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Why graphs?

• Graphs have many applications! 


‣ Graphs help model networks — which are ubiquitous: transportation 
networks (rail, roads, airways), social networks (interpersonal relationships), 
information networks (web page links), and many problems that don’t even 
look like graph problems.


• Fundamental objects in CS, optimization, combinatorics


• Many important and useful optimization problems are graph problems


• Graph theory: elegant, fun and deep branch of mathematics
￼2



Why graphs?
Real life applications
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Search & Rescue

Route Planning

Shortest Path

Game Playing



Introduction
What is a Graph?

• A graph is a collection of nodes and edges.


• The dots are called vertices or nodes.


• The connections between nodes are called edges 

• An edge typically represented as a set ￼  of two 
vertices. 


Eg: The edge between 2 and 5 is ￼

{i, j}

{2,5} = {5,2}
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• Generalizations


• Multi-graphs allow 


• loops which are edges with the same node appearing as both end points 


• multi-edges: different edges between same pairs of nodes 


• In this class we will assume that a graph is a simple graph unless explicitly 
stated otherwise.

Notational convention

￼5

An edge in an undirected graph is an unordered pair of nodes and hence it is a 
set. We reserve the use of ￼  (ordered pair) for the case of directed graphs. (u, v)
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What is a Graph?
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Introduction
Defintion
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An undirected (simple) graph ￼  is a 2-tuple:


• ￼  is a set of vertices (also referred to as nodes/points) 


• ￼  is a set of edges where each edge ￼  is a set of 
the form ￼  with ￼  and ￼ .


Example: 

Graph ￼  where ￼  and 


￼ 


￼

G = (V, E)

V

E e ∈ E
{u, v} u, v ∈ V u ≠ v

G = (V, E) V = {1,2,3,4,5,6,7,8}

E = {{1,2}, {1,3}, {2,3}, {2,4}, {2,5}, {3,5}, {3,7}, {3,8},

{4,5}, {5,6}, {7,8}}
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• Vertices connected by an edge are called adjacent. 


• The neighborhood of a node ￼  is the set of all vertices 
adjacent to ￼ . It’s denoted ￼ .


• ￼ 


• A vertex ￼  is incident with an edge ￼  when ￼ . 


• Vertex 2 is incident with edges ￼  and ￼

v
v NG(v)

NG(2) = {1,3,5}

v e v ∈ e

{1,2}, {2,5} {2,3}

￼7
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Basic notions
Degree



Basic notions

• The degree of a vertex is the number of edges incident to 
it:                  


￼    ￼    ￼    ￼    ￼ 


• The degree sequence is to list the degrees listed in 
descending order:


 ￼ 


• The minimum degree is denoted ￼ .  Here ￼ 


• The maximum degree is denoted ￼ .  Here ￼

d(1) = 1 d(2) = 3 d(3) = 3 d(4) = 2 d(5) = 3

3,3,3,2,1

δ(G) δ(G) = 1

Δ(G) Δ(G) = 3

￼8

Degree
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Sum of Degrees = 12

Number of Edges = 6

∑ d (v) = 2 |E |

Handshaking lemma
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Graph representations



Adjacency matrix

Represent ￼  with ￼  vertices and ￼  edges using a ￼  adjacency 
matrix ￼  where


• ￼  and ￼ .


• Advantage: can check if ￼  in ￼  time


• Disadvantage: needs ￼  space even when ￼

G = (V, E) n m n × n
A = (aij)

aij = aji = 1 if {i, j} ∈ E aij = aji = 0 if {i, j} ∉ E

{i, j} ∈ E O(1)

Ω(n2) m ≪ n2

￼10

Graph representation I



Example
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Graph adjacency matrix

1

3

2

5

4

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

1 0 1 0 0 0 1 0 0 0 0

2 1 0 0 1 1 0 0 0 0 0

3 0 0 0 0 0 1 1 0 0 0

4 0 1 0 0 1 0 0 1 0 0

5 0 1 0 1 0 1 0 0 1 0

6 1 0 1 0 1 0 0 0 0 0

7 0 0 1 0 0 0 0 1 0 0

8 0 0 0 1 0 0 1 0 0 0

9 0 0 0 0 1 0 0 0 0 1

10 0 0 0 0 0 0 0 0 1 0



Adjacency list

Represent ￼  with ￼  vertices and ￼  edges using adjacency 
lists: 

• For each ￼ ,  ￼ , that is neighbors of ￼ .


