


ECE-374-B: Lecture 13 - Dynamic Programming II

Instructor: Nickvash Kani

University of Illinois at Urbana-Champaign

0



Recipe for Dynamic Programming

1. Develop a recursive backtracking style algorithm A for given problem.
2. Identify structure of subproblems generated by A on an instance I of size n

2.1 Estimate number of different subproblems generated as a function of n. Is it
polynomial or exponential in n?

2.2 If the number of problems is “small” (polynomial) then they typically have some
“clean” structure.

3. Rewrite subproblems in a compact fashion.
4. Rewrite recursive algorithm in terms of notation for subproblems.
5. Convert to iterative algorithm by bottom up evaluation in an appropriate
order.

6. Optimize further with data structures and/or additional ideas.

1



Why is it called dynamic programming?

Dynamic programming was a technique “invented” by Richard Bellman. From his
autobiography:

I spent the Fall quarter (of 1950) at RAND. My first task was to find a name for multistage decision processes. An
interesting question is, Where did the name, dynamic programming, come from? The 1950s were not good years for
mathematical research. We had a very interesting gentleman in Washington named Wilson. He was Secretary of
Defense, and he actually had a pathological fear and hatred of the word research. I’m not using the term lightly;
I’m using it precisely. His face would suffuse, he would turn red, and he would get violent if people used the term
research in his presence. You can imagine how he felt, then, about the term mathematical. The RAND Corporation
was employed by the Air Force, and the Air Force had Wilson as its boss, essentially. Hence, I felt I had to do
something to shield Wilson and the Air Force from the fact that I was really doing mathematics inside the RAND
Corporation. What title, what name, could I choose? In the first place I was interested in planning, in decision
making, in thinking. But planning, is not a good word for various reasons. I decided therefore to use the word
“programming”. I wanted to get across the idea that this was dynamic, this was multistage, this was time-varying
I thought, lets kill two birds with one stone. Lets take a word that has an absolutely precise meaning, namely
dynamic, in the classical physical sense. It also has a very interesting property as an adjective, and that is it’s
impossible to use the word dynamic in a pejorative sense. Try thinking of some combination that will possibly give
it a pejorative meaning. It’s impossible. Thus, I thought dynamic programming was a good name. It was something
not even a Congressman could object to. So I used it as an umbrella for my activities.

2



Edit Distance and Sequence
Alignment



Spell Checking Problem

Given a string “exponen” that is not in the dictionary, how should a spell checker
suggest a nearby string?

What does nearness mean?

Question: Given two strings x1x2 . . . xn and y1y2 . . . ym what is a distance between
them?

Edit Distance: minimum number of “edits” to transform x into y.

3



Spell Checking Problem

Given a string “exponen” that is not in the dictionary, how should a spell checker
suggest a nearby string?

What does nearness mean?

Question: Given two strings x1x2 . . . xn and y1y2 . . . ym what is a distance between
them?

Edit Distance: minimum number of “edits” to transform x into y.

3



Spell Checking Problem

Given a string “exponen” that is not in the dictionary, how should a spell checker
suggest a nearby string?

What does nearness mean?

Question: Given two strings x1x2 . . . xn and y1y2 . . . ym what is a distance between
them?

Edit Distance: minimum number of “edits” to transform x into y.

3



Edit Distance

Definition
Edit distance between two words X and Y is the number of letter insertions, letter
deletions and letter substitutions required to obtain Y from X.

Example
The edit distance between FOOD and MONEY is at least 4:

FOOD → MOOD → MONOD → MONED → MONEY

4



Edit Distance: Alternate View

Alignment
Place words one on top of the other, with gaps in the first word indicating
insertions, and gaps in the second word indicating deletions.

F O O D
M O N E Y

Formally, an alignment is a set M of pairs (i, j) such that each index appears at
most once, and there is no “crossing”: i < i′ and i is matched to j implies i′ is
matched to j′ > j. In the above example, this is M = {(1, 1), (2, 2), (3, 3), (4, 5)}.
Cost of an alignment is the number of mismatched columns plus number of
unmatched indices in both strings.

5



Edit Distance: Alternate View

Alignment
Place words one on top of the other, with gaps in the first word indicating
insertions, and gaps in the second word indicating deletions.

