All mistakes are my own! - Ivan Abraham (Fall 2024)

Image by ChatGPT (probably collaborated with DALL-E)

Graph Search Sides based on material by Kani, Chekuri, Erickson et. al.

Why graphs?

‣ Graphs help model *networks* — which are ubiquitous: transportation networks (rail, roads, airways), social networks (interpersonal relationships), information networks (web page links), and many problems that don't even

- Graphs have **many applications**!
	- look like graph problems.
- Fundamental objects in CS, optimization, combinatorics
- Many important and useful optimization problems are graph problems
- Graph theory: elegant, fun and deep branch of mathematics

Why graphs? Real life applications

Search & Rescue

Route Planning

Shortest Path

Introduction What is a Graph?

- A graph is a collection of **nodes** and **edges**.
- The dots are called *vertices* or *nodes*.
- The *connections* between nodes are called *edges*
- An edge typically represented as a set $\{i, j\}$ of two vertices.

Eg: The edge between **2** and **5** is $\{2,5\} = \{5,2\}$

- **Generalizations**
	- *Multi-graphs* allow
		- *loops* which are edges with the same node appearing as both end points
		- *multi-edges*: *different* edges between same pairs of nodes
- In this class we will assume that a graph is a *simple graph* unless explicitly stated otherwise.

An edge in an undirected graph is an *unordered pair* of nodes and hence it is a set. We reserve the use of (u, v) (ordered pair) for the case of *directed* graphs.

Notational convention What is a Graph?

Introduction Defintion

An undirected (simple) graph $G=(V,E)$ is a 2-tuple:

- *V* is a set of vertices (also referred to as nodes/points)
- E is a set of edges where each edge $e \in E$ is a set of the form $\{u, v\}$ with $u, v \in V$ and $u \neq v$.

Example:

Graph $G = (V, E)$ where $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$ and $E = \{\{1,2\}, \{1,3\}, \{2,3\}, \{2,4\}, \{2,5\}, \{3,5\}, \{3,7\}, \{3,8\},\$ $\{4,5\}, \{5,6\}, \{7,8\}\}\$

Basic notions Degree

- Vertices connected by an edge are called *adjacent.*
- The *neighborhood* of a node v is the set of all vertices adjacent to ν . It's denoted $N_G(\nu)$.

• $N_G(2) = \{1,3,5\}$

- A vertex v is *incident* with an edge e when $v \in e$.
	- Vertex 2 is incident with edges $\{1,2\}$, $\{2,5\}$ and $\{2,3\}$

• The *degree* of a vertex is the number of edges incident to it:

 $d(1) = 1$ $d(2) = 3$ $d(3) = 3$ $d(4) = 2$ $d(5) = 3$

• The *degree sequence* is to list the degrees listed in descending order:

Basic notions Degree

Sum of Degrees = 12 Number of Edges $= 6$

3,3,3,2,1

- The *minimum degree* is denoted $\delta(G)$. Here $\delta(G) = 1$ • The *maximum degree* is denoted $\Delta(G)$. Here $\Delta(G) = 3$
-

$$
(4) = 2 \, d(5) = 3
$$

$$
\frac{1}{4}
$$

$$
\sum d(v) = 2|E|
$$

Handshaking lemma

Graph representations

Adjacency matrix Graph representation I

Represent $G = (V, E)$ with n vertices and m edges using a $n \times n$ adjacency $\textsf{matrix}~A = (a_{ij})$ where

- $a_{ij} = a_{ji} = 1$ if $\{i, j\} \in E$ and $a_{ij} = a_{ji} = 0$ if $\{i, j\} \notin E$.
- Advantage: can check if $\{i, j\} \in E$ in $O(1)$ time
- Disadvantage: needs $\Omega(n^2)$ space even when $m \ll n^2$

Example Graph adjacency matrix

Represent $G = (V, E)$ with *n* vertices and *m* edges using *adjacency lists:*

- For each $u \in V$, $\text{adj}(u) := N_G(u)$, that is neighbors of u .
- Advantage: space is $O(m + n)$.
- Disadvantage: cannot "easily" determine in $O(1)$ time whether $\{i, j\} \in E$

Adjacency list Graph representation II

Note: In this class we will assume that by default, graphs are represented

using plain vanilla (*unsorted*) adjacency lists.

Example Graph adjacency list

Adjacency matrix vs. list

Concrete representations How might we represent this in a language?

