Graph Search Sides based on material by Kani, Chekuri, Erickson et. al.

All mistakes are my own! - Ivan Abraham (Fall 2024)

Image by ChatGPT (probably collaborated with DALL-E)

Why graphs?

- Graphs have many applications!
 - look like graph problems.
- Fundamental objects in CS, optimization, combinatorics
- Many important and useful optimization problems are graph problems
- Graph theory: elegant, fun and deep branch of mathematics

Graphs help model *networks* — which are ubiquitous: transportation networks (rail, roads, airways), social networks (interpersonal relationships), information networks (web page links), and many problems that don't even

Why graphs? Real life applications

Shortest Path

Route Planning

Search & Rescue

Introduction What is a Graph?

- A graph is a collection of nodes and edges.
- The dots are called vertices or nodes.
- The connections between nodes are called edges
- An edge typically represented as a set {*i*, *j*} of two vertices.

Eg: The edge between **2** and **5** is $\{2,5\} = \{5,2\}$

Notational convention What is a Graph?

- Generalizations
 - *Multi-graphs* allow
 - loops which are edges with the same node appearing as both end points
 - *multi-edges*: *different* edges between same pairs of nodes
- In this class we will assume that a graph is a simple graph unless explicitly stated otherwise.

An edge in an undirected graph is an *unordered pair* of nodes and hence it is a set. We reserve the use of (u, v) (ordered pair) for the case of *directed* graphs.

IntroductionDefintion

An undirected (simple) graph G = (V, E) is a 2-tuple:

- V is a set of vertices (also referred to as nodes/points)
- *E* is a set of edges where each edge $e \in E$ is a set of the form $\{u, v\}$ with $u, v \in V$ and $u \neq v$.

Example:

Graph G = (V, E) where $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$ and

IntroductionDefintion

An undirected (simple) graph G = (V, E) is a 2-tuple:

- V is a set of vertices (also referred to as nodes/points)
- *E* is a set of edges where each edge $e \in E$ is a set of the form $\{u, v\}$ with $u, v \in V$ and $u \neq v$.

Example:

Graph G = (V, E) where $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$ and $E = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{2, 4\}, \{2, 5\}, \{3, 5\}, \{3, 7\}, \{3, 8\}, \{4, 5\}, \{5, 6\}, \{7, 8\}\}$

- Vertices connected by an edge are called adjacent.
- The *neighborhood* of a node v is the set of all vertices adjacent to v. It's denoted $N_G(v)$.

• $N_G(2) = \{1,3,5\}$

• A vertex v is *incident* with an edge e when $v \in e$.

- Vertices connected by an edge are called adjacent.
- The *neighborhood* of a node v is the set of all vertices adjacent to v. It's denoted $N_G(v)$.

• $N_G(2) = \{1,3,5\}$

- A vertex v is *incident* with an edge e when $v \in e$.
 - Vertex 2 is incident with edges $\{1,2\}, \{2,5\}$ and $\{2,3\}$

• The degree of a vertex is the number of edges incident to it:

• The *degree* of a vertex is the number of edges incident to it:

d(1) = 1 d(2) = 3 d(3) = 3 d(4) = 2 d(5) = 3

• The *degree* of a vertex is the number of edges incident to it:

d(1) = 1 d(2) = 3 d(3) = 3 d(3) = 3

 The degree sequence is to list the degrees listed in descending order:

$$(4) = 2 \quad d(5) = 3$$

• The *degree* of a vertex is the number of edges incident to it:

d(1) = 1 d(2) = 3 d(3) = 3 d(3) = 3

- The degree sequence is to list the degrees listed in descending order:
 - 3,3,3,2,1

$$(4) = 2 \quad d(5) = 3$$

• The *degree* of a vertex is the number of edges incident to it:

d(1) = 1 d(2) = 3 d(3) = 3 d(3) = 3

- The degree sequence is to list the degrees listed in descending order:
 - 3,3,3,2,1
- The *minimum degree* is denoted $\delta(G)$. Here $\delta(G) = 1$

$$(4) = 2 \quad d(5) = 3$$

• The *degree* of a vertex is the number of edges incident to it:

d(1) = 1 d(2) = 3 d(3) = 3 d(3) = 3

 The degree sequence is to list the degrees listed in descending order:

3,3,3,2,1

- The *minimum degree* is denoted $\delta(G)$. Here $\delta(G) = 1$
- The *maximum degree* is denoted $\Delta(G)$. Here $\Delta(G) = 3$

$$(4) = 2 \quad d(5) = 3$$

• The *degree* of a vertex is the number of edges incident to it:

d(1) = 1 d(2) = 3 d(3) = 3 d(3) = 3

 The degree sequence is to list the degrees listed in descending order:

3,3,3,2,1

- The *minimum degree* is denoted $\delta(G)$. Here $\delta(G) = 1$ • The *maximum degree* is denoted $\Delta(G)$. Here $\Delta(G) = 3$

$$(4) = 2 \quad d(5) = 3$$

Handshaking lemma

$$\sum d(v) = 2|E|$$

• The *degree* of a vertex is the number of edges incident to it:

d(1) = 1 d(2) = 3 d(3) = 3 d(3) = 3

 The degree sequence is to list the degrees listed in descending order:

3,3,3,2,1

- The *minimum degree* is denoted $\delta(G)$. Here $\delta(G) = 1$ • The *maximum degree* is denoted $\Delta(G)$. Here $\Delta(G) = 3$

$$(4) = 2 \quad d(5) = 3$$

Handshaking lemma

$$\sum d(v) = 2 | E$$

Sum of Degrees = 12 Number of Edges = 6

Graph representations

Represent G = (V, E) with *n* vertices matrix $A = (a_{ij})$ where

matrix $A = (a_{ij})$ where

• $a_{ii} = a_{ii} = 1$ if $\{i, j\} \in E$ and $a_{ii} = a_{ii} = 0$ if $\{i, j\} \notin E$.

Represent G = (V, E) with *n* vertices matrix $A = (a_{ij})$ where

- $a_{ij} = a_{ji} = 1$ if $\{i, j\} \in E$ and $a_{ij} = a_{ji} = 0$ if $\{i, j\} \notin E$.
- Advantage: can check if $\{i, j\} \in E$ in O(1) time

Represent G = (V, E) with *n* vertices matrix $A = (a_{ij})$ where

- $a_{ij} = a_{ji} = 1$ if $\{i, j\} \in E$ and $a_{ij} = a_{ji} = 0$ if $\{i, j\} \notin E$.
- Advantage: can check if $\{i, j\} \in E$ in O(1) time
- Disadvantage: needs $\Omega(n^2)$ space even when $m \ll n^2$

Graph adjacency matrix Example

	1	2	3	4	5	6	7	8	9	10
1	0	1	0	0	0	1	0	0	0	0
2	1	0	0	1	1	0	0	0	0	0
3	0	0	0	0	0	1	1	0	0	0
4	0	1	0	0	1	0	0	1	0	0
5	0	1	0	1	0	1	0	0	1	0
6	1	0	1	0	1	0	0	0	0	0
7	0	0	1	0	0	0	0	1	0	0
8	0	0	0	1	0	0	1	0	0	0
9	0	0	0	0	1	0	0	0	0	1
10	0	0	0	0	0	0	0	0	1	0

lists:

lists:

• For each $u \in V$, $adj(u) := N_G(u)$, that is neighbors of u.

- Represent G = (V, E) with *n* vertices and *m* edges using *adjacency*

lists:

- For each $u \in V$, $adj(u) := N_G(u)$, that is neighbors of u.
- Advantage: space is O(m + n).

lists:

- For each $u \in V$, $adj(u) := N_G(u)$, that is neighbors of u.
- Advantage: space is O(m + n).
- Disadvantage: cannot "easily" determine in O(1) time whether $\{i, j\} \in E$

lists:

- For each $u \in V$, $adj(u) := N_G(u)$, that is neighbors of u.
- Advantage: space is O(m + n).
- Disadvantage: cannot "easily" determine in O(1) time whether $\{i, j\} \in E$

using plain vanilla (unsorted) adjacency lists.

Represent G = (V, E) with *n* vertices and *m* edges using *adjacency*

Note: In this class we will assume that by default, graphs are represented

Adjacency matrix vs. list

	1	2	3	4	5	6	7	8	9	10
1	0	1	0	0	0	1	0	0	0	0
2	1	0	0	1	1	0	0	0	0	0
3	0	0	0	0	0	1	1	0	0	0
4	0	1	0	0	1	0	0	1	0	0
5	0	1	0	1	0	1	0	0	1	0
6	1	0	1	0	1	0	0	0	0	0
7	0	0	1	0	0	0	0	1	0	0
8	0	0	0	1	0	0	1	0	0	0
9	0	0	0	0	1	0	0	0	0	1
10	0	0	0	0	0	0	0	0	1	0

Vertex	Adjacency List
1	2, 6
2	1, 4, 5
3	6, 7
4	2, 5, 8
5	2, 4, 6, 9
6	1, 3, 5
7	3, 8
8	4, 7
9	5, 10
10	9

Concrete representations How might we represent this in a language?