• Advantage: space is ￼ . 


• Disadvantage: cannot “easily” determine in ￼  time whether 
￼       


Note: In this class we will assume that by default, graphs are represented 
using plain vanilla (unsorted) adjacency lists.

G = (V, E) n m

u ∈ V adj(u) := NG(u) u

O(m + n)

O(1)
{i, j} ∈ E

￼12

Graph representation II



Example
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Graph adjacency list

Vertex Adjacency List

1 2, 6

2 1, 4, 5

3 6, 7

4 2, 5, 8

5 2, 4, 6, 9

6 1, 3, 5

7 3, 8

8 4, 7

9 5, 10

10 9

1

3
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5

4

6

7

8

9

10
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Adjacency matrix vs. list

Vertex Adjacency List

1 2, 6

2 1, 4, 5

3 6, 7

4 2, 5, 8

5 2, 4, 6, 9

6 1, 3, 5

7 3, 8

8 4, 7

9 5, 10

10 9

1 2 3 4 5 6 7 8 9 10

1 0 1 0 0 0 1 0 0 0 0

2 1 0 0 1 1 0 0 0 0 0

3 0 0 0 0 0 1 1 0 0 0

4 0 1 0 0 1 0 0 1 0 0

5 0 1 0 1 0 1 0 0 1 0

6 1 0 1 0 1 0 0 0 0 0

7 0 0 1 0 0 0 0 1 0 0

8 0 0 0 1 0 0 1 0 0 0

9 0 0 0 0 1 0 0 0 0 1

10 0 0 0 0 0 0 0 0 1 0



Concrete representations
How might we represent this in a language? 

• Python-like (nested lists can be of 
different sizes)
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Vertex Adjacency List

1 2, 6

2 1, 4, 5

3 6, 7

4 2, 5, 8

5 2, 4, 6, 9

6 1, 3, 5

7 3, 8

8 4, 7

9 5, 10

10 9

alist = [[2,6], 
         [1,4,5], 
         [6,7],
         [2,5,8], 
         [2,4,5,9],
         [1,3,5],
         [3,8],
         [4,7],
         [5,10],
         [9]]



Concrete representations
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——————

List of vertices that are neighbors of ￼vi

C-like: Can use pointers
—

—
—

—
—

—
—

—

￼vi

Array of pointers to 
adjacency lists
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Concrete representations
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—
—

—
—

—
—

—
—

￼v5

Array of pointers to 
adjacency lists

1 2 —————— 4

List of vertices that are neighbors of ￼vi

C-like: Can use pointers

1
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Concrete representations
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￼  is the destination vertex of the j-th edgeej

—
—

—
—

—
—

—
—

￼vi ￼  is starting index (in ￼ ) of vertices adjacent to ￼vi ℰ vi

How about using plain arrays?

1

2

34
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Array of vertices, ￼𝒱 —————— ￼ej ——————

An edge array, ￼ℰ

𝒱 = [0, 2, 5, 8,10]
ℰ = [2,5, 1,3,5, 2,4,5, 3,5,1,2,3,4]



Concrete representations
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—————— ￼ej ——————

￼  is the destination vertex of the j-th edgeej

￼  is starting index (in ￼ ) of vertices adjacent to ￼vi ℰ vi

How about using plain arrays?

1

2

34
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An edge array, ￼ℰ

Array of vertices, ￼𝒱

—
—

—
—

—
—

—
—

￼vi

Can get neighbors of ￼  by examining 
￼ to ￼

vi
ℰ [𝒱[i]] ℰ [𝒱[i + 1]]



Concrete representations

• Edges are explicitly represented/numbered. Scanning/processing all edges 
easy to do. 


• Representation easily supports multi-graphs including self-loops. 


• Explicit numbering of vertices and edges allows use of arrays.


• Can also implement via pointer based lists for certain dynamic graph 
settings

￼20

Advantages



Connectivity

Given a graph ￼ :


• A path from ￼  to ￼  is a sequence of distinct vertices 
￼  such that ￼   for ￼ . 
The length of the path is ￼ .


• Note: A single vertex ￼  is a path of length 0. 


• We say a vertex ￼  is connected to a vertex ￼  if there is a 
path from ￼  to ￼ .


