest increasing sequence in A[1..i] among numbers less than A[j] (defined only for i < j)

29

Naming sub-problems and recursive equation

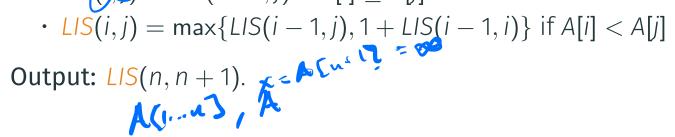
After seeing that number of sub-problems is $O(n^2)$ we name them to help us understand the structure better. For notational ease we add ∞ at end of array (in position n+1)

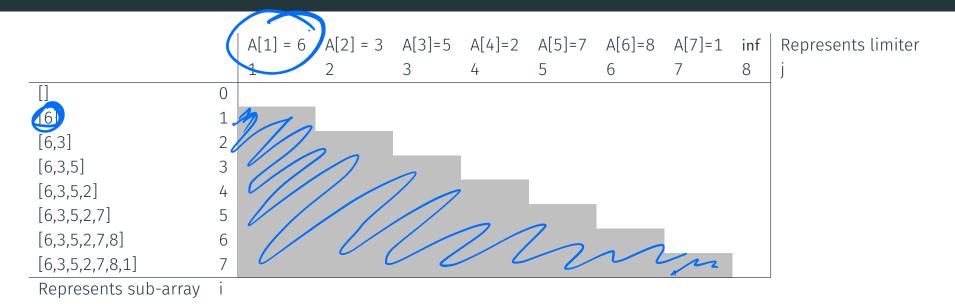
LIS(i,j): length of longest increasing sequence in A[1..i] among numbers less than A[j] (defined only for i < j)

Base case: LIS(0,j) = 0 for $1 \le j \le n+1$

Recursive relation:

- LIS(i,j) = LIS(i 1, j) if $A[i] \ge A[j]$

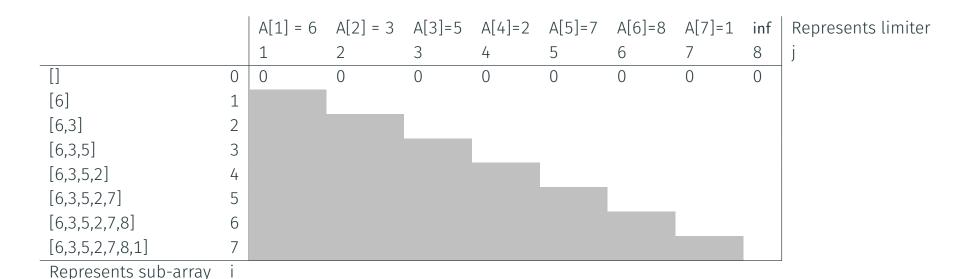




Sequence:
$$A[1...7]$$

= $[6,3,5,2,7,8,1]$

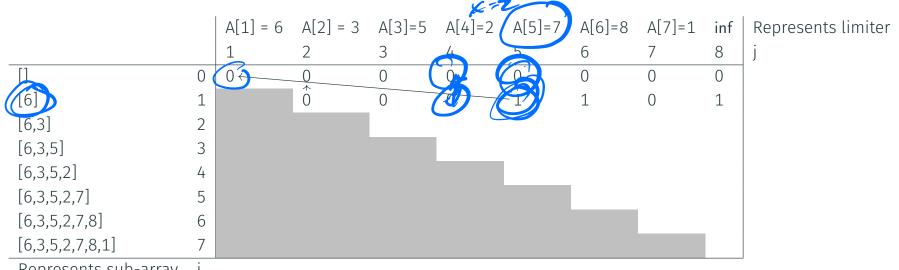
$$LIS(i,j) = \begin{cases} 0 & i = 0 \\ LIS(i-1,j) & A[i] \ge A[j] \\ \max \begin{cases} LIS(i-1,j) & A[i] < A[j] \\ 1 + LIS(i-1,i) \end{cases} \end{cases}$$