 Python-like (nested lists can be of different sizes)

```
alist = [[2,6],
[1,4,5],
[6,7],
[2,5,8],
[2,4,5,9],
[1,3,5],
[3,8],
[4,7],
[5,10],
[9]]
```

Vertex	Adjacency List
1	2, 6
2	1, 4, 5
3	6, 7
4	2, 5, 8
5	2, 4, 6, 9
6	1, 3, 5
7	3, 8
8	4, 7
9	5, 10
10	9

Concrete representations C-like: Can use pointers

Array of pointers to adjacency lists

List of vertices that are neighbors of v_i

Concrete representations C-like: Can use pointers

Array of pointers to adjacency lists

List of vertices that are neighbors of v_i

Concrete representations C-like: Can use pointers

	4
--	---

Concrete representations How about using plain arrays?

Concrete representations How about using plain arrays?

Array of vertices, ${\mathscr V}$

Concrete representations How about using plain arrays? An edge array, & script to differentiate from E

Array of vertices, ${\mathcal V}$

3

Concrete representations Advantages

- Edges are explicitly represented/numbered. Scanning/processing all edges easy to do.
- Representation easily supports multi-graphs including self-loops.
- Explicit numbering of vertices and edges allows use of arrays.
- Can also implement via pointer based lists for certain dynamic graph settings

Given a graph G = (V, E):

• A path from v_1 to v_k is a sequence of distinct vertices v_1, v_2, \ldots, v_k such that $\{v_i, v_{i+1}\} \in E$ for $1 \le i \le k - 1$. The length of the path is k - 1.

- A path from v_1 to v_k is a sequence of distinct vertices v_1, v_2, \ldots, v_k such that $\{v_i, v_{i+1}\} \in E$ for $1 \le i \le k - 1$. The length of the path is k - 1.
 - Note: A single vertex *u* is a path of length 0.

- A path from v_1 to v_k is a sequence of distinct vertices v_1, v_2, \ldots, v_k such that $\{v_i, v_{i+1}\} \in E$ for $1 \le i \le k - 1$. The length of the path is k - 1.
 - Note: A single vertex *u* is a path of length 0.
- We say a vertex \boldsymbol{u} is connected to a vertex \boldsymbol{v} if there is a path from u to v.

- A path from v_1 to v_k is a sequence of distinct vertices v_1, v_2, \ldots, v_k such that $\{v_i, v_{i+1}\} \in E$ for $1 \le i \le k - 1$. The length of the path is k - 1.
 - Note: A single vertex *u* is a path of length 0.
- We say a vertex \boldsymbol{u} is connected to a vertex \boldsymbol{v} if there is a path from u to v.

- A path from v_1 to v_k is a sequence of distinct vertices v_1, v_2, \ldots, v_k such that $\{v_i, v_{i+1}\} \in E$ for $1 \le i \le k - 1$. The length of the path is k - 1.
 - Note: A single vertex *u* is a path of length 0.
- We say a vertex \boldsymbol{u} is connected to a vertex \boldsymbol{v} if there is a path from u to v.
- Example: *D*, *B*, *A*, *C*, *F*, *E*

Given a graph G = (V, E):

• A cycle is a sequence of distinct vertices v_1, v_2, \ldots, v_k with $k \geq 3$ such that $\{v_i, v_{i+1}\} \in E$ for $1 \leq i \leq k - 1$ and $\{v_1, v_k\} \in E$.

Given a graph G = (V, E):

• A *cycle* is a sequence of distinct vertices v_1, v_2, \ldots, v_k with $k \ge 3$ such that $\{v_i, v_{i+1}\} \in E$ for $1 \le i \le k - 1$ and $\{v_1, v_k\} \in E$.

- A *cycle* is a sequence of distinct vertices v_1, v_2, \ldots, v_k with $k \ge 3$ such that $\{v_i, v_{i+1}\} \in E$ for $1 \le i \le k 1$ and $\{v_1, v_k\} \in E$.
- Example: A, B, D, C, A

Given a graph G = (V, E):

- A cycle is a sequence of distinct vertices v_1, v_2, \ldots, v_k with $k \geq 3$ such that $\{v_i, v_{i+1}\} \in E$ for $1 \leq i \leq k - 1$ and $\{v_1, v_k\} \in E$.
- Example: A, B, D, C, A

Caveat: Some times people use the term *cycle* to also allow vertices to be repeated; we will use the term *tour.*

Given a graph G = (V, E):

- A cycle is a sequence of distinct vertices v_1, v_2, \ldots, v_k with $k \geq 3$ such that $\{v_i, v_{i+1}\} \in E$ for $1 \leq i \leq k - 1$ and $\{v_1, v_k\} \in E$.
- Example: A, B, D, C, A

Caveat: Some times people use the term *cycle* to also allow vertices to be repeated; we will use the term *tour.*

Note: A *single* vertex or *an* edge are not cycles according to this definition

Define a relation C on $V \times V$ as uCv if u is connected to v f vertex is connected to v f vertex is connected to v

transitive relation.

and one bre sarc

• **Proposition:** In undirected graphs, connectivity is a reflexive, symmetric, and

andzobaa

- **Proposition:** In undirected graphs, connectivity is a reflexive, symmetric, and transitive relation.
- We say that the *connected components* of a graph are the *equivalence* classes of C.

