
Graph Search

All mistakes are my own! - Ivan Abraham (Fall 2024)

Sides based on material by Kani, Chekuri, Erickson et. al.

Why graphs?

• Graphs have many applications!

‣ Graphs help model networks — which are ubiquitous: transportation
networks (rail, roads, airways), social networks (interpersonal relationships),
information networks (web page links), and many problems that don’t even
look like graph problems.

• Fundamental objects in CS, optimization, combinatorics

• Many important and useful optimization problems are graph problems

• Graph theory: elegant, fun and deep branch of mathematics
 2

Why graphs?
Real life applications

 3

Search & Rescue

Route Planning

Shortest Path

Game Playing

Introduction
What is a Graph?

• A graph is a collection of nodes and edges.

• The dots are called vertices or nodes.

• The connections between nodes are called edges

• An edge typically represented as a set of two
vertices.

{i, j}

Eg: The edge between 2 and 5 is {2,5} = {5,2}

 4

1

2

34

5

• Generalizations

• Multi-graphs allow

• loops which are edges with the same node appearing as both end points

• multi-edges: different edges between same pairs of nodes

• In this class we will assume that a graph is a simple graph unless explicitly
stated otherwise.

Notational convention

 5

An edge in an undirected graph is an unordered pair of nodes and hence it is a
set. We reserve the use of (ordered pair) for the case of directed graphs. (u, v)

1

2

What is a Graph?

3

Introduction
Defintion

 6

An undirected (simple) graph is a 2-tuple:G = (V, E)

• is a set of vertices (also referred to as nodes/points) V

• is a set of edges where each edge is a set of
the form with and .
E e ∈ E

{u, v} u, v ∈ V u ≠ v
Example:

Graph where and G = (V, E) V = {1,2,3,4,5,6,7,8}

1

32

54

6

7

8

Introduction
Defintion

 6

An undirected (simple) graph is a 2-tuple:G = (V, E)

• is a set of vertices (also referred to as nodes/points) V

• is a set of edges where each edge is a set of
the form with and .
E e ∈ E

{u, v} u, v ∈ V u ≠ v
Example:

Graph where and G = (V, E) V = {1,2,3,4,5,6,7,8}
E = {{1,2}, {1,3}, {2,3}, {2,4}, {2,5}, {3,5}, {3,7}, {3,8},

{4,5}, {5,6}, {7,8}}

1

32

54

6

7

8

• Vertices connected by an edge are called adjacent.

• The neighborhood of a node is the set of all vertices
adjacent to . It’s denoted .

v
v NG(v)

• NG(2) = {1,3,5}

• A vertex is incident with an edge when . v e v ∈ e

 7

1

2

34

5

Basic notions
Degree

• Vertices connected by an edge are called adjacent.

• The neighborhood of a node is the set of all vertices
adjacent to . It’s denoted .

v
v NG(v)

• NG(2) = {1,3,5}

• A vertex is incident with an edge when . v e v ∈ e

• Vertex 2 is incident with edges and {1,2}, {2,5} {2,3}

 7

1

2

34

5

Basic notions
Degree

Basic notions

• The degree of a vertex is the number of edges incident to
it:

 8

Degree

Basic notions

• The degree of a vertex is the number of edges incident to
it:

 d(1) = 1 d(2) = 3 d(3) = 3 d(4) = 2 d(5) = 3

 8

Degree

1

2

34

5

Basic notions

• The degree of a vertex is the number of edges incident to
it:

 d(1) = 1 d(2) = 3 d(3) = 3 d(4) = 2 d(5) = 3
• The degree sequence is to list the degrees listed in

descending order:

 8

Degree

1

2

34

5

Basic notions

• The degree of a vertex is the number of edges incident to
it:

 d(1) = 1 d(2) = 3 d(3) = 3 d(4) = 2 d(5) = 3
• The degree sequence is to list the degrees listed in

descending order:

 3,3,3,2,1

 8

Degree

1

2

34

5

Basic notions

• The degree of a vertex is the number of edges incident to
it:

 d(1) = 1 d(2) = 3 d(3) = 3 d(4) = 2 d(5) = 3
• The degree sequence is to list the degrees listed in

descending order:

 3,3,3,2,1
• The minimum degree is denoted . Here δ(G) δ(G) = 1

 8

Degree

1

2

34

5

Basic notions

• The degree of a vertex is the number of edges incident to
it:

 d(1) = 1 d(2) = 3 d(3) = 3 d(4) = 2 d(5) = 3
• The degree sequence is to list the degrees listed in

descending order:

 3,3,3,2,1
• The minimum degree is denoted . Here δ(G) δ(G) = 1
• The maximum degree is denoted . Here Δ(G) Δ(G) = 3

 8

Degree

1

2

34

5

Basic notions

• The degree of a vertex is the number of edges incident to
it:

 d(1) = 1 d(2) = 3 d(3) = 3 d(4) = 2 d(5) = 3
• The degree sequence is to list the degrees listed in

descending order:

 3,3,3,2,1
• The minimum degree is denoted . Here δ(G) δ(G) = 1
• The maximum degree is denoted . Here Δ(G) Δ(G) = 3