• Python-like (nested lists can be of different sizes)

```
alist = [2, 6], [1,4,5], 
            [6,7],
            [2,5,8], 
            [2,4,5,9],
            [1,3,5],
            [3,8],
            [4,7],
            [5,10],
            [9]]
```


Concrete representations C-like: Can use pointers

List of vertices that are neighbors of *vi*

Array of pointers to adjacency lists

Array of pointers to adjacency lists

Concrete representations C-like: Can use pointers

1 2 —————— 4

List of vertices that are neighbors of *vi*

Concrete representations How about using plain arrays?

Concrete representations How about using plain arrays?

Concrete representations Advantages

- Edges are explicitly represented/numbered. Scanning/processing all edges easy to do.
- Representation easily supports multi-graphs including self-loops.
- Explicit numbering of vertices and edges allows use of arrays.
- Can also implement via pointer based lists for certain dynamic graph settings

- A *path* from v_1 to v_k is a sequence of distinct vertices $\{v_i, v_2, \ldots, v_k\}$ such that $\{v_i, v_{i+1}\} \in E$ for $1 \le i \le k-1$. The length of the path is $k-1$.
	- Note: A single vertex u is a path of length 0.
- We say a vertex u is connected to a vertex v if there is a path from *u* to *v*.
- Example: *D, B, A, C, F, E*

Connectivity Paths on a graph

Given a graph $G = (V, E)$:

Connectivity Cycle

Given a graph $G = (V, E)$:

Note: A *single* vertex or *an* edge are not cycles according to this definition

- A *cycle* is a sequence of distinct vertices v_1, v_2, \ldots, v_k with $k \geq 3$ such that $\{v_i, v_{i+1}\} \in E$ for $1 \leq i \leq k-1$ and $\{v_1, v_k\} \in E$.
- Example: **A, B, D, C, A**

Caveat: Some times people use the term *cycle* to also allow vertices to be repeated; we will use the term *tour.*

- **Proposition:** In undirected graphs, connectivity is a *reflexive*, *symmetric*, and *transitive* relation.
- We say that the *connected components* of a graph are the *equivalence classes* of C.
	- "Analogous to $ε$ -reach"
- Graph is said to be connected if there is only *one* connected component.
	- In English: starting from any node can reach any other node.

Connectivity Connected components

Define a relation C on $V \times V$ as uCV if u is connected to v

Connectivity problems Algorithmic problems

- Given graph G and nodes u and v , is u connected to v ?
- Given G and node u , find all nodes that are connected to u .
- Find all connected components of G.

-
-

Can be accomplished in $O(m + n)$ time using **BFS** or **DFS**.

BFS and **DFS** are flavors of an natural graph exploration algorithm we will call *Basic Search.*

Search on graph Basic search

Explore(G,u): **Lists:** *ToExplore, S* $Visited[U]$ ← TRUE

```
Add u to ToExplore and to S,
```
while (*ToExplore* **is non-empty**) **do**

Remove node *x* **from** *ToExplore*

```
for each vertex y in Adj(x) do
```
if (*Visited[y]* = FALSE) *Visited[y]* ← TRUE **Add** y **to** *ToExplore*

Add y **to** *S*

Output *S*

Initialize: Set $Visited[I] \leftarrow$ FALSE for $1 \le i \le n$

Search on graph Basic search

- BFS and DFS are special case of the following algorithm.
	- BFS maintains *ToExplore* using a **queue** data structure
	- DFS maintains *ToExplore* using a **stack** data structure

Explore(G,u): **Lists:** *ToExplore, S* **Add** *u* **to** *ToExplore* **and to** *S,* $Visited[U]$ ← TRUE **while** (*ToExplore* **is non-empty**) **do Remove node** *x* **from** *ToExplore* **for each vertex** *y* **in** *Adj(x)* **do if** (*Visited[y]* = FALSE) *Visited[y]* ← TRUE **Add** y **to** *ToExplore*