- **Proposition:** In undirected graphs, connectivity is a reflexive, symmetric, and transitive relation.
- We say that the connected components of a graph are the equivalence classes of C.
 - "Analogous to *ɛ*-reach"

- **Proposition:** In undirected graphs, connectivity is a reflexive, symmetric, and transitive relation.
- We say that the *connected components* of a graph are the *equivalence* classes of C.
 - "Analogous to ε -reach" but that was following ε transitions (Not necessarily one-hop!!)
- Graph is said to be connected if there is only one connected component.

- **Proposition:** In undirected graphs, connectivity is a reflexive, symmetric, and transitive relation.
- We say that the *connected components* of a graph are the *equivalence* classes of C.
 - "Analogous to *ɛ*-reach"
- Graph is said to be connected if there is only one connected component.
 - In English: starting from any node can reach any other node.

Connectivity problems Algorithmic problems

- Given graph G and nodes u and v, is u connected to v?
- Given G and node u, find all nodes that are connected to u.
- Find all connected components of G.

Connectivity problems Algorithmic problems

- Given graph G and nodes u and v, is u connected to v?
- Given G and node μ , find all nodes that are connected to μ .
- Find all connected components of G.

Can be accomplished in O(m + n) time using **BFS** or **DFS**.

Connectivity problems Algorithmic problems

- Given graph G and nodes u and v, is u connected to v?
- Given G and node μ , find all nodes that are connected to μ .
- Find all connected components of G.

Can be accomplished in O(m + n) time using **BFS** or **DFS**.

BFS and **DFS** are flavors of an natural graph exploration algorithm we will call Basic Search.

Not quite list, some people call It a " dispenser". Jeff 5 calls it a "bag" Essenticelly a data Structure to track which nocles to explore next.

arral Explore(G,u): **Initialize:** Set *Visited[I]* \leftarrow FALSE for $1 \le i \le n$ Lists: ToExplore, S Add u to ToExplore and to S, -s list array $Visited[u] \leftarrow TRUE$ will be while (ToExplore is non-empty) do all vertices **Remove node** x **from** *ToExplore* conneted for each vertex y in Adj(x) do to U. if (Visited[y] = FALSE) $Visited[y] \leftarrow TRUE$ Add y to ToExplore Add y to S

Output S

 BFS and DFS are special case of the following algorithm.

Explore(G,u): Lists: ToExplore, S $Visited[u] \leftarrow TRUE$

Output S

Initialize: Set Visited[I] \leftarrow FALSE for $1 \le i \le n$

```
Add u to ToExplore and to S,
```

while (ToExplore is non-empty) do **Remove node** x from ToExplore

```
for each vertex y in Adj(x) do
```

if (Visited[y] = FALSE) $Visited[y] \leftarrow TRUE$ Add y to ToExplore

Add y to S

- BFS and DFS are special case of the following algorithm.
 - BFS maintains *ToExplore* using a queue data structure

Explore(G,u): Lists: ToExplore, S Add u to ToExplore and to S, $Visited[u] \leftarrow TRUE$ while (ToExplore is non-empty) do **Remove node** x **from** ToExplore for each vertex y in Adj(x) do if (Visited[y] = FALSE)

Output S

Initialize: Set $Visited[I] \leftarrow FALSE$ for $1 \le i \le n$

 $Visited[y] \leftarrow TRUE$ Add y to ToExplore

Add y to S

- BFS and DFS are special case of the following algorithm.
 - BFS maintains To Explore using a queue data structure
 - DFS maintains *ToExplore* using a stack data structure

Explore(G,u): Lists: ToExplore, S $Visited[u] \leftarrow TRUE$

Output S

Initialize: Set Visited[I] \leftarrow FALSE for $1 \le i \le n$

```
Add u to ToExplore and to S,
```

while (ToExplore is non-empty) do **Remove node** x **from** ToExplore

```
for each vertex y in Adj(x) do
```

if (Visited[y] = FALSE) $Visited[y] \leftarrow TRUE$ Add y to ToExplore

Add y to S

Search on graph **Example - maintain** ToExplore as a queue

$$et a=1$$

Explore(G,u): **Initialize:** Set $Visited[I] \leftarrow FALSE$ for $1 \le i \le n$ Lists: ToExplore, S Add u to ToExplore and to S, $Visited[u] \leftarrow TRUE$ while (ToExplore is non-empty) do Remove node x from ToExplore for each vertex y in Adj(x) do if (Visited[y] = FALSE) $Visited[y] \leftarrow TRUE$ Add y to ToExplore Add y to S Output S