 8

Degree

1

2

34

5

∑ d (v) = 2 |E |

Handshaking lemma

Basic notions

• The degree of a vertex is the number of edges incident to
it:

 d(1) = 1 d(2) = 3 d(3) = 3 d(4) = 2 d(5) = 3
• The degree sequence is to list the degrees listed in

descending order:

 3,3,3,2,1
• The minimum degree is denoted . Here δ(G) δ(G) = 1
• The maximum degree is denoted . Here Δ(G) Δ(G) = 3

 8

Degree

1

2

34

5

Sum of Degrees = 12

Number of Edges = 6

∑ d (v) = 2 |E |

Handshaking lemma

 9

Graph representations

Adjacency matrix

Represent with vertices and edges using a adjacency
matrix where

G = (V, E) n m n × n
A = (aij)

 10

Graph representation I

Adjacency matrix

Represent with vertices and edges using a adjacency
matrix where

G = (V, E) n m n × n
A = (aij)

• and .aij = aji = 1 if {i, j} ∈ E aij = aji = 0 if {i, j} ∉ E

 10

Graph representation I

Adjacency matrix

Represent with vertices and edges using a adjacency
matrix where

G = (V, E) n m n × n
A = (aij)

• and .aij = aji = 1 if {i, j} ∈ E aij = aji = 0 if {i, j} ∉ E

• Advantage: can check if in time{i, j} ∈ E O(1)

 10

Graph representation I

Adjacency matrix

Represent with vertices and edges using a adjacency
matrix where

G = (V, E) n m n × n
A = (aij)

• and .aij = aji = 1 if {i, j} ∈ E aij = aji = 0 if {i, j} ∉ E

• Advantage: can check if in time{i, j} ∈ E O(1)

• Disadvantage: needs space even when Ω(n2) m ≪ n2

 10

Graph representation I

Example

 11

Graph adjacency matrix
1

3

2

5

4

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
1 0 1 0 0 0 1 0 0 0 0

2 1 0 0 1 1 0 0 0 0 0

3 0 0 0 0 0 1 1 0 0 0

4 0 1 0 0 1 0 0 1 0 0

5 0 1 0 1 0 1 0 0 1 0

6 1 0 1 0 1 0 0 0 0 0

7 0 0 1 0 0 0 0 1 0 0

8 0 0 0 1 0 0 1 0 0 0

9 0 0 0 0 1 0 0 0 0 1
10 0 0 0 0 0 0 0 0 1 0

Adjacency list

Represent with vertices and edges using adjacency
lists:

G = (V, E) n m

 12

Graph representation II

Adjacency list

Represent with vertices and edges using adjacency
lists:

G = (V, E) n m

• For each , , that is neighbors of .u ∈ V adj(u) := NG(u) u

 12

Graph representation II

Adjacency list

Represent with vertices and edges using adjacency
lists:

G = (V, E) n m

• For each , , that is neighbors of .u ∈ V adj(u) := NG(u) u

• Advantage: space is . O(m + n)

 12

Graph representation II

Adjacency list

Represent with vertices and edges using adjacency
lists:

G = (V, E) n m

• For each , , that is neighbors of .u ∈ V adj(u) := NG(u) u

• Advantage: space is . O(m + n)
• Disadvantage: cannot “easily” determine in time whether

O(1)

{i, j} ∈ E

 12

Graph representation II

Adjacency list

Represent with vertices and edges using adjacency
lists:

G = (V, E) n m

• For each , , that is neighbors of .u ∈ V adj(u) := NG(u) u

• Advantage: space is . O(m + n)
• Disadvantage: cannot “easily” determine in time whether

O(1)

{i, j} ∈ E
Note: In this class we will assume that by default, graphs are represented
using plain vanilla (unsorted) adjacency lists.

 12

Graph representation II

 14

Adjacency matrix vs. list

Vertex Adjacency List

1 2, 6

2 1, 4, 5

3 6, 7

4 2, 5, 8

5 2, 4, 6, 9

6 1, 3, 5

7 3, 8

8 4, 7

9 5, 10

10 9

1 2 3 4 5 6 7 8 9 10
1 0 1 0 0 0 1 0 0 0 0

2 1 0 0 1 1 0 0 0 0 0

3 0 0 0 0 0 1 1 0 0 0

4 0 1 0 0 1 0 0 1 0 0

5 0 1 0 1 0 1 0 0 1 0

6 1 0 1 0 1 0 0 0 0 0

7 0 0 1 0 0 0 0 1 0 0

8 0 0 0 1 0 0 1 0 0 0

9 0 0 0 0 1 0 0 0 0 1
10 0 0 0 0 0 0 0 0 1 0

Concrete representations
How might we represent this in a language?

