
Graph Search

All mistakes are my own! - Ivan Abraham (Fall 2024)

Sides based on material by Kani, Chekuri, Erickson et. al.



Why graphs?

• Graphs have many applications! 

‣ Graphs help model networks — which are ubiquitous: transportation 
networks (rail, roads, airways), social networks (interpersonal relationships), 
information networks (web page links), and many problems that don’t even 
look like graph problems.

• Fundamental objects in CS, optimization, combinatorics

• Many important and useful optimization problems are graph problems

• Graph theory: elegant, fun and deep branch of mathematics
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Why graphs?
Real life applications
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Search & Rescue

Route Planning

Shortest Path

Game Playing



Introduction
What is a Graph?

• A graph is a collection of nodes and edges.

• The dots are called vertices or nodes.

• The connections between nodes are called edges

• An edge typically represented as a set  of two 
vertices. 

{i, j}

Eg: The edge between 2 and 5 is {2,5} = {5,2}
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• Generalizations

• Multi-graphs allow 

• loops which are edges with the same node appearing as both end points 

• multi-edges: different edges between same pairs of nodes 

• In this class we will assume that a graph is a simple graph unless explicitly 
stated otherwise.

Notational convention
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An edge in an undirected graph is an unordered pair of nodes and hence it is a 
set. We reserve the use of   (ordered pair) for the case of directed graphs. (u, v)
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What is a Graph?
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Introduction
Defintion
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An undirected (simple) graph  is a 2-tuple:G = (V, E)

•  is a set of vertices (also referred to as nodes/points) V

•  is a set of edges where each edge  is a set of 
the form  with  and .
E e ∈ E

{u, v} u, v ∈ V u ≠ v
Example:

Graph  where  and G = (V, E) V = {1,2,3,4,5,6,7,8}
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Introduction
Defintion

 6

An undirected (simple) graph  is a 2-tuple:G = (V, E)

•  is a set of vertices (also referred to as nodes/points) V

•  is a set of edges where each edge  is a set of 
the form  with  and .
E e ∈ E

{u, v} u, v ∈ V u ≠ v
Example:

Graph  where  and G = (V, E) V = {1,2,3,4,5,6,7,8}
E = {{1,2}, {1,3}, {2,3}, {2,4}, {2,5}, {3,5}, {3,7}, {3,8},

{4,5}, {5,6}, {7,8}}
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• Vertices connected by an edge are called adjacent. 

• The neighborhood of a node  is the set of all vertices 
adjacent to . It’s denoted .

v
v NG(v)

• NG(2) = {1,3,5}

• A vertex  is incident with an edge  when . v e v ∈ e

 7
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• Vertices connected by an edge are called adjacent. 

• The neighborhood of a node  is the set of all vertices 
adjacent to . It’s denoted .

v
v NG(v)

• NG(2) = {1,3,5}

• A vertex  is incident with an edge  when . v e v ∈ e

• Vertex 2 is incident with edges  and {1,2}, {2,5} {2,3}

 7

1

2

34

5

Basic notions
Degree



Basic notions

• The degree of a vertex is the number of edges incident to 
it:                  
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Degree



Basic notions

• The degree of a vertex is the number of edges incident to 
it:                  

            d(1) = 1 d(2) = 3 d(3) = 3 d(4) = 2 d(5) = 3
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Basic notions

• The degree of a vertex is the number of edges incident to 
it:                  

            d(1) = 1 d(2) = 3 d(3) = 3 d(4) = 2 d(5) = 3
• The degree sequence is to list the degrees listed in 

descending order:
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Basic notions

• The degree of a vertex is the number of edges incident to 
it:                  

            d(1) = 1 d(2) = 3 d(3) = 3 d(4) = 2 d(5) = 3
• The degree sequence is to list the degrees listed in 

descending order:

 3,3,3,2,1
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Basic notions

• The degree of a vertex is the number of edges incident to 
it:                  

            d(1) = 1 d(2) = 3 d(3) = 3 d(4) = 2 d(5) = 3
• The degree sequence is to list the degrees listed in 

descending order:

 3,3,3,2,1
• The minimum degree is denoted .  Here δ(G) δ(G) = 1
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Basic notions