 $S = d_{1}, 2, 3, 4, 5, 7, 8, 6)$

Search on graph Exercise - maintain *ToExplore* as a stack

Explore(G,u):
Initialize: Set Visited[I]
$$\leftarrow$$
 FALSE for
Lists: ToExplore, S
Add u to ToExplore and to S,
Visited[u] \leftarrow TRUE
while (ToExplore is non-empty) do
Remove node x from ToExplore
for each vertex y in Adj(x) do
if (Visited[y] = FALSE)
Visited[y] \leftarrow TRUE
Add y to ToExplore
Add y to S

7

or $1 \le i \le n$

Search on graph **Basic search - modified to get search tree**

Explore(G,u): array Visited[1..n] List: ToExplore, S

Output S, T

```
Initialize: Set Visited[I] \leftarrow FALSE for 1 \le i \le n
Add u to ToExplore and to S, Visited[u] \leftarrow TRUE
Make tree T with root as u
while (ToExplore is non-empty) do
     Remove node x from ToExplore
     for each vertex y in Adj(x) do
         if (Visited[y] = FALSE)
              Visited[y] \leftarrow TRUE
             Add y to ToExplore
             Add y to S
             Add y to T with x as parent
```

Search on graph **Basic search - modified to get search tree**

• The search tree for **Explore(G, u)** is tree rooted at **u** that spans the connected component of u.

Explore(G,u): array Visited[1..n] List: ToExplore, S

```
Initialize: Set Visited[I] \leftarrow FALSE for 1 \le i \le n
Add u to ToExplore and to S, Visited[u] \leftarrow TRUE
Make tree T with root as u
while (ToExplore is non-empty) do
     Remove node x from ToExplore
     for each vertex y in Adj(x) do
         if (Visited[y] = FALSE)
             Visited[y] \leftarrow TRUE
             Add y to ToExplore
             Add y to S
             Add y to T with x as parent
```

Search on graph Basic search - modified to get search tree

 BFS and DFS will return different search trees on the following graph

Directed graphs
Directed graphs Definition

A directed graph G = (V, E) consists of

- A set of vertices/nodes V and
- A set of edges $E \subseteq V \times V$.

Directed graphs Definition

A directed graph G = (V, E) consists of

- A set of vertices/nodes V and
- A set of edges $E \subseteq V \times V$.

An edge is an **ordered pair** of vertices: (u, v)different from (v, u)

Directed graphs Definition

A directed graph G = (V, E) consists of

- A set of vertices/nodes V and
- A set of edges $E \subseteq V \times V$.

An edge is an **ordered pair** of vertices: (u, v) different from (v, u)

In many situations relationship between vertices is asymmetric:

1

In many situations relationship between vertices is asymmetric:

• Road networks with one-way streets.

In many situations relationship between vertices is asymmetric:

- Road networks with one-way streets.
- p to page p' if p has a link to p'.

• Web-link graph where vertices are web-pages and there is an edge from page

In many situations relationship between vertices is asymmetric:

- Road networks with one-way streets.
- p to page p' if p has a link to p'.
- \mathbf{x} . E.g. Make files for compiling programs.

• Web-link graph where vertices are web-pages and there is an edge from page

Dependency graphs in variety of applications: link from *x* to *y* if *y* depends on

In many situations relationship between vertices is asymmetric:

- Road networks with one-way streets.
- Web-link graph where vertices are web-pages and there is an edge from page p to page p' if p has a link to p'.
- **Dependency graphs** in variety of applications: link from x to y if y depends on \mathbf{x} . E.g. Make files for compiling programs.
- Program analysis: functions/procedures are vertices and there is an edge from x to y if x calls y.

Graph G = (V, E) with *n* vertices and *m* edges:

Graph G = (V, E) with *n* vertices and *m* edges:

• Adjacency matrix: $n \times n$ asymmetric matrix A. $a_{ij} = 1$ if $(i, j) \in E$ and $a_{ij} = 0$ if $(i, j) \notin E$.

 $A_{ug} = A_{ug}^{l} \xrightarrow{2} A_{ug}^{i} = a_{i}^{i}$

Graph G = (V, E) with *n* vertices and *m* edges:

- Adjacency matrix: $n \times n$ asymmetric matrix A. $a_{ii} = 1$ if $(i, j) \in E$ and $a_{ii} = 0$ if $(i, j) \notin E$.
- Adjacency lists: For each node u, Out(u) (also referred to as Adj(u) by default) stores out-going edges from u.

