
Graph Search

All mistakes are my own! - Ivan Abraham (Fall 2024)

Sides based on material by Kani, Chekuri, Erickson et. al.

Why graphs?

• Graphs have many applications!

‣ Graphs help model networks — which are ubiquitous: transportation
networks (rail, roads, airways), social networks (interpersonal relationships),
information networks (web page links), and many problems that don’t even
look like graph problems.

• Fundamental objects in CS, optimization, combinatorics

• Many important and useful optimization problems are graph problems

• Graph theory: elegant, fun and deep branch of mathematics
￼2

Why graphs?
Real life applications

￼3

Search & Rescue

Route Planning

Shortest Path

Game Playing

Introduction
What is a Graph?

• A graph is a collection of nodes and edges.

• The dots are called vertices or nodes.

• The connections between nodes are called edges

• An edge typically represented as a set ￼ of two
vertices.

Eg: The edge between 2 and 5 is ￼

{i, j}

{2,5} = {5,2}

￼4

1

2

34

5

• Generalizations

• Multi-graphs allow

• loops which are edges with the same node appearing as both end points

• multi-edges: different edges between same pairs of nodes

• In this class we will assume that a graph is a simple graph unless explicitly
stated otherwise.

Notational convention

￼5

An edge in an undirected graph is an unordered pair of nodes and hence it is a
set. We reserve the use of ￼ (ordered pair) for the case of directed graphs. (u, v)

1

2

What is a Graph?

3

Introduction
Defintion

￼6

An undirected (simple) graph ￼ is a 2-tuple:

• ￼ is a set of vertices (also referred to as nodes/points)

• ￼ is a set of edges where each edge ￼ is a set of
the form ￼ with ￼ and ￼ .

Example:

Graph ￼ where ￼ and

￼

￼

G = (V, E)

V

E e ∈ E
{u, v} u, v ∈ V u ≠ v

G = (V, E) V = {1,2,3,4,5,6,7,8}

E = {{1,2}, {1,3}, {2,3}, {2,4}, {2,5}, {3,5}, {3,7}, {3,8},

{4,5}, {5,6}, {7,8}}

1

32

54

6

7

8

• Vertices connected by an edge are called adjacent.

• The neighborhood of a node ￼ is the set of all vertices
adjacent to ￼ . It’s denoted ￼ .

• ￼

• A vertex ￼ is incident with an edge ￼ when ￼ .

• Vertex 2 is incident with edges ￼ and ￼

v
v NG(v)

NG(2) = {1,3,5}

v e v ∈ e

{1,2}, {2,5} {2,3}

￼7

1

2

34

5

Basic notions
Degree

Basic notions

• The degree of a vertex is the number of edges incident to
it:

￼ ￼ ￼ ￼ ￼

• The degree sequence is to list the degrees listed in
descending order:

 ￼

• The minimum degree is denoted ￼ . Here ￼

• The maximum degree is denoted ￼ . Here ￼

d(1) = 1 d(2) = 3 d(3) = 3 d(4) = 2 d(5) = 3

3,3,3,2,1

δ(G) δ(G) = 1

Δ(G) Δ(G) = 3

￼8

Degree

1

2

34

5

Sum of Degrees = 12

Number of Edges = 6

∑ d (v) = 2 |E |

Handshaking lemma

￼9

Graph representations

Adjacency matrix

Represent ￼ with ￼ vertices and ￼ edges using a ￼ adjacency
matrix ￼ where

• ￼ and ￼ .

• Advantage: can check if ￼ in ￼ time

• Disadvantage: needs ￼ space even when ￼

G = (V, E) n m n × n
A = (aij)

aij = aji = 1 if {i, j} ∈ E aij = aji = 0 if {i, j} ∉ E

{i, j} ∈ E O(1)

Ω(n2) m ≪ n2

￼10

Graph representation I

Example

￼11

Graph adjacency matrix

1

3

2

5

4

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

1 0 1 0 0 0 1 0 0 0 0

2 1 0 0 1 1 0 0 0 0 0

3 0 0 0 0 0 1 1 0 0 0

4 0 1 0 0 1 0 0 1 0 0

5 0 1 0 1 0 1 0 0 1 0

6 1 0 1 0 1 0 0 0 0 0

7 0 0 1 0 0 0 0 1 0 0

8 0 0 0 1 0 0 1 0 0 0

9 0 0 0 0 1 0 0 0 0 1

10 0 0 0 0 0 0 0 0 1 0

Adjacency list

Represent ￼ with ￼ vertices and ￼ edges using adjacency
lists:

• For each ￼ , ￼ , that is neighbors of ￼ .