• Python-like (nested lists can be of
different sizes)

 15

Vertex Adjacency List

1 2, 6

2 1, 4, 5

3 6, 7

4 2, 5, 8

5 2, 4, 6, 9

6 1, 3, 5

7 3, 8

8 4, 7

9 5, 10

10 9

alist = [[2,6],
 [1,4,5],
 [6,7],
 [2,5,8],
 [2,4,5,9],
 [1,3,5],
 [3,8],
 [4,7],
 [5,10],
 [9]]

Concrete representations

 16

——————

List of vertices that are neighbors of vi

C-like: Can use pointers
—

—
—

—
—

—
—

—

 vi

Array of pointers to
adjacency lists

Concrete representations

 16

——————

List of vertices that are neighbors of vi

C-like: Can use pointers
—

—
—

—
—

—
—

—

 vi

Array of pointers to
adjacency lists

1

2

34

5

Concrete representations

 17

—
—

—
—

—
—

—
—

 v5

Array of pointers to
adjacency lists

1 2 —————— 4

List of vertices that are neighbors of vi

C-like: Can use pointers

1

2

34

5

-51

=

Concrete representations

 18

—
—

—
—

—
—

—
—

 vi

How about using plain arrays?

1

2

34

5

Concrete representations

 18

—
—

—
—

—
—

—
—

 vi

How about using plain arrays?

1

2

34

5

Array of vertices, 𝒱

Concrete representations

 18

—
—

—
—

—
—

—
—

 vi

How about using plain arrays?

1

2

34

5

Array of vertices, 𝒱 —————— ej ——————

An edge array, ℰ
↳ scriptrate from E

script to

- differentrate
from y

Concrete representations

 18

 is the destination vertex of the j-th edgeej

—
—

—
—

—
—

—
—

 vi

How about using plain arrays?

1

2

34

5

Array of vertices, 𝒱 —————— ej ——————

An edge array, ℰ

Concrete representations

 18

 is the destination vertex of the j-th edgeej

—
—

—
—

—
—

—
—

 vi is starting index (in) of vertices adjacent to vi ℰ vi

How about using plain arrays?

1

2

34

5

Array of vertices, 𝒱 —————— ej ——————

An edge array, ℰ

Concrete representations

 18

 is the destination vertex of the j-th edgeej

—
—

—
—

—
—

—
—

 vi is starting index (in) of vertices adjacent to vi ℰ vi

How about using plain arrays?

1

2

34

5

Array of vertices, 𝒱 —————— ej ——————

An edge array, ℰ

𝒱 = [0, 2, 5, 8,10]
ℰ = [2,5, 1,3,5, 2,4,5, 3,5,1,2,3,4]

Assuming zero based indexing
VI V2 V V Vy

0123456789111 12 B

Concrete representations

 19

—————— ej ——————

 is the destination vertex of the j-th edgeej

 is starting index (in) of vertices adjacent to vi ℰ vi

How about using plain arrays?

1

2

34

5

An edge array, ℰ

Array of vertices, 𝒱

—
—

—
—

—
—

—
—

 vi

Can get neighbors of by examining
 to

vi
ℰ [𝒱[i]] ℰ [𝒱[i + 1]]

Concrete representations

• Edges are explicitly represented/numbered. Scanning/processing all edges
easy to do.

• Representation easily supports multi-graphs including self-loops.

• Explicit numbering of vertices and edges allows use of arrays.

• Can also implement via pointer based lists for certain dynamic graph
settings

 20

Advantages

Connectivity

Given a graph :G = (V, E)

 21

Paths on a graph

Connectivity

Given a graph :G = (V, E)

• A path from to is a sequence of distinct vertices
 such that for .

The length of the path is .

v1 vk
v1, v2, . . . , vk {vi, vi+1} ∈ E 1 ≤ i ≤ k − 1

k − 1

 21

Paths on a graph

Connectivity

Given a graph :G = (V, E)

• A path from to is a sequence of distinct vertices
 such that for .

The length of the path is .

v1 vk
v1, v2, . . . , vk {vi, vi+1} ∈ E 1 ≤ i ≤ k − 1

k − 1

• Note: A single vertex is a path of length 0. u

 21

Paths on a graph

Connectivity

Given a graph :G = (V, E)

• A path from to is a sequence of distinct vertices
 such that for .

The length of the path is .

v1 vk
v1, v2, . . . , vk {vi, vi+1} ∈ E 1 ≤ i ≤ k − 1

k − 1

• Note: A single vertex is a path of length 0. u

• We say a vertex is connected to a vertex if there is a
path from to .

u v
u v

 21

Paths on a graph

Connectivity

Given a graph :G = (V, E)

• A path from to is a sequence of distinct vertices
 such that for .

The length of the path is .

v1 vk
v1, v2, . . . , vk {vi, vi+1} ∈ E 1 ≤ i ≤ k − 1

k − 1

• Note: A single vertex is a path of length 0. u

• We say a vertex is connected to a vertex if there is a
path from to .

u v
u v

 21

Paths on a graph

A

C

B

E

D

F

Connectivity

Given a graph :G = (V, E)

• A path from to is a sequence of distinct vertices
 such that for .

The length of the path is .

v1 vk
v1, v2, . . . , vk {vi, vi+1} ∈ E 1 ≤ i ≤ k − 1

k − 1

• Note: A single vertex is a path of length 0. u

• We say a vertex is connected to a vertex if there is a
path from to .

u v
u v

• Example: D, B, A, C, F, E
 21

Paths on a graph

A

C

B

E

D

F

Connectivity

 22

Cycle

Given a graph :G = (V, E)

Connectivity

 22

Cycle

Given a graph :G = (V, E)

• A cycle is a sequence of distinct vertices with
 such that for and

v1, v2, . . . , vk
k ≥ 3 {vi, vi+1} ∈ E 1 ≤ i ≤ k − 1
{v1, vk} ∈ E .