Graph G = (V, E) with *n* vertices and *m* edges:

- Adjacency matrix: $n \times n$ asymmetric matrix A. $a_{ii} = 1$ if $(i, j) \in E$ and $a_{ii} = 0$ if $(i, j) \notin E$.
- Adjacency lists: For each node u, Out(u) (also referred to as Adi(u) by default) stores out-going edges from u.
 - Can also have $\ln(u)$ and store in-coming edges to u.

Graph G = (V, E) with *n* vertices and *m* edges:

- Adjacency matrix: $n \times n$ asymmetric matrix A. $a_{ii} = 1$ if $(i, j) \in E$ and $a_{ii} = 0$ if $(i, j) \notin E$.
- Adjacency lists: For each node u, Out(u) (also referred to as Adi(u) by default) stores out-going edges from u.
 - Can also have $\ln(u)$ and store in-coming edges to u.

Default representation is adjacency lists $(Adj(u) \sim Out(u))$.

Given a graph G = (V, E):

35

Directed connectivity REEE is an ordered tople now. Given a graph G = (V, E):

• A (directed) path is a sequence of distinct vertices v_1, v_2, \ldots, v_k such that from v_1 to v_k . By convention, a single node u is a path of length 0.

 $(v_i, v_{i+1}) \in E$ for $1 \leq i \leq k - 1$. The length of the path is k - 1 and the path is

Given a graph G = (V, E):

- A (directed) path is a sequence of distinct vertices v_1, v_2, \ldots, v_k such that from v_1 to v_k . By convention, a single node u is a path of length 0.

A: is there such a thing as "underected" path on a derected graph?

 $(v_i, v_{i+1}) \in E$ for $1 \leq i \leq k - 1$. The length of the path is k - 1 and the path is

• A cycle is a sequence of distinct vertices v_1, v_2, \ldots, v_k such that $(v_i, v_{i+1}) \in E$ for $1 \leq i \leq k - 1$ and $(v_k, v_1) \in E$. By convention, a single node u is not a cycle.

Given a graph G = (V, E):

- A (directed) path is a sequence of distinct vertices v₁, v₂, ..., v_k such that
 (v_i, v_{i+1}) ∈ E for 1 ≤ i ≤ k − 1. The length of the path is k − 1 and the path is from v₁ to v_k. By convention, a single node u is a path of length 0.
- A cycle is a sequence of distinct vertices $v_1, v_2, ..., v_k$ such that $(v_i, v_{i+1}) \in E$ for $1 \le i \le k 1$ and $(v_k, v_1) \in E$. By convention, a single node u is not a cycle.
- A vertex <u>u</u> can reach <u>v</u> if there is a path from <u>u</u> to <u>v</u>. Alternatively, we say <u>v</u> can be reached from <u>u</u>.

Given a graph G = (V, E):

- A (directed) path is a sequence of distinct vertices v_1, v_2, \ldots, v_k such that $(v_i, v_{i+1}) \in E$ for $1 \leq i \leq k - 1$. The length of the path is k - 1 and the path is from v_1 to v_k . By convention, a single node u is a path of length 0.
- A cycle is a sequence of distinct vertices v_1, v_2, \ldots, v_k such that $(v_i, v_{i+1}) \in E$ for $1 \leq i \leq k - 1$ and $(v_k, v_1) \in E$. By convention, a single node u is not a cycle.
- reached from u.
- We denote with rch(u) the set of all vertices reachable from u.

• A vertex u can reach v if there is a path from u to v. Alternatively, we say v can be

Asymmetricity: D can reach B but B cannot reach D.

Asymmetricity: **D** can reach **B** but **B** cannot reach **D**.

Questions:

Asymmetricity: **D** can reach **B** but **B** cannot reach **D**.

Questions:

Is there a notion of connected components?

Asymmetricity: D can reach B but B cannot reach D.

Questions:

Is there a notion of connected components?

How do we understand connectivity in directed graphs?

Definition: Given a directed graph G, u is strongly connected to v if u can reach v and v can reach u. In other words $v \in rch(u)$ and $u \in rch(v)$.

Definition: Given a directed graph G, u is strongly connected to v if u can reach v and v can reach u. In other words $v \in rch(u)$ and $u \in rch(v)$.

Proposition: Define relation *C* where uCv if *u* is (strongly) connected to *v*. Then *C* is an equivalence relation, that is *reflexive*, *symmetric* & *transitive*.

reach v and v can reach u. In other words $v \in \operatorname{rch}(u)$ and $u \in \operatorname{rch}(v)$.