• Advantage: space is ￼ .

• Disadvantage: cannot “easily” determine in ￼ time whether
￼

Note: In this class we will assume that by default, graphs are represented
using plain vanilla (unsorted) adjacency lists.

G = (V, E) n m

u ∈ V adj(u) := NG(u) u

O(m + n)

O(1)
{i, j} ∈ E

￼12

Graph representation II

Example

￼13

Graph adjacency list

Vertex Adjacency List

1 2, 6

2 1, 4, 5

3 6, 7

4 2, 5, 8

5 2, 4, 6, 9

6 1, 3, 5

7 3, 8

8 4, 7

9 5, 10

10 9

1

3

2

5

4

6

7

8

9

10

￼14

Adjacency matrix vs. list

Vertex Adjacency List

1 2, 6

2 1, 4, 5

3 6, 7

4 2, 5, 8

5 2, 4, 6, 9

6 1, 3, 5

7 3, 8

8 4, 7

9 5, 10

10 9

1 2 3 4 5 6 7 8 9 10

1 0 1 0 0 0 1 0 0 0 0

2 1 0 0 1 1 0 0 0 0 0

3 0 0 0 0 0 1 1 0 0 0

4 0 1 0 0 1 0 0 1 0 0

5 0 1 0 1 0 1 0 0 1 0

6 1 0 1 0 1 0 0 0 0 0

7 0 0 1 0 0 0 0 1 0 0

8 0 0 0 1 0 0 1 0 0 0

9 0 0 0 0 1 0 0 0 0 1

10 0 0 0 0 0 0 0 0 1 0

Concrete representations
How might we represent this in a language?

• Python-like (nested lists can be of
different sizes)

￼15

Vertex Adjacency List

1 2, 6

2 1, 4, 5

3 6, 7

4 2, 5, 8

5 2, 4, 6, 9

6 1, 3, 5

7 3, 8

8 4, 7

9 5, 10

10 9

alist = [[2,6],
 [1,4,5],
 [6,7],
 [2,5,8],
 [2,4,5,9],
 [1,3,5],
 [3,8],
 [4,7],
 [5,10],
 [9]]

Concrete representations

￼16

——————

List of vertices that are neighbors of ￼vi

C-like: Can use pointers
—

—
—

—
—

—
—

—

￼vi

Array of pointers to
adjacency lists

1

2

34

5

Concrete representations

￼17

—
—

—
—

—
—

—
—

￼v5

Array of pointers to
adjacency lists

1 2 —————— 4

List of vertices that are neighbors of ￼vi

C-like: Can use pointers

1

2

34

5

Concrete representations

￼18

￼ is the destination vertex of the j-th edgeej

—
—

—
—

—
—

—
—

￼vi ￼ is starting index (in ￼) of vertices adjacent to ￼vi ℰ vi

How about using plain arrays?

1

2

34

5

Array of vertices, ￼𝒱 —————— ￼ej ——————

An edge array, ￼ℰ

𝒱 = [0, 2, 5, 8,10]
ℰ = [2,5, 1,3,5, 2,4,5, 3,5,1,2,3,4]

Concrete representations

￼19

—————— ￼ej ——————

￼ is the destination vertex of the j-th edgeej

￼ is starting index (in ￼) of vertices adjacent to ￼vi ℰ vi

How about using plain arrays?

1

2

34

5

An edge array, ￼ℰ

Array of vertices, ￼𝒱

—
—

—
—

—
—

—
—

￼vi

Can get neighbors of ￼ by examining
￼ to ￼

vi
ℰ [𝒱[i]] ℰ [𝒱[i + 1]]

Concrete representations

• Edges are explicitly represented/numbered. Scanning/processing all edges
easy to do.

• Representation easily supports multi-graphs including self-loops.

• Explicit numbering of vertices and edges allows use of arrays.

• Can also implement via pointer based lists for certain dynamic graph
settings

￼20

Advantages

Connectivity

Given a graph ￼ :

• A path from ￼ to ￼ is a sequence of distinct vertices
￼ such that ￼ for ￼ .
The length of the path is ￼ .

• Note: A single vertex ￼ is a path of length 0.