Connectivity

 22

Cycle

A

C

B

E

D

F

Given a graph :G = (V, E)

• A cycle is a sequence of distinct vertices with
 such that for and

v1, v2, . . . , vk
k ≥ 3 {vi, vi+1} ∈ E 1 ≤ i ≤ k − 1
{v1, vk} ∈ E .

Connectivity

 22

Cycle

A

C

B

E

D

F

Given a graph :G = (V, E)

• A cycle is a sequence of distinct vertices with
 such that for and

v1, v2, . . . , vk
k ≥ 3 {vi, vi+1} ∈ E 1 ≤ i ≤ k − 1
{v1, vk} ∈ E .

• Example: A, B, D, C, A

Connectivity

 22

Cycle

A

C

B

E

D

F

Given a graph :G = (V, E)

• A cycle is a sequence of distinct vertices with
 such that for and

v1, v2, . . . , vk
k ≥ 3 {vi, vi+1} ∈ E 1 ≤ i ≤ k − 1
{v1, vk} ∈ E .

• Example: A, B, D, C, A
Caveat: Some times people use the term cycle to also allow
vertices to be repeated; we will use the term tour.

Connectivity

 22

Cycle

A

C

B

E

D

F

Note: A single vertex or an edge are not cycles according to this definition

Given a graph :G = (V, E)

• A cycle is a sequence of distinct vertices with
 such that for and

v1, v2, . . . , vk
k ≥ 3 {vi, vi+1} ∈ E 1 ≤ i ≤ k − 1
{v1, vk} ∈ E .

• Example: A, B, D, C, A
Caveat: Some times people use the term cycle to also allow
vertices to be repeated; we will use the term tour.

Connectivity

Define a relation on as if is connected to C V × V uCv u v

• Proposition: In undirected graphs, connectivity is a reflexive, symmetric, and
transitive relation.

 23

Connected components
Vertex is
connected lo

↑ itself

-

↓
-

andE bra
and and but anc

Connectivity

Define a relation on as if is connected to C V × V uCv u v

• Proposition: In undirected graphs, connectivity is a reflexive, symmetric, and
transitive relation.

• We say that the connected components of a graph are the equivalence
classes of C.

 23

Connected components

Connectivity

Define a relation on as if is connected to C V × V uCv u v

• Proposition: In undirected graphs, connectivity is a reflexive, symmetric, and
transitive relation.

• We say that the connected components of a graph are the equivalence
classes of C.

• “Analogous to -reach”ε

 23

Connected components

Connectivity

Define a relation on as if is connected to C V × V uCv u v

• Proposition: In undirected graphs, connectivity is a reflexive, symmetric, and
transitive relation.

• We say that the connected components of a graph are the equivalence
classes of C.

• “Analogous to -reach”ε

• Graph is said to be connected if there is only one connected component.

 23

Connected components

-> butthat
wa

s transitions (NOT necessarly one-hop !)

Connectivity

Define a relation on as if is connected to C V × V uCv u v

• Proposition: In undirected graphs, connectivity is a reflexive, symmetric, and
transitive relation.

• We say that the connected components of a graph are the equivalence
classes of C.

• “Analogous to -reach”ε

• Graph is said to be connected if there is only one connected component.

• In English: starting from any node can reach any other node.
 23

Connected components

Connectivity problems

• Given graph and nodes and , is connected to ? G u v u v

• Given and node , find all nodes that are connected to . G u u

• Find all connected components of .G

 24

Algorithmic problems

Connectivity problems

• Given graph and nodes and , is connected to ? G u v u v

• Given and node , find all nodes that are connected to . G u u

• Find all connected components of .G

Can be accomplished in time using BFS or DFS. O(m + n)

 24

Algorithmic problems

Connectivity problems

• Given graph and nodes and , is connected to ? G u v u v

• Given and node , find all nodes that are connected to . G u u

• Find all connected components of .G

Can be accomplished in time using BFS or DFS. O(m + n)
BFS and DFS are flavors of an natural graph exploration algorithm we will call

Basic Search.

 24

Algorithmic problems

Search on graph
Basic search

 25

Search on graph
Basic search

 25

Explore(G,u):
Initialize: Set Visited[I] FALSE for
Lists: ToExplore, S
Add u to ToExplore and to S,
Visited[u] TRUE
while (ToExplore is non-empty) do

Remove node x from ToExplore
for each vertex y in Adj(x) do

if (Visited[y] = FALSE)
 Visited[y] TRUE
 Add y to ToExplore
 Add y to S

Output S

← 1 ≤ i ≤ n

←

←

↳
away

Not quite list,
some people call --
it a "dispenser".

-> lest/aray ↳
Jeff E calls it a "bagh will be

all vertices

Essentially a date connected

Structure to track to u .

which nodes to explore
next .

Search on graph
Basic search

• BFS and DFS are
special case of the
following algorithm.