• The degree of a vertex is the number of edges incident to 
it:                  

            d(1) = 1 d(2) = 3 d(3) = 3 d(4) = 2 d(5) = 3
• The degree sequence is to list the degrees listed in 

descending order:

 3,3,3,2,1
• The minimum degree is denoted .  Here δ(G) δ(G) = 1
• The maximum degree is denoted .  Here Δ(G) Δ(G) = 3
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Basic notions

• The degree of a vertex is the number of edges incident to 
it:                  

            d(1) = 1 d(2) = 3 d(3) = 3 d(4) = 2 d(5) = 3
• The degree sequence is to list the degrees listed in 

descending order:

 3,3,3,2,1
• The minimum degree is denoted .  Here δ(G) δ(G) = 1
• The maximum degree is denoted .  Here Δ(G) Δ(G) = 3
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∑ d (v) = 2 |E |

Handshaking lemma



Basic notions

• The degree of a vertex is the number of edges incident to 
it:                  

            d(1) = 1 d(2) = 3 d(3) = 3 d(4) = 2 d(5) = 3
• The degree sequence is to list the degrees listed in 

descending order:

 3,3,3,2,1
• The minimum degree is denoted .  Here δ(G) δ(G) = 1
• The maximum degree is denoted .  Here Δ(G) Δ(G) = 3
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Sum of Degrees = 12

Number of Edges = 6

∑ d (v) = 2 |E |

Handshaking lemma
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Graph representations



Adjacency matrix

Represent  with  vertices and  edges using a  adjacency 
matrix  where

G = (V, E) n m n × n
A = (aij)
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Graph representation I



Adjacency matrix

Represent  with  vertices and  edges using a  adjacency 
matrix  where

G = (V, E) n m n × n
A = (aij)

•  and .aij = aji = 1 if {i, j} ∈ E aij = aji = 0 if {i, j} ∉ E
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Graph representation I



Adjacency matrix

Represent  with  vertices and  edges using a  adjacency 
matrix  where

G = (V, E) n m n × n
A = (aij)

•  and .aij = aji = 1 if {i, j} ∈ E aij = aji = 0 if {i, j} ∉ E

• Advantage: can check if  in  time{i, j} ∈ E O(1)
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Adjacency matrix

Represent  with  vertices and  edges using a  adjacency 
matrix  where

G = (V, E) n m n × n
A = (aij)

•  and .aij = aji = 1 if {i, j} ∈ E aij = aji = 0 if {i, j} ∉ E

• Advantage: can check if  in  time{i, j} ∈ E O(1)

• Disadvantage: needs  space even when Ω(n2) m ≪ n2
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Graph representation I



Example
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Graph adjacency matrix
1

3

2

5

4

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
1 0 1 0 0 0 1 0 0 0 0

2 1 0 0 1 1 0 0 0 0 0

3 0 0 0 0 0 1 1 0 0 0

4 0 1 0 0 1 0 0 1 0 0

5 0 1 0 1 0 1 0 0 1 0

6 1 0 1 0 1 0 0 0 0 0

7 0 0 1 0 0 0 0 1 0 0

8 0 0 0 1 0 0 1 0 0 0

9 0 0 0 0 1 0 0 0 0 1
10 0 0 0 0 0 0 0 0 1 0



Adjacency list

Represent  with  vertices and  edges using adjacency 
lists: 

G = (V, E) n m
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Adjacency list

Represent  with  vertices and  edges using adjacency 
lists: 

G = (V, E) n m

• For each ,  , that is neighbors of .u ∈ V adj(u) := NG(u) u
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Adjacency list

Represent  with  vertices and  edges using adjacency 
lists: 

G = (V, E) n m

• For each ,  , that is neighbors of .u ∈ V adj(u) := NG(u) u

• Advantage: space is . O(m + n)
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Graph representation II



Adjacency list

Represent  with  vertices and  edges using adjacency 
lists: 

G = (V, E) n m

• For each ,  , that is neighbors of .u ∈ V adj(u) := NG(u) u

• Advantage: space is . O(m + n)
• Disadvantage: cannot “easily” determine in  time whether 

      
O(1)

{i, j} ∈ E
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Graph representation II



Adjacency list

Represent  with  vertices and  edges using adjacency 
lists: 