• We say a vertex ￼ is connected to a vertex ￼ if there is a
path from ￼ to ￼ .

• Example: D, B, A, C, F, E

G = (V, E)

v1 vk
v1, v2, . . . , vk {vi, vi+1} ∈ E 1 ≤ i ≤ k − 1

k − 1

u

u v
u v

￼21

Paths on a graph

A

C

B

E

D

F

Connectivity

￼22

Cycle

A

C

B

E

D

F

Note: A single vertex or an edge are not cycles according to this definition

Given a graph ￼ :

• A cycle is a sequence of distinct vertices ￼ with
￼ such that ￼ for ￼ and
￼

• Example: A, B, D, C, A

Caveat: Some times people use the term cycle to also allow
vertices to be repeated; we will use the term tour.

G = (V, E)

v1, v2, . . . , vk
k ≥ 3 {vi, vi+1} ∈ E 1 ≤ i ≤ k − 1
{v1, vk} ∈ E .

Connectivity

Define a relation ￼ on ￼ as ￼ if ￼ is connected to ￼

• Proposition: In undirected graphs, connectivity is a reflexive, symmetric, and
transitive relation.

• We say that the connected components of a graph are the equivalence
classes of C.

• “Analogous to ￼ -reach”

• Graph is said to be connected if there is only one connected component.

• In English: starting from any node can reach any other node.

C V × V uCv u v

ε

￼23

Connected components

Connectivity problems

• Given graph ￼ and nodes ￼ and ￼ , is ￼ connected to ￼ ?

• Given ￼ and node ￼ , find all nodes that are connected to ￼ .

• Find all connected components of ￼ .

Can be accomplished in ￼ time using BFS or DFS.

BFS and DFS are flavors of an natural graph exploration algorithm we will call
Basic Search.

G u v u v

G u u

G

O(m + n)

￼24

Algorithmic problems

Search on graph
Basic search

￼25

Explore(G,u):
Initialize: Set Visited[I]￼ FALSE for ￼
Lists: ToExplore, S
Add u to ToExplore and to S,
Visited[u] ￼ TRUE
while (ToExplore is non-empty) do

Remove node x from ToExplore
for each vertex y in Adj(x) do

if (Visited[y] = FALSE)
 Visited[y] ￼ TRUE
 Add y to ToExplore
 Add y to S

Output S

← 1 ≤ i ≤ n

←

←

Search on graph
Basic search

• BFS and DFS are
special case of the
following algorithm.

• BFS maintains
ToExplore using a
queue data
structure

• DFS maintains
ToExplore using a
stack data
structure

￼26

Explore(G,u):
Initialize: Set Visited[I]￼ FALSE for ￼
Lists: ToExplore, S
Add u to ToExplore and to S,
Visited[u] ￼ TRUE
while (ToExplore is non-empty) do

Remove node x from ToExplore
for each vertex y in Adj(x) do

if (Visited[y] = FALSE)
 Visited[y] ￼ TRUE
 Add y to ToExplore
 Add y to S

Output S

← 1 ≤ i ≤ n

←

←

Search on graph
Example - maintain ToExplore as a queue

￼27

1

2 3

4 5

6

7

8

Search on graph
Exercise - maintain ToExplore as a stack

￼28

1

2 3

4 5

6

7

8

Search on graph
Basic search - modified to get search tree

• The search tree for
Explore(G, u) is tree
rooted at u that
spans the
connected
component of u.

￼29

Explore(G,u):
array Visited[1..n]
Initialize: Set Visited[I]￼ FALSE for ￼
List: ToExplore, S
Add u to ToExplore and to S, Visited[u] ￼ TRUE
Make tree T with root as u
while (ToExplore is non-empty) do

Remove node x from ToExplore
for each vertex y in Adj(x) do

if (Visited[y] = FALSE)
 Visited[y] ￼ TRUE
 Add y to ToExplore
 Add y to S
 Add y to T with x as parent

Output S, T

← 1 ≤ i ≤ n

←

←

Search on graph
Basic search - modified to get search tree

• BFS and DFS will return
different search trees on the
following graph

￼30

1

2 3

4 5

6

7

8

1

2 3

4 5

6

7

8
1

2 3

4 5

6

7

8

Directed graphs

￼31

Directed graphs
Definition

A directed graph ￼ consists of

• A set of vertices/nodes ￼ and

• A set of edges ￼ .