 26

Explore(G,u):
Initialize: Set Visited[I] FALSE for
Lists: ToExplore, S
Add u to ToExplore and to S,
Visited[u] TRUE
while (ToExplore is non-empty) do

Remove node x from ToExplore
for each vertex y in Adj(x) do

if (Visited[y] = FALSE)
 Visited[y] TRUE
 Add y to ToExplore
 Add y to S

Output S

← 1 ≤ i ≤ n

←

←

Search on graph
Basic search

• BFS and DFS are
special case of the
following algorithm.

• BFS maintains
ToExplore using a
queue data
structure

 26

Explore(G,u):
Initialize: Set Visited[I] FALSE for
Lists: ToExplore, S
Add u to ToExplore and to S,
Visited[u] TRUE
while (ToExplore is non-empty) do

Remove node x from ToExplore
for each vertex y in Adj(x) do

if (Visited[y] = FALSE)
 Visited[y] TRUE
 Add y to ToExplore
 Add y to S

Output S

← 1 ≤ i ≤ n

←

←

Search on graph
Basic search

• BFS and DFS are
special case of the
following algorithm.

• BFS maintains
ToExplore using a
queue data
structure

• DFS maintains
ToExplore using a
stack data
structure

 26

Explore(G,u):
Initialize: Set Visited[I] FALSE for
Lists: ToExplore, S
Add u to ToExplore and to S,
Visited[u] TRUE
while (ToExplore is non-empty) do

Remove node x from ToExplore
for each vertex y in Adj(x) do

if (Visited[y] = FALSE)
 Visited[y] TRUE
 Add y to ToExplore
 Add y to S

Output S

← 1 ≤ i ≤ n

←

←

Search on graph
Example - maintain ToExplore as a queue

 27

1

2 3

4 5

6

7

8

Let u= 1

visiti
12345 6 78

z-D
S= 41, 2, 3 , 4 , 5, 7,

8
,63

⑤

E
-

Toexplore

Search on graph
Exercise - maintain ToExplore as a stack

 28

1

2 3

4 5

6

7

8

-

Irisz
12345678

I
⑤ S=4/2 , 3 , 5, 7, 8 , 4 ,63
#7↳E>
↳

To Explore

Search on graph
Basic search - modified to get search tree

 29

Explore(G,u):
array Visited[1..n]
Initialize: Set Visited[I] FALSE for
List: ToExplore, S
Add u to ToExplore and to S, Visited[u] TRUE
Make tree T with root as u
while (ToExplore is non-empty) do

Remove node x from ToExplore
for each vertex y in Adj(x) do

if (Visited[y] = FALSE)
 Visited[y] TRUE
 Add y to ToExplore
 Add y to S
 Add y to T with x as parent

Output S, T

← 1 ≤ i ≤ n

←

←

Search on graph
Basic search - modified to get search tree

• The search tree for
Explore(G, u) is tree
rooted at u that
spans the
connected
component of u.

 29

Explore(G,u):
array Visited[1..n]
Initialize: Set Visited[I] FALSE for
List: ToExplore, S
Add u to ToExplore and to S, Visited[u] TRUE
Make tree T with root as u
while (ToExplore is non-empty) do

Remove node x from ToExplore
for each vertex y in Adj(x) do

if (Visited[y] = FALSE)
 Visited[y] TRUE
 Add y to ToExplore
 Add y to S
 Add y to T with x as parent

Output S, T

← 1 ≤ i ≤ n

←

←

Search on graph
Basic search - modified to get search tree

• BFS and DFS will return
different search trees on the
following graph

 30

1

2 3

4 5

6

7

8

1

2 3

4 5

6

7

81

2 3

4 5

6

7

8

Verify these !
which is BFS ?

DFS ?

Directed graphs

 31

Directed graphs
Definition

A directed graph consists of G = (V, E)

• A set of vertices/nodes and V

• A set of edges .E ⊆ V × V

 32

Directed graphs
Definition

A directed graph consists of G = (V, E)

• A set of vertices/nodes and V

• A set of edges .E ⊆ V × V

An edge is an ordered pair of vertices:
different from

(u, v)
(v, u)

 32

oo

Directed graphs
Definition

A directed graph consists of G = (V, E)

• A set of vertices/nodes and V

• A set of edges .E ∈ V ≠ V

An edge is an ordered pair of vertices:
different from

(u, v)
(v, u)

 32

A CB

E DF

G H

Directed graphs
Examples

In many situations relationship between vertices is asymmetric:

 33

S

Directed graphs
Examples

In many situations relationship between vertices is asymmetric:

• Road networks with one-way streets.

 33

Directed graphs
Examples

In many situations relationship between vertices is asymmetric:

• Road networks with one-way streets.

• Web-link graph where vertices are web-pages and there is an edge from page
 to page if has a link to . p pΔ p pΔ

 33

Directed graphs
Examples

In many situations relationship between vertices is asymmetric:

• Road networks with one-way streets.

• Web-link graph where vertices are web-pages and there is an edge from page
 to page if has a link to . p pΔ p pΔ

• Dependency graphs in variety of applications: link from to if depends on
. E.g. Make files for compiling programs.

x y y
x

 33

Directed graphs
Examples

In many situations relationship between vertices is asymmetric:

• Road networks with one-way streets.