Add y **to** *S*

Output *S*

Initialize: Set $Visited[I] \leftarrow$ FALSE for $1 \le i \le n$

Search on graph Example - maintain *ToExplore* **as a queue**


```
Explore(G, u):
 Initialize: Set Visited[I]\leftarrow FALSE for 1 \le i \le nLists: ToExplore, S
 Add u to ToExplore and to S,
 Visited[u] \leftarrow TRUEwhile (ToExplore is non-empty) do
       Remove node x from ToExplore
      for each vertex y in Adj(x) do
          if (Visited[y] = FALSE)Visited[y] \leftarrow TRUEAdd y to ToExplore
               Add y to SOutput S
```
Search on graph Exercise - maintain *ToExplore* **as a stack**


```
Explore(G, u):
 Initialize: Set Visited[I]\leftarrow FALSE for 1 \le i \le nLists: ToExplore, S
 Add u to ToExplore and to S,
 Visited[u] \leftarrow TRUEwhile (ToExplore is non-empty) do
       Remove node x from ToExplore
      for each vertex y in Adj(x) do
          if (Visited[y] = FALSE)Visited[y] \leftarrow TRUEAdd y to ToExplore
               Add y to SOutput S
```
Search on graph Basic search - modified to get search tree

• The *search tree* for **Explore(G, u)** is tree *rooted* at **u** that spans the connected component of u.

Explore(G,u): **array** *Visited*[1..n] **List:** *ToExplore, S*

```
Initialize: Set Visited[I] \leftarrow FALSE for 1 \le i \le nAdd u to ToExplore and to S, Visited[u] \leftarrow TRUE
Make tree T with root as u
while (ToExplore is non-empty) do 
     Remove node x from ToExplore
     for each vertex y in Adj(x) do
         if (Visited[y] = FALSE) 
             Visited[y] ← TRUE
             Add y to ToExplore
             Add y to S
             Add y to T with x as parent
```
Search on graph Basic search - modified to get search tree

• BFS and DFS will return different search trees on the following graph

Directed graphs

Directed graphs Definition

A directed graph $G = (V, E)$ consists of

- A set of vertices/nodes V and
- A set of edges $E ⊆ V × V$.

An edge is an **ordered pair** of vertices: (*u*, *v*) different from (*v*, *u*)

Directed graphs Examples

- **Road networks** with one-way streets.
- **Web-link graph** where vertices are web-pages and there is an edge from page p to page p' if p has a link to p' .
- Dependency graphs in variety of applications: link from x to y if y depends on . E.g. Make files for compiling programs. *x*
- **Program analysis:** functions/procedures are vertices and there is an edge from x to y if x calls y .

In many situations relationship between vertices is asymmetric:

Directed graphs Representation

Graph $G = (V, E)$ with *n* vertices and *m* edges:

- Adjacency matrix: $n \times n$ asymmetric matrix A . $a_{ij} = 1$ if $(i, j) \in E$ and $a_{ij} = 0$ if $(i, j) \notin E$.
- Adjacency lists: For each node u , $Out(u)$ (also referred to as $Adj(u)$ by default) stores out-going edges from u .
	- Can also have $In(u)$ and store in-coming edges to u .

Default representation is adjacency lists $(Adj(u) \sim Out(u))$.

Directed connectivity

Given a graph $G = (V, E)$:

- A *(directed)* path is a sequence of distinct vertices $v_1, v_2, ..., v_k$ such that $f(v_i, v_{i+1}) \in E$ for $1 \leq i \leq k-1$. The length of the path is $k-1$ and the path is from v_1 to v_k . By convention, a single node u is a path of length 0.
- A *cycle* is a sequence of distinct vertices $v_1, v_2, ..., v_k$ such that $(v_i, v_{i+1}) \in E$ for $1 ≤ i ≤ k - 1$ and $(v_k, v_1) ∈ E$. By convention, a single node *u* is not a cycle.
- A vertex u can reach v if there is a path from u to v . Alternatively, we say v can be reached from u.
- We denote with $rch(u)$ the set of all vertices *reachable* from u .

Directed connectivity

Asymmetricity: **D** can reach **B** but **B** cannot reach **D.**

Questions:

Is there a notion of connected components?

How do we understand connectivity in directed graphs?

Connectivity and strongly connected components

reach v and v can reach u . In other words $v \in \text{rch}(u)$ and $u \in \text{rch}(v)$.

is an equivalence relation, that is *reflexive*, *symmetric* & *transitive. C*

partition the vertices of G.

We denote with $SCC(u)$ the strongly connected component containing $u.$

- **Definition:** Given a directed graph G , u is **strongly connected** to v if u can
- **Proposition:** Define relation C where ucv if u is (strongly) connected to v. Then
- Equivalence classes of C are the strongly connected components of G and they

• Partition vertices of given graph under strong connectivity.