An edge is an ordered pair of vertices: ￼
different from ￼

G = (V, E)

V

E ⊆ V × V

(u, v)
(v, u)

￼32

A CB

E DF

G H

Directed graphs
Examples

In many situations relationship between vertices is asymmetric:

• Road networks with one-way streets.

• Web-link graph where vertices are web-pages and there is an edge from page
￼ to page ￼ if ￼ has a link to ￼ .

• Dependency graphs in variety of applications: link from ￼ to ￼ if ￼ depends on
￼ . E.g. Make files for compiling programs.

• Program analysis: functions/procedures are vertices and there is an edge
from ￼ to ￼ if ￼ calls ￼ .

p p′￼ p p′￼

x y y
x

x y x y
￼33

Directed graphs
Representation

Graph ￼ with ￼ vertices and ￼ edges:

• Adjacency matrix: ￼ asymmetric matrix ￼ . ￼ if ￼ and
￼ if ￼ .

• Adjacency lists: For each node ￼ , ￼ (also referred to as ￼ by
default) stores out-going edges from ￼ .

• Can also have ￼ and store in-coming edges to ￼ .

Default representation is adjacency lists (￼).

G = (V, E) n m

n × n A aij = 1 (i, j) ∈ E
aij = 0 (i, j) ∉ E

u Out(u) Adj(u)
u

In(u) u

Adj(u) ∼ Out(u)
￼34

Directed connectivity

Given a graph ￼ :

• A (directed) path is a sequence of distinct vertices ￼ such that
￼ for ￼ . The length of the path is ￼ and the path is
from ￼ to ￼ . By convention, a single node ￼ is a path of length 0.

• A cycle is a sequence of distinct vertices ￼ such that ￼ for
￼ and ￼ . By convention, a single node ￼ is not a cycle.

• A vertex ￼ can reach ￼ if there is a path from ￼ to ￼ . Alternatively, we say ￼ can be
reached from ￼ .

• We denote with ￼ the set of all vertices reachable from ￼ .

G = (V, E)

v1, v2, …, vk
(vi, vi+1) ∈ E 1 ≤ i ≤ k − 1 k − 1

v1 vk u

v1, v2, …, vk (vi, vi+1) ∈ E
1 ≤ i ≤ k − 1 (vk, v1) ∈ E u

u v u v v
u

rch(u) u
￼35

Directed connectivity

Asymmetricity: D can reach B but B cannot reach D.

Questions:

Is there a notion of connected components?

How do we understand connectivity in directed
graphs?

￼36

A CB

E DF

G H

Connectivity and strongly connected components

￼37

Definition: Given a directed graph ￼ , ￼ is strongly connected to ￼ if ￼ can
reach ￼ and ￼ can reach ￼ . In other words ￼ and ￼ .

Proposition: Define relation ￼ where ￼ if ￼ is (strongly) connected to ￼ . Then
￼ is an equivalence relation, that is reflexive, symmetric & transitive.

Equivalence classes of ￼ are the strongly connected components of ￼ and they
partition the vertices of ￼ .

We denote with ￼ the strongly connected component containing ￼ .

G u v u
v v u v ∈ rch(u) u ∈ rch(v)

C uCv u v
C

C G
G

SCC(u) u

Exercise

• Partition vertices of given graph under
strong connectivity.

￼38

Connectivity and strongly connected components

A CB

E DF

G H

Directed graph connectivity problems

1. Given ￼ and nodes ￼ and ￼ , can ￼ reach ￼ ?

2. Given ￼ and ￼ , compute ￼ .

3. Given ￼ and ￼ , compute all ￼ that can reach ￼ , that is all ￼ such that ￼ .

4. Find the strongly connected component containing node ￼ , that is ￼ .

5. Is ￼ strongly connected (a single strong component)?

6. Compute all strongly connected components of ￼ .

First five problems can be solved in ￼ time via Basic Search (or BFS/DFS). The
last one can also be done in linear time but requires a rather clever DFS based
algorithm (next lecture).

G u v u v

G u rch(u)

G u v u v u ∈ rch(v)

u SCC(u)

G

G

O(n + m)

￼39

￼40

Graph exploration in directed
graphs

Directed graph search

Given ￼
a directed graph and
vertex ￼ .
Let ￼ .

We seek to find all
nodes that can be
reached from ￼
(represented as a
spanning tree).