G = (V, E) n m

• For each ,  , that is neighbors of .u ∈ V adj(u) := NG(u) u

• Advantage: space is . O(m + n)
• Disadvantage: cannot “easily” determine in  time whether 

      
O(1)

{i, j} ∈ E
Note: In this class we will assume that by default, graphs are represented 
using plain vanilla (unsorted) adjacency lists.
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Graph representation II
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Adjacency matrix vs. list

Vertex Adjacency List

1 2, 6

2 1, 4, 5

3 6, 7

4 2, 5, 8

5 2, 4, 6, 9

6 1, 3, 5

7 3, 8

8 4, 7

9 5, 10

10 9

1 2 3 4 5 6 7 8 9 10
1 0 1 0 0 0 1 0 0 0 0

2 1 0 0 1 1 0 0 0 0 0

3 0 0 0 0 0 1 1 0 0 0

4 0 1 0 0 1 0 0 1 0 0

5 0 1 0 1 0 1 0 0 1 0

6 1 0 1 0 1 0 0 0 0 0

7 0 0 1 0 0 0 0 1 0 0

8 0 0 0 1 0 0 1 0 0 0

9 0 0 0 0 1 0 0 0 0 1
10 0 0 0 0 0 0 0 0 1 0



Concrete representations
How might we represent this in a language? 

• Python-like (nested lists can be of 
different sizes)
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Vertex Adjacency List

1 2, 6

2 1, 4, 5

3 6, 7

4 2, 5, 8

5 2, 4, 6, 9

6 1, 3, 5

7 3, 8

8 4, 7

9 5, 10

10 9

alist = [[2,6], 
         [1,4,5], 
         [6,7],
         [2,5,8], 
         [2,4,5,9],
         [1,3,5],
         [3,8],
         [4,7],
         [5,10],
         [9]]



Concrete representations
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——————

List of vertices that are neighbors of  vi

C-like: Can use pointers
—

—
—

—
—

—
—

—

 vi

Array of pointers to 
adjacency lists



Concrete representations

 16

——————

List of vertices that are neighbors of  vi

C-like: Can use pointers
—

—
—

—
—

—
—

—

 vi

Array of pointers to 
adjacency lists

1
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Concrete representations
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—
—

—
—

—
—

—
—

 v5

Array of pointers to 
adjacency lists

1 2 —————— 4

List of vertices that are neighbors of  vi

C-like: Can use pointers

1

2

34

5

-51

=



Concrete representations
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—
—

—
—

—
—

—
—

 vi

How about using plain arrays?

1
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34
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Concrete representations
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—
—

—
—

—
—

—
—

 vi

How about using plain arrays?

1

2

34
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Array of vertices,  𝒱



Concrete representations
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—
—

—
—

—
—

—
—

 vi

How about using plain arrays?

1

2

34

5

Array of vertices,  𝒱 ——————  ej ——————

An edge array,  ℰ
↳ scriptrate from E

script to

- differentrate
from y



Concrete representations
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  is the destination vertex of the j-th edgeej

—
—

—
—

—
—

—
—

 vi

How about using plain arrays?

1

2

34

5

Array of vertices,  𝒱 ——————  ej ——————

An edge array,  ℰ



Concrete representations

 18

  is the destination vertex of the j-th edgeej

—
—

—
—

—
—

—
—

 vi   is starting index (in  ) of vertices adjacent to  vi ℰ vi

How about using plain arrays?

1

2

34

5

Array of vertices,  𝒱 ——————  ej ——————

An edge array,  ℰ



Concrete representations
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  is the destination vertex of the j-th edgeej

—
—

—
—

—
—

—
—

 vi   is starting index (in  ) of vertices adjacent to  vi ℰ vi

How about using plain arrays?

1

2

34

5

Array of vertices,  𝒱 ——————  ej ——————

An edge array,  ℰ

𝒱 = [0, 2, 5, 8,10]
ℰ = [2,5, 1,3,5, 2,4,5, 3,5,1,2,3,4]

Assuming zero based indexing
VI V2 V V Vy

0123456789111 12 B



Concrete representations
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——————  ej ——————

  is the destination vertex of the j-th edgeej

  is starting index (in  ) of vertices adjacent to  vi ℰ vi

How about using plain arrays?