F O O D
M O N E Y

Formally, an alignment is a set M of pairs (i, j) such that each index appears at
most once, and there is no “crossing”: i < i′ and i is matched to j implies i′ is
matched to j′ > j. In the above example, this is M = {(1, 1), (2, 2), (3, 3), (4, 5)}.

Cost of an alignment is the number of mismatched columns plus number of
unmatched indices in both strings.

5



Edit Distance: Alternate View

Alignment
Place words one on top of the other, with gaps in the first word indicating
insertions, and gaps in the second word indicating deletions.

F O O D
M O N E Y

Formally, an alignment is a set M of pairs (i, j) such that each index appears at
most once, and there is no “crossing”: i < i′ and i is matched to j implies i′ is
matched to j′ > j. In the above example, this is M = {(1, 1), (2, 2), (3, 3), (4, 5)}.
Cost of an alignment is the number of mismatched columns plus number of
unmatched indices in both strings.

5



Edit Distance Problem

Problem
Given two words, find the edit distance between them, i.e., an alignment of
smallest cost.

6



Applications

• Spell-checkers and Dictionaries
• Unix diff
• DNA sequence alignment . . . but, we need a new metric

7



Sequence alignment problem - Similarity Metric

Definition
For two strings X and Y , the cost of alignment M is

• [Gap penalty] For each gap in the alignment, we incur a cost δ.
• [Mismatch cost] For each pair p and q that have been matched in M, we incur
cost αpq; typically αpp = 0.

Edit distance is special case when δ = αpq = 1.

8



Sequence alignment problem - Similarity Metric

Definition
For two strings X and Y , the cost of alignment M is

• [Gap penalty] For each gap in the alignment, we incur a cost δ.
• [Mismatch cost] For each pair p and q that have been matched in M, we incur
cost αpq; typically αpp = 0.

Edit distance is special case when δ = αpq = 1.

8



Edit distance as alignment



An Example

Example
o c u r r a n c e
o c c u r r e n c e Cost = δ + αae

Alternative:

o c u r r a n c e
o c c u r r e n c e Cost = 3δ

Or a really stupid solution (delete string, insert other string):

o c u r r a n c e
o c c u r r e n c e

Cost = 19δ. 9



Sequence Alignment

Input Given two words X and Y , and gap penalty δ and mismatch costs αpq
Goal Find alignment of minimum cost

10



Edit distance: The algorithm



Edit distance - Basic observation

Let X = αx and Y = βy
α, β: strings.
x and y single characters.

Think about optimal edit distance between X and Y as alignment, and consider
last column of alignment of the two strings:

α x
β y

or
α x
βy

or
αx
β y

Prefixes must have optimal alignment!

11



Problem Structure

Let X = x1x2 · · · xm and Y = y1y2 · · · yn. If (m,n) are not matched then either the
mth position of X remains unmatched or the nth position of Y remains unmatched.

• Case xm and yn are matched.
• Pay mismatch cost αxmyn plus cost of aligning strings x1 · · · xm−1 and y1 · · · yn−1

• Case xm is unmatched.
• Pay gap penalty plus cost of aligning x1 · · · xm−1 and y1 · · · yn

• Case yn is unmatched.
• Pay gap penalty plus cost of aligning x1 · · · xm and y1 · · · yn−1

12



Subproblems and Recurrence

x1 . . . xi−1 xi
y1 . . . yj−1 yj

or
x1 . . . xi−1 x
y1 . . . yj−1yj

or
x1 . . . xi−1xi
y1 . . . yj−1 yj

Optimal Costs
Let Opt(i, j) be optimal cost of aligning x1 · · · xi and y1 · · · yj. Then

Opt(i, j) = min


αxiyj + Opt(i− 1, j− 1),

δ + Opt(i− 1, j),

δ + Opt(i, j− 1)

Base Cases: Opt(i, 0) = δ · i and Opt(0, j) = δ · j

13



Subproblems and Recurrence

x1 . . . xi−1 xi
y1 . . . yj−1 yj

or
x1 . . . xi−1 x
y1 . . . yj−1yj

or
x1 . . . xi−1xi
y1 . . . yj−1 yj

Optimal Costs
Let Opt(i, j) be optimal cost of aligning x1 · · · xi and y1 · · · yj. Then

Opt(i, j) = min


αxiyj + Opt(i− 1, j− 1),

δ + Opt(i− 1, j),

δ + Opt(i, j− 1)

Base Cases: Opt(i, 0) = δ · i and Opt(0, j) = δ · j

13



Recursive Algorithm

Assume X is stored in array A[1..m] and Y is stored in B[1..n]
Array COST stores cost of matching two chars. Thus COST[a,b] give the cost of
matching character a to character b.