• Web-link graph where vertices are web-pages and there is an edge from page
 to page if has a link to . p pΔ p pΔ

• Dependency graphs in variety of applications: link from to if depends on
. E.g. Make files for compiling programs.

x y y
x

• Program analysis: functions/procedures are vertices and there is an edge
from to if calls .x y x y

 33

Directed graphs
Representation

Graph with vertices and edges:G = (V, E) n m

 34

Directed graphs
Representation

Graph with vertices and edges:G = (V, E) n m

• Adjacency matrix: asymmetric matrix . if and
 if .

n ≠ n A aij = 1 (i, j) × E
aij = 0 (i, j) ∉ E

 34

Ang = An Koj = aji

-

-

Directed graphs
Representation

Graph with vertices and edges:G = (V, E) n m

• Adjacency matrix: asymmetric matrix . if and
 if .

n ≠ n A aij = 1 (i, j) × E
aij = 0 (i, j) ∉ E

• Adjacency lists: For each node , (also referred to as by
default) stores out-going edges from .

u Out(u) Adj(u)
u

 34

-

Directed graphs
Representation

Graph with vertices and edges:G = (V, E) n m

• Adjacency matrix: asymmetric matrix . if and
 if .

n ≠ n A aij = 1 (i, j) × E
aij = 0 (i, j) ∉ E

• Adjacency lists: For each node , (also referred to as by
default) stores out-going edges from .

u Out(u) Adj(u)
u

• Can also have and store in-coming edges to .In(u) u

 34

Directed graphs
Representation

Graph with vertices and edges:G = (V, E) n m

• Adjacency matrix: asymmetric matrix . if and
 if .

n ≠ n A aij = 1 (i, j) × E
aij = 0 (i, j) ∉ E

• Adjacency lists: For each node , (also referred to as by
default) stores out-going edges from .

u Out(u) Adj(u)
u

• Can also have and store in-coming edges to .In(u) u

Default representation is adjacency lists ().Adj(u) Ω Out(u)
 34

-

Directed connectivity

Given a graph :G = (V, E)

 35

Directed connectivity

Given a graph :G = (V, E)

• A (directed) path is a sequence of distinct vertices such that
 for . The length of the path is and the path is

from to . By convention, a single node is a path of length 0.

v1, v2, …, vk
(vi, vi+1) × E 1 ≪ i ≪ k 𝒱 1 k 𝒱 1

v1 vk u

 35

↓
CEE is an ordered

tople now.

Directed connectivity

Given a graph :G = (V, E)

• A (directed) path is a sequence of distinct vertices such that
 for . The length of the path is and the path is

from to . By convention, a single node is a path of length 0.

v1, v2, …, vk
(vi, vi+1) × E 1 ≪ i ≪ k 𝒱 1 k 𝒱 1

v1 vk u

• A cycle is a sequence of distinct vertices such that for
 and . By convention, a single node is not a cycle.

v1, v2, …, vk (vi, vi+1) × E
1 ≪ i ≪ k 𝒱 1 (vk, v1) × E u

 35

-
↑
-

a : is there sude a thing as "undirected" path on
a directed graph ?

Directed connectivity

Given a graph :G = (V, E)

• A (directed) path is a sequence of distinct vertices such that
 for . The length of the path is and the path is

from to . By convention, a single node is a path of length 0.

v1, v2, …, vk
(vi, vi+1) × E 1 ≪ i ≪ k 𝒱 1 k 𝒱 1

v1 vk u

• A cycle is a sequence of distinct vertices such that for
 and . By convention, a single node is not a cycle.

v1, v2, …, vk (vi, vi+1) × E
1 ≪ i ≪ k 𝒱 1 (vk, v1) × E u

• A vertex can reach if there is a path from to . Alternatively, we say can be
reached from .

u v u v v
u

 35

Directed connectivity

Given a graph :G = (V, E)

• A (directed) path is a sequence of distinct vertices such that
 for . The length of the path is and the path is

from to . By convention, a single node is a path of length 0.

v1, v2, …, vk
(vi, vi+1) × E 1 ≪ i ≪ k 𝒱 1 k 𝒱 1

v1 vk u

• A cycle is a sequence of distinct vertices such that for
 and . By convention, a single node is not a cycle.

v1, v2, …, vk (vi, vi+1) × E
1 ≪ i ≪ k 𝒱 1 (vk, v1) × E u

• A vertex can reach if there is a path from to . Alternatively, we say can be
reached from .

u v u v v
u

• We denote with the set of all vertices reachable from .rch(u) u
 35

--

- -

Directed connectivity

Asymmetricity: D can reach B but B cannot reach D.

 36

A CB

E DF

G H

??

O

Directed connectivity

Asymmetricity: D can reach B but B cannot reach D.

Questions:

 36

A CB

E DF

G H

Directed connectivity

Asymmetricity: D can reach B but B cannot reach D.

Questions:
Is there a notion of connected components?

 36

A CB

E DF

G H

Directed connectivity

Asymmetricity: D can reach B but B cannot reach D.

Questions:
Is there a notion of connected components?

How do we understand connectivity in directed
graphs?

 36

A CB

E DF

G H

Connectivity and strongly connected components

 37

Definition: Given a directed graph , is strongly connected to if can
reach and can reach . In other words and .