1

2

34

5

An edge array,  ℰ

Array of vertices,  𝒱

—
—

—
—

—
—

—
—

 vi

Can get neighbors of   by examining 
 to  

vi
ℰ [𝒱[i]] ℰ [𝒱[i + 1]]



Concrete representations

• Edges are explicitly represented/numbered. Scanning/processing all edges 
easy to do. 


• Representation easily supports multi-graphs including self-loops. 


• Explicit numbering of vertices and edges allows use of arrays.


• Can also implement via pointer based lists for certain dynamic graph 
settings

 20

Advantages



Connectivity

Given a graph :G = (V, E)

 21

Paths on a graph



Connectivity

Given a graph :G = (V, E)

• A path from  to  is a sequence of distinct vertices 
 such that   for . 

The length of the path is .

v1 vk
v1, v2, . . . , vk {vi, vi+1} ∈ E 1 ≤ i ≤ k − 1

k − 1

 21
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Connectivity

Given a graph :G = (V, E)

• A path from  to  is a sequence of distinct vertices 
 such that   for . 

The length of the path is .

v1 vk
v1, v2, . . . , vk {vi, vi+1} ∈ E 1 ≤ i ≤ k − 1

k − 1

• Note: A single vertex  is a path of length 0. u
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Connectivity

Given a graph :G = (V, E)

• A path from  to  is a sequence of distinct vertices 
 such that   for . 

The length of the path is .

v1 vk
v1, v2, . . . , vk {vi, vi+1} ∈ E 1 ≤ i ≤ k − 1

k − 1

• Note: A single vertex  is a path of length 0. u

• We say a vertex  is connected to a vertex  if there is a 
path from  to .

u v
u v

 21

Paths on a graph



Connectivity

Given a graph :G = (V, E)

• A path from  to  is a sequence of distinct vertices 
 such that   for . 

The length of the path is .

v1 vk
v1, v2, . . . , vk {vi, vi+1} ∈ E 1 ≤ i ≤ k − 1

k − 1

• Note: A single vertex  is a path of length 0. u

• We say a vertex  is connected to a vertex  if there is a 
path from  to .

u v
u v

 21
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Connectivity

Given a graph :G = (V, E)

• A path from  to  is a sequence of distinct vertices 
 such that   for . 

The length of the path is .

v1 vk
v1, v2, . . . , vk {vi, vi+1} ∈ E 1 ≤ i ≤ k − 1

k − 1

• Note: A single vertex  is a path of length 0. u

• We say a vertex  is connected to a vertex  if there is a 
path from  to .

u v
u v

• Example: D, B, A, C, F, E
 21
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Connectivity
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Cycle 

Given a graph :G = (V, E)



Connectivity
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Cycle 

Given a graph :G = (V, E)

• A cycle is a sequence of distinct vertices  with 
 such that  for  and 

 

v1, v2, . . . , vk
k ≥ 3 {vi, vi+1} ∈ E 1 ≤ i ≤ k − 1
{v1, vk} ∈ E .



Connectivity
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Cycle 

A

C

B

E

D

F

Given a graph :G = (V, E)

• A cycle is a sequence of distinct vertices  with 
 such that  for  and 

 

v1, v2, . . . , vk
k ≥ 3 {vi, vi+1} ∈ E 1 ≤ i ≤ k − 1
{v1, vk} ∈ E .



Connectivity
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Cycle 

A

C

B

E

D

F

Given a graph :G = (V, E)

• A cycle is a sequence of distinct vertices  with 
 such that  for  and 

 

v1, v2, . . . , vk
k ≥ 3 {vi, vi+1} ∈ E 1 ≤ i ≤ k − 1
{v1, vk} ∈ E .

• Example: A, B, D, C, A 



Connectivity

 22

Cycle 

A

C

B

E

D

F

Given a graph :G = (V, E)

• A cycle is a sequence of distinct vertices  with 
 such that  for  and 

 

v1, v2, . . . , vk
k ≥ 3 {vi, vi+1} ∈ E 1 ≤ i ≤ k − 1
{v1, vk} ∈ E .

• Example: A, B, D, C, A 
Caveat: Some times people use the term cycle to also allow 
vertices to be repeated; we will use the term tour.