Sequence:
$$A[1...7]$$

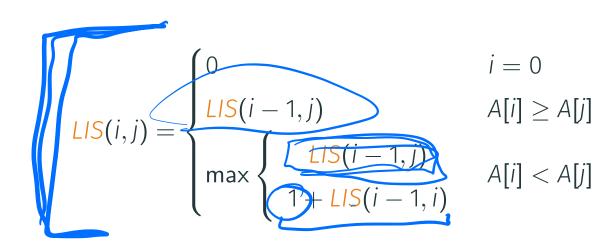
= $[6, 3, 5, 2, 7, 8, 1]$

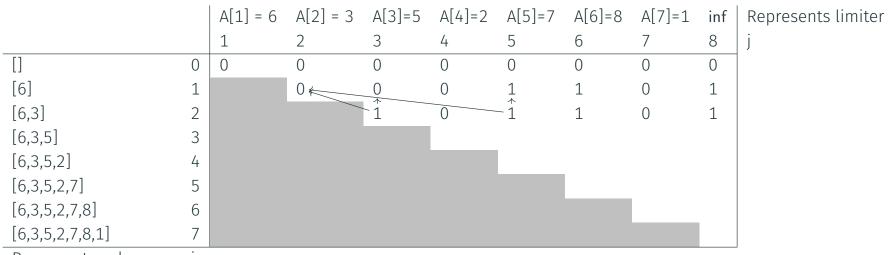
$$LIS(i,j) = \begin{cases} 0 & i = 0 \\ LIS(i-1,j) & A[i] \ge A[j] \\ \max \begin{cases} LIS(i-1,j) & A[i] < A[j] \\ 1 + LIS(i-1,i) \end{cases} \end{cases}$$



Represents sub-array

Sequence: A[1...7]= [6,3,5,2,7,8,1]



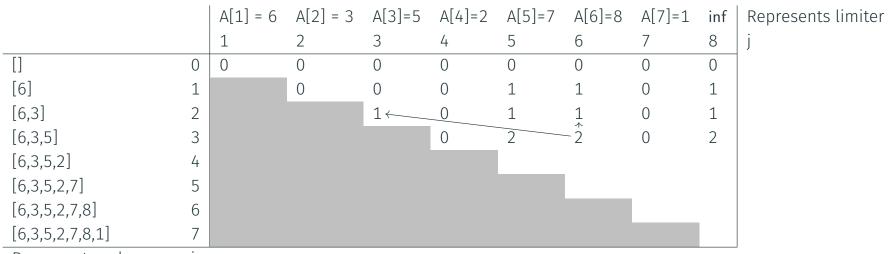


Represents sub-array

Sequence:
$$A[1...7]$$

= $[6,3,5,2,7,8,1]$

$$LIS(i,j) = \begin{cases} 0 & i = 0 \\ LIS(i-1,j) & A[i] \ge A[j] \\ \max \begin{cases} LIS(i-1,j) & A[i] < A[j] \\ 1 + LIS(i-1,i) \end{cases} \end{cases}$$



Represents sub-array

Sequence:
$$A[1...7]$$

= $[6,3,5,2,7,8,1]$

$$LIS(i,j) = \begin{cases} 0 & i = 0 \\ LIS(i-1,j) & A[i] \ge A[j] \\ \max \begin{cases} LIS(i-1,j) & A[i] < A[j] \\ 1 + LIS(i-1,i) \end{cases} \end{cases}$$

		A[1] = 6	A[2] = 3	A[3]=5	A[4]=2	A[5]=7	A[6]=8	A[7]=1	inf	Represents limiter
		1	2	3	4	5	6	7	8	j
[]	0	0	0	0	0	0	0	0	0	
[6]	1		0	0	0	1	1	0	1	
[6,3]	2			1	0	1	1	0	1	
[6,3,5]	3				0	2	2	0	2	
[6,3,5,2]	4					2	2	0	2	
[6,3,5,2,7]	5									
[6,3,5,2,7,8]	6									
[6,3,5,2,7,8,1]	7									