• Example: D, B, A, C, F, E

G = (V, E)

v1 vk
v1, v2, . . . , vk {vi, vi+1} ∈ E 1 ≤ i ≤ k − 1

k − 1

u

u v
u v

￼21

Paths on a graph

A

C

B

E

D

F



Connectivity
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Cycle 

A

C

B

E

D

F

Note: A single vertex or an edge are not cycles according to this definition

Given a graph ￼ :


• A cycle is a sequence of distinct vertices ￼  with 
￼  such that ￼  for ￼  and 
￼  


• Example: A, B, D, C, A 


Caveat: Some times people use the term cycle to also allow 
vertices to be repeated; we will use the term tour.

G = (V, E)

v1, v2, . . . , vk
k ≥ 3 {vi, vi+1} ∈ E 1 ≤ i ≤ k − 1
{v1, vk} ∈ E .



Connectivity

Define a relation ￼  on ￼  as ￼  if ￼  is connected to ￼   


• Proposition: In undirected graphs, connectivity is a reflexive, symmetric, and 
transitive relation. 


• We say that the connected components of a graph are the equivalence 
classes of C. 


• “Analogous to ￼ -reach”


• Graph is said to be connected if there is only one connected component.


• In English: starting from any node can reach any other node. 

C V × V uCv u v

ε

￼23

Connected components



Connectivity problems

• Given graph ￼  and nodes ￼  and ￼ , is ￼  connected to ￼ ?  


• Given ￼  and node ￼ , find all nodes that are connected to ￼ . 


• Find all connected components of ￼ .


Can be accomplished in ￼  time using BFS or DFS. 


BFS and DFS are flavors of an natural graph exploration algorithm we will call 
Basic Search. 

G u v u v

G u u

G

O(m + n)

￼24

Algorithmic problems



Search on graph 
Basic search

￼25

Explore(G,u): 
Initialize: Set Visited[I]￼  FALSE for ￼  
Lists: ToExplore, S 
Add u to ToExplore and to S, 
Visited[u] ￼  TRUE 
while (ToExplore is non-empty) do 

Remove node x from ToExplore 
for each vertex y in Adj(x) do 

if (Visited[y] = FALSE) 
 Visited[y] ￼  TRUE 
 Add y to ToExplore 
 Add y to S 

Output S

← 1 ≤ i ≤ n

←

←



Search on graph 
Basic search

• BFS and DFS are 
special case of the 
following algorithm.


• BFS maintains 
ToExplore using a 
queue data 
structure


• DFS maintains 
ToExplore using a 
stack data 
structure 
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Explore(G,u): 
Initialize: Set Visited[I]￼  FALSE for ￼  
Lists: ToExplore, S 
Add u to ToExplore and to S, 
Visited[u] ￼  TRUE 
while (ToExplore is non-empty) do 

Remove node x from ToExplore 
for each vertex y in Adj(x) do 

if (Visited[y] = FALSE) 
 Visited[y] ￼  TRUE 
 Add y to ToExplore 
 Add y to S 

Output S

← 1 ≤ i ≤ n

←

←



Search on graph 
Example - maintain ToExplore as a queue
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Search on graph 
Exercise - maintain ToExplore as a stack
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Search on graph 
Basic search - modified to get search tree

• The search tree for 
Explore(G, u) is tree 
rooted at u that 
spans the 
connected 
component of u. 
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Explore(G,u): 
array Visited[1..n] 
Initialize: Set Visited[I]￼  FALSE for ￼  
List: ToExplore, S 
Add u to ToExplore and to S, Visited[u] ￼  TRUE 
Make tree T with root as u 
while (ToExplore is non-empty) do 

Remove node x from ToExplore 
for each vertex y in Adj(x) do 

if (Visited[y] = FALSE) 
 Visited[y] ￼  TRUE 
 Add y to ToExplore 
 Add y to S 
 Add y to T with x as parent

Output S, T

← 1 ≤ i ≤ n

←

←



Search on graph 
Basic search - modified to get search tree

• BFS and DFS will return 
different search trees on the 
following graph 

￼30
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Directed graphs
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Directed graphs
Definition

A directed graph ￼  consists of 


• A set of vertices/nodes ￼  and 


• A set of edges ￼ .


An edge is an ordered pair of vertices: ￼  
different from ￼

G = (V, E)

V

E ⊆ V × V

(u, v)
(v, u)

￼32

A CB

E DF

G H



Directed graphs
Examples

In many situations relationship between vertices is asymmetric: 


• Road networks with one-way streets. 