C is an equivalence relation, that is reflexive, symmetric & transitive.

partition the vertices of G.

- **Definition:** Given a directed graph G, u is strongly connected to v if u can
- **Proposition:** Define relation C where uCv if u is (strongly) connected to v. Then
- Equivalence classes of C are the strongly connected components of G and they

reach v and v can reach u. In other words $v \in \operatorname{rch}(u)$ and $u \in \operatorname{rch}(v)$.

C is an equivalence relation, that is reflexive, symmetric & transitive.

partition the vertices of G.

We denote with SCC(u) the strongly connected component containing u.

- **Definition:** Given a directed graph G, u is strongly connected to v if u can
- **Proposition:** Define relation C where uCv if u is (strongly) connected to v. Then
- Equivalence classes of C are the strongly connected components of G and they

 Partition vertices of given graph under strong connectivity.

Directed graph connectivity problems

- 1. Given G and nodes u and v, can u reach v?
- 2. Given G and u, compute rch(u).
- 4. Find the strongly connected component containing node u, that is SCC(u).
- 5. Is G strongly connected (a single strong component)?
- 6. Compute all strongly connected components of G.

3. Given G and u, compute all v that can reach u, that is all v such that $u \in \operatorname{rch}(v)$.

> sort of reverse

Graph exploration in directed graphs

Directed graph search

Given G = (V, E)a directed graph and vertex $u \in V$. Let n = |V|.

Directed graph search

Given G = (V, E)a directed graph and vertex $u \in V$. Let n = |V|. Explore(G,u) array Visit Initialize List: ToExt Add u to To Make tree the while (ToEther for eacher if

Output S, T

<i>ted</i> [1n]
: Set $Visited[I] \leftarrow FALSE$ for $1 \le i \le n$
plore, S
$OExplore$ and to S, $Visited[u] \leftarrow TRUE$
T with root as u
xplore is non-empty) do
e node x from ToExplore
ach vertex y in Adj(x) do
(Visited[y] = FALSE)
$Visited[y] \leftarrow TRUE$
Add y to ToExplore
Add y to S
Add y to T with x as parent

Directed graph search

Given G = (V, E)a directed graph and vertex $u \in V$. Let n = |V|.

We seek to find all nodes that can be reached from *u* (represented as a spanning tree).

Explore(G,u): array Visited[1..n] List: ToExplore, S

Output S, T

-> prenovely S voas nodes "connected" to ce.

-s vou it is nodes "reachable" trong U. **Initialize:** Set $Visited[I] \leftarrow FALSE$ for $1 \le i \le n$ Add u to ToExplore and to S, $Visited[u] \leftarrow TRUE$ Make tree T with root as u while (ToExplore is non-empty) do **Remove node** x **from** ToExplore for each vertex y in Adj(x) do if (Visited[y] = FALSE) $Visited[y] \leftarrow TRUE$ Add y to ToExplore

Add y to S

Add y to T with x as parent

Directed graph search vicitel | Example C A B

D E

Explore(G,u): array Visited[1..n] **Initialize:** Set $Visited[I] \leftarrow$ FALSE for $1 \le i \le n$ List: ToExplore, S Add u to ToExplore and to S, $Visited[u] \leftarrow TRUE$ Make tree T with root as u while (ToExplore is non-empty) do Remove node x from ToExplore for each vertex y in Adj(x) do if (Visited(y) = FALSE) $Visited(y) \leftarrow TRUE$ Add y to ToExplore Add y to S Add y to T with x as parent Output S, T

 $S = \langle B, E, F, G, H \rangle$ sch(B)

all nocles

Directed graph search Example

Proposition: Explore(G, u) terminates with S being rch(u).

```
Explore(G,u):

array Visited[1..n]

Initialize: Set Visited[I] \leftarrow FALSE for

List: ToExplore, S

Add u to ToExplore and to S, Visited[u]

Make tree T with root as u

while (ToExplore is non-empty) do

Remove node x from ToExplore

for each vertex y in Adj(x) do

if (Visited[y] = FALSE)

Visited[y] \leftarrow TRUE

Add y to ToExplore

Add y to S

Add y to T with x as parent
```

proof skipped. (see Prof. Kan's ald Blides for a sketh)

1	≤ i	$\leq n$
J	÷	TRUE
t		

Directed graph connectivity problems

- 1. Given G and nodes u and v, can u reach v?
- 2. Given G and u, compute rch(u).
- 3. Given G and u, compute all v that can reach u, that is all v such that $u \in \operatorname{rch}(v)$.
- 4. Find the strongly connected component containing node u, that is SCC(u).
- 5. Is G strongly connected (a single strong component)?
- 6. Compute all strongly connected components of G.