Sequence:
$$A[1...7]$$

= $[6,3,5,2,7,8,1]$

Represents sub-array i

$$LIS(i,j) = \begin{cases} 0 & i = 0 \\ LIS(i-1,j) & A[i] \ge A[j] \\ \max \begin{cases} LIS(i-1,j) & A[i] < A[j] \\ 1 + LIS(i-1,i) \end{cases} \end{cases}$$

		A[1] = 6	A[2] = 3	A[3]=5	A[4]=2	A[5]=7	A[6]=8	A[7]=1	inf	Represents limiter
		1	2	3	4	5	6	7	8	j
[]	0	0	0	0	0	0	0	0	0	
[6]	1		0	0	0	1	1	0	1	
[6,3]	2			1	0	1	1	0	1	
[6,3,5]	3				0	2	2	0	2	
[6,3,5,2]	4					2	2	0	2	
[6,3,5,2,7]	5						3	0	3	
[6,3,5,2,7,8]	6									
[6,3,5,2,7,8,1]	7									

Represents sub-array i

Sequence:
$$A[1...7]$$

= $[6,3,5,2,7,8,1]$

$$LIS(i,j) = \begin{cases} 0 & i = 0 \\ LIS(i-1,j) & A[i] \ge A[j] \\ \max \begin{cases} LIS(i-1,j) & A[i] < A[j] \\ 1 + LIS(i-1,i) \end{cases} \end{cases}$$

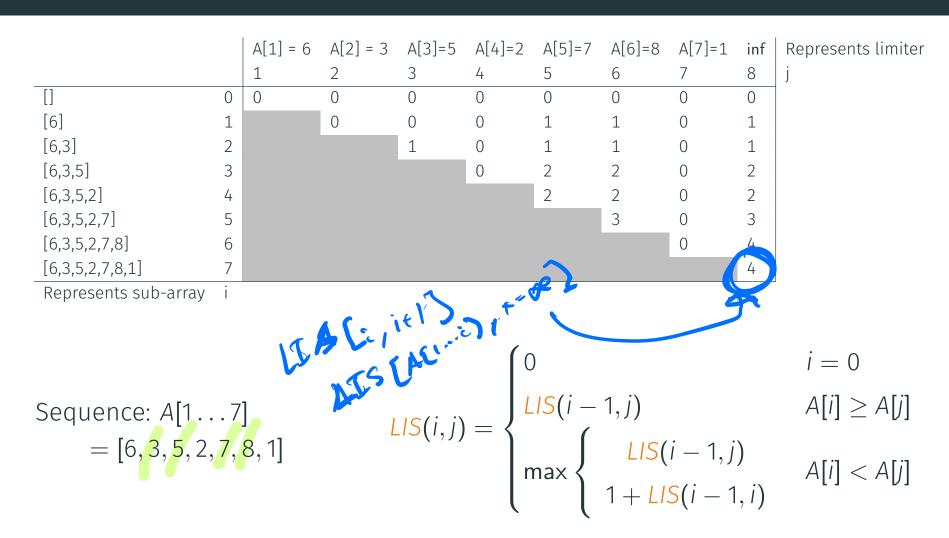
		A[1] = 6	A[2] = 3	A[3]=5	A[4]=2	A[5]=7	A[6]=8	A[7]=1	inf	Represents limite
		1	2	3	4	5	6	7	8	j
[]	0	0	0	0	0	0	0	0	0	
[6]	1		0	0	0	1	1	0	1	
[6,3]	2			1	0	1	1	0	1	
[6,3,5]	3				0	2	2	0	2	
[6,3,5,2]	4					2	2	0	2	
[6,3,5,2,7]	5						3	0	3	
[6,3,5,2,7,8]	6							0	4	
[6,3,5,2,7,8,1]	7									

Represents sub-array i

Sequence:
$$A[1...7]$$

= $[6, 3, 5, 2, 7, 8, 1]$

$$LIS(i,j) = \begin{cases} 0 & i = 0 \\ LIS(i-1,j) & A[i] \ge A[j] \\ \max \begin{cases} LIS(i-1,j) & A[i] < A[j] \\ 1 + LIS(i-1,i) \end{cases} \end{cases}$$