• Web-link graph where vertices are web-pages and there is an edge from page 
￼  to page ￼  if ￼  has a link to ￼  . 


• Dependency graphs in variety of applications: link from ￼  to ￼  if ￼  depends on 
￼ . E.g. Make files for compiling programs.


• Program analysis: functions/procedures are vertices and there is an edge 
from ￼  to ￼  if ￼  calls ￼ .

p p′￼ p p′￼

x y y
x

x y x y
￼33



Directed graphs
Representation

Graph ￼  with ￼  vertices and ￼  edges:


• Adjacency matrix: ￼  asymmetric matrix ￼ . ￼  if ￼  and 
￼  if ￼ . 


• Adjacency lists: For each node ￼ , ￼  (also referred to as ￼  by 
default) stores out-going edges from ￼  .


• Can also have ￼  and store in-coming edges to ￼ .


Default representation is adjacency lists (￼ ).

G = (V, E) n m

n × n A aij = 1 (i, j) ∈ E
aij = 0 (i, j) ∉ E

u Out(u) Adj(u)
u

In(u) u

Adj(u) ∼ Out(u)
￼34



Directed connectivity

Given a graph ￼ :


• A (directed) path is a sequence of distinct vertices ￼  such that 
￼  for ￼ . The length of the path is ￼  and the path is 
from ￼  to ￼ . By convention, a single node ￼  is a path of length 0.


• A cycle is a sequence of distinct vertices ￼  such that ￼  for 
￼  and ￼ . By convention, a single node ￼  is not a cycle.


• A vertex ￼  can reach ￼  if there is a path from ￼  to ￼ . Alternatively, we say ￼  can be 
reached from ￼ .


• We denote with  ￼  the set of all vertices reachable from ￼ .

G = (V, E)

v1, v2, …, vk
(vi, vi+1) ∈ E 1 ≤ i ≤ k − 1 k − 1

v1 vk u

v1, v2, …, vk (vi, vi+1) ∈ E
1 ≤ i ≤ k − 1 (vk, v1) ∈ E u

u v u v v
u

rch(u) u
￼35



Directed connectivity

Asymmetricity: D can reach B but B cannot reach D.


Questions:  

Is there a notion of connected components? 


How do we understand connectivity in directed 
graphs?

￼36

A CB
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Connectivity and strongly connected components
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Definition: Given a directed graph ￼ , ￼  is strongly connected to ￼  if ￼  can 
reach ￼  and ￼  can reach ￼ . In other words ￼  and ￼ . 


Proposition: Define relation ￼  where ￼  if ￼  is (strongly) connected to ￼ . Then 
￼  is an equivalence relation, that is reflexive, symmetric & transitive.


Equivalence classes of ￼  are the strongly connected components of ￼  and they 
partition the vertices of ￼ . 


We denote with ￼  the strongly connected component containing ￼ .

G u v u
v v u v ∈ rch(u) u ∈ rch(v)

C uCv u v
C

C G
G

SCC(u) u



Exercise

• Partition vertices of given graph under 
strong connectivity. 

￼38

Connectivity and strongly connected components

A CB

E DF

G H



Directed graph connectivity problems

1. Given ￼  and nodes ￼  and ￼ , can ￼  reach ￼ ? 


2. Given ￼  and ￼ , compute ￼ . 


3. Given ￼  and ￼ , compute all ￼  that can reach ￼ , that is all ￼  such that ￼ .


4. Find the strongly connected component containing node ￼ , that is ￼ . 


5. Is ￼  strongly connected (a single strong component)? 


6. Compute all strongly connected components of ￼ .


First five problems can be solved in ￼  time via Basic Search (or BFS/DFS). The 
last one can also be done in linear time but requires a rather clever DFS based 
algorithm (next lecture).

G u v u v

G u rch(u)

G u v u v u ∈ rch(v)

u SCC(u)

G

G

O(n + m)

￼39
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Graph exploration in directed 
graphs 



Directed graph search

Given ￼              
a directed graph and 
vertex ￼ .                     
Let ￼ .


We seek to find all 
nodes that can be 
reached from ￼  
(represented as a 
spanning tree). 