G = (V, E)

u ∈ V
n = |V |

u

￼41

Explore(G,u):
array Visited[1..n]
Initialize: Set Visited[I]￼ FALSE for ￼
List: ToExplore, S
Add u to ToExplore and to S, Visited[u] ￼ TRUE
Make tree T with root as u
while (ToExplore is non-empty) do

Remove node x from ToExplore
for each vertex y in Adj(x) do

if (Visited[y] = FALSE)
 Visited[y] ￼ TRUE
 Add y to ToExplore
 Add y to S
 Add y to T with x as parent

Output S, T

← 1 ≤ i ≤ n

←

←

Example

￼42

A CB

E DF

G H

Directed graph search

Proposition: Explore(G,u) terminates with S being ￼ rch(u) .

1. Given ￼ and nodes ￼ and ￼ , can ￼ reach ￼ ?

2. Given ￼ and ￼ , compute ￼ .

3. Given ￼ and ￼ , compute all ￼ that can reach ￼ , that is all ￼ such that ￼ .

4. Find the strongly connected component containing node ￼ , that is ￼ .

5. Is ￼ strongly connected (a single strong component)?

6. Compute all strongly connected components of ￼ .

First five problems can be solved in ￼ time via Basic Search (or BFS/DFS). The
last one can also be done in linear time but requires a rather clever DFS based
algorithm (next lecture).

G u v u v

G u rch(u)

G u v u v u ∈ rch(v)

u SCC(u)

G

G

O(n + m)

Directed graph connectivity problems

￼43

Use ￼ to compute
￼ in ￼ time.

Explore(G, u)
rch(u) O(n + m)

Uses ￼Grev

Algorithms via Basic Search - 1, 2

• Given ￼ and nodes ￼ and ￼ , can ￼ reach ￼ ?

• Given ￼ and ￼ , compute ￼ .

Use ￼ to compute ￼ in ￼ time.

G u v u v

G u rch(u)

Explore(G, u) rch(u) O(n + m)

￼44

Algorithms via Basic Search - 3

• Given ￼ and ￼ , compute all ￼ , that can reach ￼ , that is all ￼ such that ￼ .
Naive: ￼

Definition (Reverse graph):

Given ￼ , ￼ is the graph with edge directions reversed ￼
where ￼

Compute ￼ in ￼ .

Running time: ￼ to obtain ￼ from ￼ and ￼ time to compute
￼ via Basic Search.

G u v u v u ∈ rch(u)
O(n(n + m))

G = (V, E) Grev Grev = (V, E′￼)
E′￼ = {(y, x) | (x, y) ∈ E}

rch(u) Grev

O(n + m) Grev G O(n + m)
rch(u)

￼45

Algorithms via Basic Search - 4
￼

Find the strongly connected component containing node ￼ . That is, compute
￼ .

￼

Hence, ￼ can be computed with ￼ and ￼ .
Total ￼ time

SCC(G, u) = {v |u is strongly connected to v}

u
SCC(G, u)

SCC(G, u) = rch(G, u) ∩ rch(Grev, u)

SCC(G, u) Explore(G, u) Explore(Grev, u)
O(n + m)

￼46

Given a graph ￼ , and a vertex ￼ …G F

￼47

A CB

E DF

G H

Graph ￼ G

Algorithms via Basic Search - 4

is set of vertices reachable from ￼ .F

A CB

E DF

G H

 … its reachable set ￼rch(G, F)

A CB

E DF

G H

￼48

A CB

E DF

G H

A CB

E DF

G H

… has all edges reversed.

Algorithms via Basic Search - 4

Given a graph ￼ …G … its reverse graph ￼ …Grev

… is ￼ rch(Grev, F)
￼49

A CB

E DF

G H

A CB

E DF

G H

Graph ￼ G

Algorithms via Basic Search - 4

.. the set of vertices that can reach it in ￼ …GGiven a graph ￼ , and a vertex ￼ …G F

￼50

Given a graph ￼ , and a vertex ￼ , its strongly connected component in ￼ is …G F G

Graph ￼ G

A CB

E DF

G H

￼rch(Grev, F)

A CB

E DF

G H

A CB

E DF

G H

￼rch(G, F)

￼ SCC(G, F) = rch(G, F) ∩ rch(Grev, F)

Algorithms via Basic Search - 4

Algorithms via Basic Search - 5

￼51

• Is ￼ strongly connected?

• Pick arbitrary vertex ￼ .

• Check if ￼

G

u

SCC(G, u) = V .