EDIST(A[1..m],B[1..n])
If (m = 0) return nδ
If (n = 0) return mδ

m1 = δ + EDIST(A[1..(m− 1)],B[1..n])
m2 = δ + EDIST(A[1..m],B[1..(n− 1)]))
m3 = COST[A[m],B[n]] + EDIST(A[1..(m− 1)],B[1..(n− 1)])
return min(m1,m2,m3)

14



Example: DEED and DREAD

ε D R E A D

ε 0 1 2 3 4 5

D 1

E 2

E 3

D 3

Opt(i, j) =

min


αxiyj + Opt(i− 1, j− 1),

δ + Opt(i− 1, j),

δ + Opt(i, j− 1)

Base Cases:
• Opt(i, 0) = δ · i
• Opt(0, j) = δ · j

15



Example: DEED and DREAD

ε D R E A D

ε 0 1 2 3 4 5

D 1 0 1 2 3 4

E 2

E 3

D 3

Opt(i, j) =

min


αxiyj + Opt(i− 1, j− 1),

δ + Opt(i− 1, j),

δ + Opt(i, j− 1)

Base Cases:
• Opt(i, 0) = δ · i
• Opt(0, j) = δ · j

15



Example: DEED and DREAD

ε D R E A D

ε 0 1 2 3 4 5

D 1 0 1 2 3 4

E 2 1 1 1 2 3

E 3

D 3

Opt(i, j) =

min


αxiyj + Opt(i− 1, j− 1),

δ + Opt(i− 1, j),

δ + Opt(i, j− 1)

Base Cases:
• Opt(i, 0) = δ · i
• Opt(0, j) = δ · j

15



Example: DEED and DREAD

ε D R E A D

ε 0 1 2 3 4 5

D 1 0 1 2 3 4

E 2 1 1 1 2 3

E 3 2 2 1 2 3

D 3

Opt(i, j) =

min


αxiyj + Opt(i− 1, j− 1),

δ + Opt(i− 1, j),

δ + Opt(i, j− 1)

Base Cases:
• Opt(i, 0) = δ · i
• Opt(0, j) = δ · j

15



Example: DEED and DREAD

ε D R E A D

ε 0 1 2 3 4 5

D 1 0 1 2 3 4

E 2 1 1 1 2 3

E 3 2 2 1 2 3

D 3 3 3 2 2 2

Opt(i, j) =

min


αxiyj + Opt(i− 1, j− 1),

δ + Opt(i− 1, j),

δ + Opt(i, j− 1)

Base Cases:
• Opt(i, 0) = δ · i
• Opt(0, j) = δ · j

15



Example: DEED and DREAD

ε D R E A D

ε 0 1 2 3 4 5

D 1 0 1 2 3 4

E 2 1 1 1 2 3

E 3 2 2 1 2 3

D 3 3 3 2 2 2

D R E A D
D E E D

15



Example: DEED and DREAD

ε D R E A D

ε 0 1 2 3 4 5

D 1 0 1 2 3 4

E 2 1 1 1 2 3

E 3 2 2 1 2 3

D 3 3 3 2 2 2

D R E A D
D E E D

15



Example: DEED and DREAD

ε D R E A D

ε 0 1 2 3 4 5

D 1 0 1 2 3 4

E 2 1 1 1 2 3

E 3 2 2 1 2 3

D 3 3 3 2 2 2

D R E A D
D E E D

15



Example: DEED and DREAD

ε D R E A D

ε 0 1 2 3 4 5

D 1 0 1 2 3 4

E 2 1 1 1 2 3

E 3 2 2 1 2 3

D 3 3 3 2 2 2

D R E A D
D E E D

15



Dynamic programming algorithm for
edit-distance



As part of the input...