Directed graph connectivity problems

- 1. Given *G* and nodes *u* and *v*, can *u* reach *v*?
- Given G and u, compute rch(u).
- 4. Find the strongly connected component containing node u, that is SCC(u).
- 5. Is G strongly connected (a single strong component)?
- 6. Compute all strongly connected components of G.

3. Given G and u, compute all v that can reach u, that is all v such that $u \in \operatorname{rch}(v)$.
Directed graph connectivity problems

- 1. Given *G* and nodes *u* and *v*, can *u* reach *v*?
- 2. Given G and u, compute rch(u).
- 4. Find the strongly connected component containing node u, that is SCC(u).
- 5. Is G strongly connected (a single strong component)?
- 6. Compute all strongly connected components of G.

Use Explore(G, u) to compute rch(u) in O(n + m) time.

3. Given G and u, compute all v that can reach u, that is all v such that $u \in \operatorname{rch}(v)$.

Uses Grev

Use Explore(G, u) to compute rch(u) in O(n + m) time.

Given G and nodes u and v, can u reach v?
Given G and u, compute rch(u).

Naive: O(n(n+m)) ran inplace from every vertex

• Given G and u, compute all v, that can reach u, that is all v such that $u \in \operatorname{rch}(u)$.

- Given G and u, compute all v, that can be available of O(n(n + m))
- **Definition (Reverse graph):**

Given G = (V, E), G^{rev} is the graph where $E' = \{(y, x) | (x, y) \in E\}$

• Given G and u, compute all v, that can reach u, that is all v such that $u \in \operatorname{rch}(u)$.

Given G = (V, E), G^{rev} is the graph with edge directions reversed $G^{rev} = (V, E')$

- Given G and u, compute all v, that can be available of O(n(n + m))
- **Definition (Reverse graph):**

Given G = (V, E), G^{rev} is the graph where $E' = \{(y, x) | (x, y) \in E\}$

Compute rch(u) in G^{rev} .

• Given G and u, compute all v, that can reach u, that is all v such that $u \in \operatorname{rch}(u)$.

Given G = (V, E), G^{rev} is the graph with edge directions reversed $G^{rev} = (V, E')$

- Given G and u, compute all v, that can reach u, that is all v such that $u \in \operatorname{rch}(u)$. Naive: O(n(n + m))
- **Definition (Reverse graph):**
 - Given G = (V, E), G^{rev} is the graph with edge directions reversed $G^{rev} = (V, E')$ where $E' = \{(y, x) | (x, y) \in E\}$

rch(u)via Basic Search.

Compute rch(u) in G^{rev} . \rightarrow will be solution to all v that can reach it on original G_r . **Running time:** O(n + m) to obtain G^{rev} from G and O(n + m) time to compute

 $SCC(G, u) = \{v | u \text{ is strongly connected to } v\}$

 $SCC(G, u) = \{v \mid u \text{ is strongly connected to } v\}$

SCC(G, u).

- Find the strongly connected component containing node *u*. That is, compute

 $SCC(G, u) = \{v \mid u \text{ is strongly connected to } v\}$

SCC(G, u).

- Find the strongly connected component containing node *u*. That is, compute

 $SCC(G, u) = \operatorname{rch}(G, u) \cap \operatorname{rch}(G^{rev}, u)$ "prove by example"

 $SCC(G, u) = \{v \mid u \text{ is strongly connected to } v\}$

SCC(G, u).

 $SCC(G, u) = \operatorname{rch}(G, u) \cap \operatorname{rch}(G^{rev}, u)$

Hence, SCC(G, u) can be computed with Explore(G, u) and $Explore(G^{rev}, u)$. Total O(n + m) time

- Find the strongly connected component containing node *u*. That is, compute

Given a graph G, and a vertex F...

Graph G

... its reachable set rch(G, F)

Given a graph G, and a vertex F...

Graph G

... its reachable set rch(G, F)

is set of vertices reachable from F.

Given a graph G ...

Given a graph G ...

... has all edges reversed.

Given a graph *G*, and a vertex *F*...

.. the set of vertices that can reach it in G...

Given a graph G, and a vertex F...

... the set of vertices that can reach it in G ...

rch

Given a graph G, and a vertex F, its strongly connected component in G is ...

rch(G, F)

Given a graph G, and a vertex F and its strongly connected component in G is ...

Given a graph G, and a vertex F and its strongly connected component in G is ...

 $SCC(G, F) = \operatorname{rch}(G, F) \cap \operatorname{rch}(G^{rev}, F)$

50

- Is G strongly connected?
- Pick arbitrary vertex *u*.
- Check if SCC(G, u) = V.