G u v u
v v u v × rch(u) u × rch(v)

Connectivity and strongly connected components

 37

Definition: Given a directed graph , is strongly connected to if can
reach and can reach . In other words and .

G u v u
v v u v × rch(u) u × rch(v)

Proposition: Define relation where if is (strongly) connected to . Then
 is an equivalence relation, that is reflexive, symmetric & transitive.

C uCv u v
C

Connectivity and strongly connected components

 37

Definition: Given a directed graph , is strongly connected to if can
reach and can reach . In other words and .

G u v u
v v u v × rch(u) u × rch(v)

Proposition: Define relation where if is (strongly) connected to . Then
 is an equivalence relation, that is reflexive, symmetric & transitive.

C uCv u v
C

Equivalence classes of are the strongly connected components of and they
partition the vertices of .

C G
G

Connectivity and strongly connected components

 37

Definition: Given a directed graph , is strongly connected to if can
reach and can reach . In other words and .

G u v u
v v u v × rch(u) u × rch(v)

Proposition: Define relation where if is (strongly) connected to . Then
 is an equivalence relation, that is reflexive, symmetric & transitive.

C uCv u v
C

Equivalence classes of are the strongly connected components of and they
partition the vertices of .

C G
G

We denote with the strongly connected component containing .SCC(u) u
--

Exercise

• Partition vertices of given graph under
strong connectivity.

 38

Connectivity and strongly connected components

A CB

E DF

G H

Do

Directed graph connectivity problems
1. Given and nodes and , can reach ?

2. Given and , compute .

3. Given and , compute all that can reach , that is all such that .

4. Find the strongly connected component containing node , that is .

5. Is strongly connected (a single strong component)?

6. Compute all strongly connected components of .

First five problems can be solved in time via Basic Search (or BFS/DFS). The
last one can also be done in linear time but requires a rather clever DFS based
algorithm (next lecture).

G u v u v
G u rch(u)
G u v u v u × rch(v)

u SCC(u)
G

G

O(n + m)

 39

sort of reverse
- question

 40

Graph exploration in directed
graphs

Directed graph search

Given
a directed graph and
vertex .
Let .

G = (V, E)

u × V
n = |V |

 41

Directed graph search

Given
a directed graph and
vertex .
Let .

G = (V, E)

u × V
n = |V |

 41

Explore(G,u):
array Visited[1..n]
Initialize: Set Visited[I] FALSE for
List: ToExplore, S
Add u to ToExplore and to S, Visited[u] TRUE
Make tree T with root as u
while (ToExplore is non-empty) do

Remove node x from ToExplore
for each vertex y in Adj(x) do

if (Visited[y] = FALSE)
 Visited[y] TRUE
 Add y to ToExplore
 Add y to S
 Add y to T with x as parent

Output S, T

ℰ 1 ≪ i ≪ n

ℰ

ℰ

Directed graph search

Given
a directed graph and
vertex .
Let .

G = (V, E)

u × V
n = |V |

We seek to find all
nodes that can be
reached from
(represented as a
spanning tree).

u

 41

Explore(G,u):
array Visited[1..n]
Initialize: Set Visited[I] FALSE for
List: ToExplore, S
Add u to ToExplore and to S, Visited[u] TRUE
Make tree T with root as u
while (ToExplore is non-empty) do

Remove node x from ToExplore
for each vertex y in Adj(x) do

if (Visited[y] = FALSE)
 Visited[y] TRUE
 Add y to ToExplore
 Add y to S
 Add y to T with x as parent

Output S, T

ℰ 1 ≪ i ≪ n

ℰ

ℰ

-> previouslyS was nodes

"connected" to u

-> Now it is nodes

↑
"reachable" from U -

Example

 42

A CB

E DF

G H

Directed graph search
visitelIFE
- A B < DEF G H

F

3
E

s=(B, E , F, G , H] wrap in

Z another
↑ WhileF all nodes

rch(B)
.

loop
to visit

Example

 42

A CB

E DF

G H

Directed graph search

Proposition: Explore(G,u) terminates with S being rch(u) .

proof skipped.
(see Prof. Kan's old

↑ slides for a sketch)
-

1. Given and nodes and , can reach ? G u v u v
2. Given and , compute . G u rch(u)
3. Given and , compute all that can reach , that is all such that .G u v u v u × rch(v)
4. Find the strongly connected component containing node , that is . u SCC(u)
5. Is strongly connected (a single strong component)? G
6. Compute all strongly connected components of .G

Directed graph connectivity problems

 43

1. Given and nodes and , can reach ? G u v u v
2. Given and , compute . G u rch(u)
3. Given and , compute all that can reach , that is all such that .G u v u v u × rch(v)
4. Find the strongly connected component containing node , that is . u SCC(u)
5. Is strongly connected (a single strong component)? G
6. Compute all strongly connected components of .G

Directed graph connectivity problems

 43

Use to compute
 in time.

Explore(G, u)
rch(u) O(n + m)

already
discussed.
t

1. Given and nodes and , can reach ? G u v u v
2. Given and , compute . G u rch(u)
3. Given and , compute all that can reach , that is all such that .G u v u v u × rch(v)
4. Find the strongly connected component containing node , that is . u SCC(u)
5. Is strongly connected (a single strong component)? G
6. Compute all strongly connected components of .G

Directed graph connectivity problems

 43

Use to compute
 in time.