The cost of aligning a character against another character

Σ: Alphabet

We are given a cost function (in a table):

∀b, c ∈ Σ COST[b][c] = cost of aligning b with c.
∀b ∈ Σ COST[b][b] = 0

δ : price of deletion of insertion of a single character

16



Dynamic program for edit distance

EDIST(A[1..m],B[1..n])
int M[0..m][0..n]
for i = 1 to m do M[i, 0] = iδ
for j = 1 to n do M[0, j] = jδ

for i = 1 to m do
for j = 1 to n do

M[i][j] = min


COST

[
A[i]

][
B[j]

]
+M[i− 1][j− 1],

δ +M[i− 1][j],
δ +M[i][j− 1]

Analysis

• Running time is
• Space used is

17



Dynamic program for edit distance

EDIST(A[1..m],B[1..n])
int M[0..m][0..n]
for i = 1 to m do M[i, 0] = iδ
for j = 1 to n do M[0, j] = jδ

for i = 1 to m do
for j = 1 to n do

M[i][j] = min


COST

[
A[i]

][
B[j]

]
+M[i− 1][j− 1],

δ +M[i− 1][j],
δ +M[i][j− 1]

Analysis

• Running time is
• Space used is

17



Reducing space for edit distance



Matrix and DAG of computation of edit distance

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
..
.

..
.

i, j

m, n

α
x
i x

j δ

δ

0, 0

Figure 1: Iterative algorithm in previous slide computes values in row order.

18



Optimizing Space

• Recall

M(i, j) = min


αxiyj +M(i− 1, j− 1),

δ +M(i− 1, j),

δ +M(i, j− 1)

• Entries in jth column only depend on (j− 1)st column and earlier entries in jth

column
• Only store the current column and the previous column reusing space; N(i, 0)
stores M(i, j− 1) and N(i, 1) stores M(i, j)

19



Example: DEED vs. DREAD filled by column

ε D R E A D

ε 0 1 2 3 4 5

D 1

E 2

E 3

D 3

20



Example: DEED vs. DREAD filled by column

ε D R E A D

ε 0 1 2 3 4 5

D 1 0

E 2 1

E 3 2

D 3 3

20



Example: DEED vs. DREAD filled by column

ε D R E A D

ε 0 1 2 3 4 5

D 1 0 1

E 2 1 1

E 3 2 2

D 3 3 3

20



Example: DEED vs. DREAD filled by column

ε D R E A D

ε 0 1 2 3 4 5

D 1 0 1 2

E 2 1 1 1

E 3 2 2 1

D 3 3 3 2

20



Example: DEED vs. DREAD filled by column

ε D R E A D

ε 0 1 2 3 4 5

D 1 0 1 2 3

E 2 1 1 1 2

E 3 2 2 1 2

D 3 3 3 2 2

20



Example: DEED vs. DREAD filled by column

ε D R E A D

ε 0 1 2 3 4 5

D 1 0 1 2 3 4

E 2 1 1 1 2 3

E 3 2 2 1 2 3

D 3 3 3 2 2 2

20



Computing in column order to save space

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
..
.

..
.

i, j

m, n

α
x
i x

j δ

δ

0, 0

Figure 2: M(i, j) only depends on previous column values. Keep only two columns and
compute in column order.

21



Space Efficient Algorithm

for all i do N[i, 0] = iδ
for j = 1 to n do

N[0, 1] = jδ (* corresponds to M(0, j) *)
for i = 1 to m do

N[i, 1] = min


αxiyj + N[i− 1, 0]
δ + N[i− 1, 1]
δ + N[i, 0]

for i = 1 to m do
Copy N[i, 0] = N[i, 1]

Analysis
Running time is O(mn) and space used is O(2m) = O(m)

22



Analyzing Space Efficiency

• From the m× n matrix M we can construct the actual alignment (exercise)
• Matrix N computes cost of optimal alignment but no way to construct the
actual alignment

• Space efficient computation of alignment? More complicated algorithm —
see notes and Kleinberg-Tardos book.

23



Longest Common Subsequence
Problem



LCS Problem

Definition
LCS between two strings X and Y is the length of longest common subsequence
between X and Y .