Exercise Connectivity and strongly connected components

Directed graph connectivity problems

- 1. Given G and nodes u and v , can u reach v ?
- 2. Given G and u , compute $rch(u)$.
- 3. Given G and u , compute all v that can reach u , that is all v such that $u \in \mathsf{rch}(v)$.
- 4. Find the strongly connected component containing node u , that is $SCC(u)$.
- 5. Is G strongly connected (a single strong component)?
- 6. Compute all strongly connected components of G .

Graph exploration in directed graphs

Directed graph search

 G iven $G = (V, E)$ a directed graph and $\mathsf{vertex}\ u \in V.$ $Let n = |V|.$

We seek to find all nodes that can be reached from *u* (represented as a *spanning* tree).

Explore(G,u): array *Visi* **Initialize** List: $TOEX$ **Add** *u* **to** *T* **Make tree while** (*ToEx*) $Remov$ **for** e^{i}

Output *S, T*


```
Explore(G, u):
 array Visited[1..n]
 Initialize: Set Visited[I] \leftarrow FALSE for
 List: ToExplore, S
 Add u to ToExplore and to S, Visited[u]
 Make tree T with root as u
 while (ToExplore is non-empty) do
      Remove node x from ToExplore
      for each vertex y in Adj(x) do
         if (Visited(y) = FALSE)Visited(y) \leftarrow TRUEAdd y to TOEXplore
              Add y to SAdd y to T with x as parent
 Output S, T
```
Example Directed graph search

Proposition: *Explore(G,u)* terminates with S being rch(*u*) .

First five problems can be solved in $O(n + m)$ time via Basic Search (or **BFS/DFS**). The last one can also be done in linear time but requires a rather clever **DFS** based algorithm (next lecture).

Use Explore (G, u) to compute rch(u) in $O(n + m)$ time.

3. Given G and u , compute all v that can reach u , that is all v such that $u \in \mathsf{rch}(v)$.

Uses G^{rel}

Directed graph connectivity problems

- 1. Given G and nodes u and v , can u reach v ?
- 2. Given G and u , compute $rch(u)$.
-
- 4. Find the strongly connected component containing node u , that is $SCC(u)$.
- 5. Is G strongly connected (a single strong component)?
- 6. Compute all strongly connected components of G .

Algorithms via Basic Search - 1, 2

- Given G and nodes u and v , can u reach v ?
- Given G and u , compute $rch(u)$.

Use $\mathsf{Explore}(G, u)$ to compute $\mathsf{rch}(u)$ in $O(n + m)$ time.

Algorithms via Basic Search - 3

- Given G and u , compute all v , that can reach u , that is all v such that $u \in \text{rch}(u)$. Naive: *O*(*n*(*n* + *m*))
- **Definition (Reverse graph):**

Given $G = (V, E)$, G^{rev} is the graph with edge directions reversed w here $E' = \{(y, x) | (x, y) \in E\}$

Compute $rch(u)$ in G^{rev} . $rch(u)$ in G^{rev}

rch(*u*)via Basic Search.

$G = (V, E), G^{rev}$ is the graph with edge directions reversed $G^{rev} = (V, E')$

Running time: $O(n + m)$ to obtain G^{rev} from G and $O(n + m)$ time to compute $O(n + m)$ to obtain G^{rev} from G and $O(n + m)$

Algorithms via Basic Search - 4

 $SCC(G, u) = {v | u$ is strongly connected to v}

. *SCC*(*G*, *u*)

 $SCC(G, u) = \text{rch}(G, u) \cap \text{rch}(G^{\text{rev}}, u)$

Hence, $SCC(G, u)$ can be computed with Explore(G, u) and Explore(G^{rev}, u). Total $O(n + m)$ time $SCC(G, u)$ can be computed with $Explore(G, u)$ and $Explore(G^{rev}, u)$

-
- Find the strongly connected component containing node u . That is, compute

Given a graph *G*, and a vertex *F*…

Graph *G*

Algorithms via Basic Search - 4

is set of vertices reachable from *F* .

… its reachable set rch(*G*, *F*)

… has all edges reversed.

Graph *G*

Given a graph G , and a vertex F ... \ldots the set of vertices that can reach it in G ...

- Given a graph *G*, and a vertex *F*, its strongly connected component in *G* is …
	- $rch(G, F)$

- Is G strongly connected?
	- Pick arbitrary vertex u .
	- Check if $SCC(G, u) = V$.