Iterative algorithm

The dynamic program for longest increasing subsequence

```
LIS-Iterative(A[1..n]):
     A[n+1]=\infty
     int LIS[0..n-1,0..n]
     for j = 0...n) if A[i] < A[j] then LIS[0][j] = 1
     for i = 1...n - 1 do
          for j = i ... n - 1 do
                if (A[i] \geq A[j])
                     LIS[i,j] = LIS[i-1,j]
                else
                      LIS[i, j] = max(LIS[i - 1, j], 1 + LIS[i - 1, i])
     Return LIS[n, n + 1]
```

Running time: $O(n^2)$

Space: $O(n^2)$

Iterative algorithm

The dynamic program for longest increasing subsequence

```
LIS-Iterative(A[1..n]):
     A[n+1]=\infty
     int LIS[0..n-1,0..n]
     for j = 0...n) if A[i] \leq A[j] then LIS[0][j] = 1
     for i = 1...n - 1 do
          for j = i ... n - 1 do
                if (A[i] \geq A[j])
                      LIS[i,j] = LIS[i-1,j]
                else
                      LIS[i, j] = max(LIS[i - 1, j], 1 + LIS[i - 1, i])
     Return LIS[n, n + 1]
```

Running time: $O(n^2)$

Space: $O(n^2)$ Can be done in linear space. How?

Finding the sub-sequence

Represents sub-array i

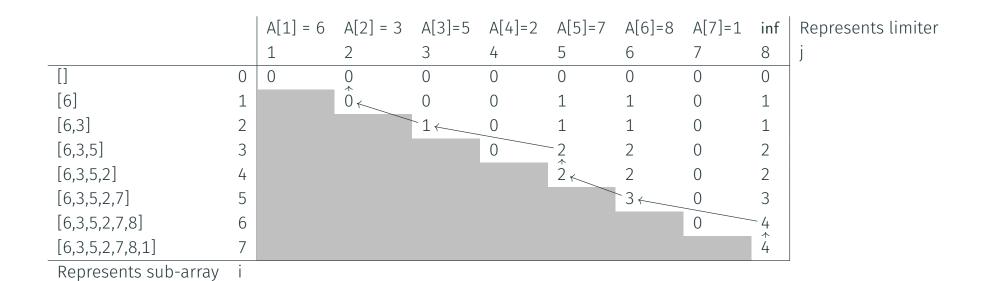
Sequence:
$$A[1...7]$$

= $[6,3,5,2,7,8,1]$

We know the LIS length
(4) but how do we find
the LIS itself?

$$LIS(i,j) = \begin{cases} 0 & i = 0 \\ LIS(i-1,j) & A[i] \ge A[j] \\ \max \begin{cases} LIS(i-1,j) & A[i] < A[j] \\ 1 + LIS(i-1,i) \end{cases} \end{cases}$$

Finding the sub-sequence



Sequence:
$$A[1...7]$$

= $[6,3,5,2,7,8,1]$

We know the LIS length (4) but how do we find the LIS itself?

$$LIS(i,j) = \begin{cases} 0 & i = 0 \\ LIS(i-1,j) & A[i] \ge A[j] \\ \max \begin{cases} LIS(i-1,j) & A[i] < A[j] \\ 1 + LIS(i-1,i) \end{cases} \end{cases}$$

Two comments

Question: Can we compute an optimum solution and not just its value? Yes!

Question: Is there a faster algorithm for LIS?

Yes! Using a different recursion and optimizing one can obtain an $O(n \log n)$ time and O(n) space algorithm. $O(n \log n)$ time is not obvious. Depends on improving time by using data structures on top of dynamic programming.

How to come up with dynamic

programming algorithm: summary

Dynamic Programming

- Find a "smart" recursion for the problem in which the number of distinct sub-problems is small; polynomial in the original problem size.
- Estimate the number of sub-problems, the time to evaluate each sub-problem and the space needed to store the value.
- · Come up with an explicit memorization algorithm for the problem.
- ...need to find the right way or order the sub-problems evaluation. This leads to an a dynamic programming algorithm.
- Profit!