ABAZDC
BACBAD

ABAZDC
BACBAD

Example
LCS between ABAZDC and BACBAD is 4 via ABAD

Derive a dynamic programming algorithm for the problem.

24



LCS Problem

Definition
LCS between two strings X and Y is the length of longest common subsequence
between X and Y .

ABAZDC
BACBAD

ABAZDC
BACBAD

Example
LCS between ABAZDC and BACBAD is 4 via ABAD

Derive a dynamic programming algorithm for the problem.

24



LCS Problem

Definition
LCS between two strings X and Y is the length of longest common subsequence
between X and Y .

ABAZDC
BACBAD

ABAZDC
BACBAD

Example
LCS between ABAZDC and BACBAD is 4 via ABAD

Derive a dynamic programming algorithm for the problem.

24



How do we plan out the recursion?

Start off with A[1...m] and B[1...n] and reason the following:

• Assuming A[m] 6= B[n]
• The one or neither of the end characters are in the LCS. Therefore becomes:

max (LCS(A[1...m− 1],B[1...n]), LCS(A[1...m],B[1...n− 1]))

• Assuming A[m] = B[n]
• Either A[m] and B[n] are both in the LCS. Therefore:

LCS(A[1...m],B[1...n]) = 1+ LCS(A[1...m− 1],B[1...n− 1])

• Or A[m] and B[n] is not in the LCS. Therefore the LCS is either:

LCS(A[1...m− 1],B[1...n])
LCS(A[1...m],B[1...n− 1])

• Base Case:

25



How do we plan out the recursion?

Start off with A[1...m] and B[1...n] and reason the following:

• Assuming A[m] 6= B[n]
• The one or neither of the end characters are in the LCS. Therefore becomes:

max (LCS(A[1...m− 1],B[1...n]), LCS(A[1...m],B[1...n− 1]))

• Assuming A[m] = B[n]
• Either A[m] and B[n] are both in the LCS. Therefore:

LCS(A[1...m],B[1...n]) = 1+ LCS(A[1...m− 1],B[1...n− 1])

• Or A[m] and B[n] is not in the LCS. Therefore the LCS is either:

LCS(A[1...m− 1],B[1...n])
LCS(A[1...m],B[1...n− 1])

• Base Case:

25



How do we plan out the recursion?

Start off with A[1...m] and B[1...n] and reason the following:

• Assuming A[m] 6= B[n]
• The one or neither of the end characters are in the LCS. Therefore becomes:

max (LCS(A[1...m− 1],B[1...n]), LCS(A[1...m],B[1...n− 1]))

• Assuming A[m] = B[n]
• Either A[m] and B[n] are both in the LCS. Therefore:

LCS(A[1...m],B[1...n]) = 1+ LCS(A[1...m− 1],B[1...n− 1])

• Or A[m] and B[n] is not in the LCS. Therefore the LCS is either:

LCS(A[1...m− 1],B[1...n])
LCS(A[1...m],B[1...n− 1])

• Base Case:

25



How do we plan out the recursion?

Start off with A[1...m] and B[1...n] and reason the following:

• Assuming A[m] 6= B[n]
• The one or neither of the end characters are in the LCS. Therefore becomes:

max (LCS(A[1...m− 1],B[1...n]), LCS(A[1...m],B[1...n− 1]))

• Assuming A[m] = B[n]

• Either A[m] and B[n] are both in the LCS. Therefore:

LCS(A[1...m],B[1...n]) = 1+ LCS(A[1...m− 1],B[1...n− 1])

• Or A[m] and B[n] is not in the LCS. Therefore the LCS is either:

LCS(A[1...m− 1],B[1...n])
LCS(A[1...m],B[1...n− 1])

• Base Case:

25



How do we plan out the recursion?

Start off with A[1...m] and B[1...n] and reason the following:

• Assuming A[m] 6= B[n]
• The one or neither of the end characters are in the LCS. Therefore becomes:

max (LCS(A[1...m− 1],B[1...n]), LCS(A[1...m],B[1...n− 1]))

• Assuming A[m] = B[n]
• Either A[m] and B[n] are both in the LCS. Therefore:

LCS(A[1...m],B[1...n]) = 1+ LCS(A[1...m− 1],B[1...n− 1])

• Or A[m] and B[n] is not in the LCS. Therefore the LCS is either:

LCS(A[1...m− 1],B[1...n])
LCS(A[1...m],B[1...n− 1])

• Base Case:

25



How do we plan out the recursion?