G = (V, E)

u ∈ V
n = |V |

u

￼41

Explore(G,u): 
array Visited[1..n] 
Initialize: Set Visited[I]￼  FALSE for ￼  
List: ToExplore, S 
Add u to ToExplore and to S, Visited[u] ￼  TRUE 
Make tree T with root as u 
while (ToExplore is non-empty) do 

Remove node x from ToExplore 
for each vertex y in Adj(x) do 

if (Visited[y] = FALSE) 
 Visited[y] ￼  TRUE 
 Add y to ToExplore 
 Add y to S 
 Add y to T with x as parent

Output S, T

← 1 ≤ i ≤ n

←

←



Example
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A CB

E DF

G H

Directed graph search

Proposition: Explore(G,u) terminates with S being ￼  rch(u) .



1. Given ￼  and nodes ￼  and ￼ , can ￼  reach ￼ ? 


2. Given ￼  and ￼ , compute ￼ . 


3. Given ￼  and ￼ , compute all ￼  that can reach ￼ , that is all ￼  such that ￼ .


4. Find the strongly connected component containing node ￼ , that is ￼ . 


5. Is ￼  strongly connected (a single strong component)? 


6. Compute all strongly connected components of ￼ .


First five problems can be solved in ￼  time via Basic Search (or BFS/DFS). The 
last one can also be done in linear time but requires a rather clever DFS based 
algorithm (next lecture).

G u v u v

G u rch(u)

G u v u v u ∈ rch(v)

u SCC(u)

G

G

O(n + m)

Directed graph connectivity problems
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Use ￼  to compute 
￼  in ￼  time.

Explore(G, u)
rch(u) O(n + m)

Uses ￼Grev



Algorithms via Basic Search - 1, 2

• Given ￼  and nodes ￼  and ￼ , can ￼  reach ￼ ?


• Given ￼  and ￼ , compute ￼ .


Use ￼  to compute ￼  in ￼  time.

G u v u v

G u rch(u)

Explore(G, u) rch(u) O(n + m)

￼44



Algorithms via Basic Search - 3

• Given ￼  and ￼ , compute all ￼ , that can reach ￼ , that is all ￼  such that ￼ .                                                                                                      
Naive: ￼ 


Definition (Reverse graph):  

Given ￼ , ￼  is the graph with edge directions reversed ￼  
where ￼ 


Compute ￼  in ￼ . 


Running time: ￼  to obtain ￼  from ￼  and ￼  time to compute 
￼ via Basic Search.

G u v u v u ∈ rch(u)
O(n(n + m))

G = (V, E) Grev Grev = (V, E′￼)
E′￼ = {(y, x) | (x, y) ∈ E}

rch(u) Grev

O(n + m) Grev G O(n + m)
rch(u)

￼45



Algorithms via Basic Search - 4
￼ 


Find the strongly connected component containing node ￼ . That is, compute 
￼ .


￼  


Hence, ￼  can be computed with ￼  and ￼ . 
Total ￼  time

SCC(G, u) = {v |u is strongly connected to v}

u
SCC(G, u)

SCC(G, u) = rch(G, u) ∩ rch(Grev, u)

SCC(G, u) Explore(G, u) Explore(Grev, u)
O(n + m)

￼46



Given a graph ￼ , and a vertex ￼ …G F

￼47

A CB

E DF

G H

Graph ￼  G

Algorithms via Basic Search - 4

is set of vertices reachable from ￼  .F

A CB

E DF

G H

 … its reachable set ￼rch(G, F)



A CB

E DF

G H
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A CB

E DF

G H

A CB

E DF

G H

… has all edges reversed.

Algorithms via Basic Search - 4

Given a graph ￼  …G  … its reverse graph ￼  …Grev



… is ￼  rch(Grev, F)
￼49

A CB

E DF

G H

A CB

E DF

G H

Graph ￼  G

Algorithms via Basic Search - 4

.. the set of vertices that can reach it in ￼  …GGiven a graph ￼ , and a vertex ￼ …G F
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Given a graph ￼ , and a vertex ￼ , its strongly connected component in ￼  is …G F G

Graph ￼  G

A CB

E DF

G H

￼rch(Grev, F)

A CB

E DF

G H

A CB

E DF

G H

￼rch(G, F)

￼  SCC(G, F) = rch(G, F) ∩ rch(Grev, F)

Algorithms via Basic Search - 4



Algorithms via Basic Search - 5
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• Is ￼  strongly connected?


• Pick arbitrary vertex ￼ . 


• Check if ￼

G

u

SCC(G, u) = V .