Explore(G, u)
rch(u) O(n + m)

Uses Grev

Algorithms via Basic Search - 1, 2

• Given and nodes and , can reach ?

• Given and , compute .

Use to compute in time.

G u v u v

G u rch(u)
Explore(G, u) rch(u) O(n + m)

 44

I alreadaessed

Algorithms via Basic Search - 3
• Given and , compute all , that can reach , that is all such that .

Naive:
G u v u v u × rch(u)
O(n(n + m))

 45

On
run Explore from every

vertex

Algorithms via Basic Search - 3
• Given and , compute all , that can reach , that is all such that .

Naive:
G u v u v u × rch(u)
O(n(n + m))

Definition (Reverse graph):

Given , is the graph with edge directions reversed
where

G = (V, E) Grev Grev = (V, EΔ)
EΔ = {(y, x) | (x, y) × E}

 45

Algorithms via Basic Search - 3
• Given and , compute all , that can reach , that is all such that .

Naive:
G u v u v u × rch(u)
O(n(n + m))

Definition (Reverse graph):

Given , is the graph with edge directions reversed
where

G = (V, E) Grev Grev = (V, EΔ)
EΔ = {(y, x) | (x, y) × E}

Compute in . rch(u) Grev

 45

Algorithms via Basic Search - 3
• Given and , compute all , that can reach , that is all such that .

Naive:
G u v u v u × rch(u)
O(n(n + m))

Definition (Reverse graph):

Given , is the graph with edge directions reversed
where

G = (V, E) Grev Grev = (V, EΔ)
EΔ = {(y, x) | (x, y) × E}

Compute in . rch(u) Grev

Running time: to obtain from and time to compute
via Basic Search.

O(n + m) Grev G O(n + m)
rch(u)

 45

G
will be solution to all v that can reach in
->
on original G.

-
-

Algorithms via Basic Search - 4
SCC(G, u) = {v |u is strongly connected to v}

 46

Algorithms via Basic Search - 4
SCC(G, u) = {v |u is strongly connected to v}

Find the strongly connected component containing node . That is, compute
.

u
SCC(G, u)

 46

-

Algorithms via Basic Search - 4
SCC(G, u) = {v |u is strongly connected to v}

Find the strongly connected component containing node . That is, compute
.

u
SCC(G, u)

 SCC(G, u) = rch(G, u) ≤ rch(Grev, u)

 46

- we
will only

"prove by example
Y

Algorithms via Basic Search - 4
SCC(G, u) = {v |u is strongly connected to v}

Find the strongly connected component containing node . That is, compute
.

u
SCC(G, u)

 SCC(G, u) = rch(G, u) ≤ rch(Grev, u)

Hence, can be computed with and .
Total time

SCC(G, u) Explore(G, u) Explore(Grev, u)
O(n + m)

 46

Given a graph , and a vertex …G F

 47

A CB

E DF

G H

Graph G

Algorithms via Basic Search - 4

A CB

E DF

G H

 … its reachable set rch(G, F)

Given a graph , and a vertex …G F

 47

A CB

E DF

G H

Graph G

Algorithms via Basic Search - 4

is set of vertices reachable from .F

A CB

E DF

G H

 … its reachable set rch(G, F)

A CB

E DF

G H

 48

A CB

E DF

G H

Algorithms via Basic Search - 4
 its reverse graph …GrevGiven a graph …G

 48

A CB

E DF

G H

A CB

E DF

G H

… has all edges reversed.

Algorithms via Basic Search - 4
 its reverse graph …GrevGiven a graph …G

 49

A CB

E DF

G H

A CB

E DF

G H

Graph G

Algorithms via Basic Search - 4
.. the set of vertices that can reach it in …GGiven a graph , and a vertex …G F O

O

… is rch(Grev, F)
 49

A CB

E DF

G H

A CB

E DF

G H

Graph G

Algorithms via Basic Search - 4
.. the set of vertices that can reach it in …GGiven a graph , and a vertex …G F

- yellow
can reach

F

-

 50

Given a graph , and a vertex and its strongly connected component in is …G F G

A CB

E DF

G H

 rch(G, F)

 SCC(G, F) = rch(G, F) ≤ rch(Grev, F)

Algorithms via Basic Search - 4
re F's

↑
M
O

 50

Given a graph , and a vertex and its strongly connected component in is …G F G

 rch(Grev, F)

A CB

E DF

G H

A CB

E DF

G H

 rch(G, F)

 SCC(G, F) = rch(G, F) ≤ rch(Grev, F)

Algorithms via Basic Search - 4

- -

-

 50

Given a graph , and a vertex and its strongly connected component in is …G F G

Graph G

A CB

E DF

G H

 rch(Grev, F)

A CB

E DF

G H

A CB

E DF

G H

 rch(G, F)

 SCC(G, F) = rch(G, F) ≤ rch(Grev, F)

Algorithms via Basic Search - 4

&

Algorithms via Basic Search - 5

 51

• Is strongly connected?

• Pick arbitrary vertex .

• Check if

G

u

SCC(G, u) = V .