Start off with A[1...m] and B[1...n] and reason the following:

• Assuming A[m] 6= B[n]
• The one or neither of the end characters are in the LCS. Therefore becomes:

max (LCS(A[1...m− 1],B[1...n]), LCS(A[1...m],B[1...n− 1]))

• Assuming A[m] = B[n]
• Either A[m] and B[n] are both in the LCS. Therefore:

LCS(A[1...m],B[1...n]) = 1+ LCS(A[1...m− 1],B[1...n− 1])

• Or A[m] and B[n] is not in the LCS. Therefore the LCS is either:

LCS(A[1...m− 1],B[1...n])
LCS(A[1...m],B[1...n− 1])

• Base Case:

25



How do we plan out the recursion?

Start off with A[1...m] and B[1...n] and reason the following:

• Assuming A[m] 6= B[n]
• The one or neither of the end characters are in the LCS. Therefore becomes:

max (LCS(A[1...m− 1],B[1...n]), LCS(A[1...m],B[1...n− 1]))

• Assuming A[m] = B[n]
• Either A[m] and B[n] are both in the LCS. Therefore:

LCS(A[1...m],B[1...n]) = 1+ LCS(A[1...m− 1],B[1...n− 1])

• Or A[m] and B[n] is not in the LCS. Therefore the LCS is either:

LCS(A[1...m− 1],B[1...n])
LCS(A[1...m],B[1...n− 1])

• Base Case:
25



LCS recursive definition

A[1..n],B[1..m]: Input strings.

LCS(i, j) =



0 i = 0 or j = 0

max

 LCS(i− 1, j),

LCS(i, j− 1)

 A[i] 6= B[j]

max


LCS(i− 1, j),

LCS(i, j− 1),

1+ LCS(i− 1, j− 1)

 A[i] = B[j]

Running time:
Space:

26



LCS recursive definition

A[1..n],B[1..m]: Input strings.

LCS(i, j) =



0 i = 0 or j = 0

max

 LCS(i− 1, j),

LCS(i, j− 1)

 A[i] 6= B[j]

max


LCS(i− 1, j),

LCS(i, j− 1),

1+ LCS(i− 1, j− 1)

 A[i] = B[j]

Running time:
Space:

26



Longest common subsequence is just edit distance for the two sequences...

A,B: input sequences, Σ: “alphabet” all the different values in A and B

∀b, c ∈ Σ : b 6= c COST[b][c] = +∞.

∀b ∈ Σ COST[b][b] = 1

1 : price of deletion of insertion of a single character

27



Longest common subsequence is just edit distance for the two sequences...

A,B: input sequences, Σ: “alphabet” all the different values in A and B

∀b, c ∈ Σ : b 6= c COST[b][c] = +∞.

∀b ∈ Σ COST[b][b] = 1

1 : price of deletion of insertion of a single character

ED LCS
Maximum ED
Min LCS

D R E A D
D E E D

9 0

Sub-opt ED
Sub-opt LCS

D R E A D
D E E D

8 1

Min ED
Max LCS

D R E A D
D E E D

6 3 27



Longest common subsequence is just edit distance for the two sequences...

A,B: input sequences, Σ: “alphabet” all the different values in A and B

∀b, c ∈ Σ : b 6= c COST[b][c] = +∞.

∀b ∈ Σ COST[b][b] = 1

1 : price of deletion of insertion of a single character

Length of longest common sub-sequence =

27



How to improve dynamic programming?

Key skills you need to successfully come up with dynamic programming solutions:

• Formulate recurrences for various problems (There’s only like 10-20 dynamic
programming problems in general, rest are rewrites of the same concepts).

• Be able to describe recurrences in plain english.
• Identify subproblem order
• PRACTICE.

28


	Edit Distance and Sequence Alignment
	Edit distance as alignment
	Edit distance: The algorithm
	Dynamic programming algorithm for edit-distance
	Reducing space for edit distance
	Longest Common Subsequence Problem