Connectivity
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Cycle 

A

C

B

E

D

F

Note: A single vertex or an edge are not cycles according to this definition

Given a graph :G = (V, E)

• A cycle is a sequence of distinct vertices  with 
 such that  for  and 

 

v1, v2, . . . , vk
k ≥ 3 {vi, vi+1} ∈ E 1 ≤ i ≤ k − 1
{v1, vk} ∈ E .

• Example: A, B, D, C, A 
Caveat: Some times people use the term cycle to also allow 
vertices to be repeated; we will use the term tour.



Connectivity

Define a relation  on  as  if  is connected to   C V × V uCv u v

• Proposition: In undirected graphs, connectivity is a reflexive, symmetric, and 
transitive relation. 

 23

Connected components
Vertex is
connected lo

↑ itself

-

↓
-

andE bra
and and but anc



Connectivity

Define a relation  on  as  if  is connected to   C V × V uCv u v

• Proposition: In undirected graphs, connectivity is a reflexive, symmetric, and 
transitive relation. 

• We say that the connected components of a graph are the equivalence 
classes of C. 

 23
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Connectivity

Define a relation  on  as  if  is connected to   C V × V uCv u v

• Proposition: In undirected graphs, connectivity is a reflexive, symmetric, and 
transitive relation. 

• We say that the connected components of a graph are the equivalence 
classes of C. 

• “Analogous to -reach”ε

 23

Connected components



Connectivity

Define a relation  on  as  if  is connected to   C V × V uCv u v

• Proposition: In undirected graphs, connectivity is a reflexive, symmetric, and 
transitive relation. 

• We say that the connected components of a graph are the equivalence 
classes of C. 

• “Analogous to -reach”ε

• Graph is said to be connected if there is only one connected component.

 23
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Connectivity

Define a relation  on  as  if  is connected to   C V × V uCv u v

• Proposition: In undirected graphs, connectivity is a reflexive, symmetric, and 
transitive relation. 

• We say that the connected components of a graph are the equivalence 
classes of C. 

• “Analogous to -reach”ε

• Graph is said to be connected if there is only one connected component.

• In English: starting from any node can reach any other node. 
 23

Connected components



Connectivity problems

• Given graph  and nodes  and , is  connected to ?  G u v u v

• Given  and node , find all nodes that are connected to . G u u

• Find all connected components of .G

 24

Algorithmic problems



Connectivity problems

• Given graph  and nodes  and , is  connected to ?  G u v u v

• Given  and node , find all nodes that are connected to . G u u

• Find all connected components of .G

Can be accomplished in  time using BFS or DFS. O(m + n)

 24

Algorithmic problems



Connectivity problems

• Given graph  and nodes  and , is  connected to ?  G u v u v

• Given  and node , find all nodes that are connected to . G u u

• Find all connected components of .G

Can be accomplished in  time using BFS or DFS. O(m + n)
BFS and DFS are flavors of an natural graph exploration algorithm we will call 

Basic Search. 

 24

Algorithmic problems



Search on graph 
Basic search

 25



Search on graph 
Basic search

 25

Explore(G,u): 
Initialize: Set Visited[I]  FALSE for   
Lists: ToExplore, S 
Add u to ToExplore and to S, 
Visited[u]   TRUE 
while (ToExplore is non-empty) do 

Remove node x from ToExplore 
for each vertex y in Adj(x) do 

if (Visited[y] = FALSE) 
 Visited[y]   TRUE 
 Add y to ToExplore 
 Add y to S 

Output S

← 1 ≤ i ≤ n

←

←

↳
away

Not quite list,
some people call --
it a "dispenser".

-> lest/aray ↳
Jeff E calls it a "bagh will be

all vertices

Essentially a date connected

Structure to track to u .

which nodes to explore
next .



Search on graph 
Basic search

• BFS and DFS are 
special case of the 
following algorithm.

 26

Explore(G,u): 
Initialize: Set Visited[I]  FALSE for   
Lists: ToExplore, S 
Add u to ToExplore and to S, 
Visited[u]   TRUE 
while (ToExplore is non-empty) do 

Remove node x from ToExplore 
for each vertex y in Adj(x) do 

if (Visited[y] = FALSE) 
 Visited[y]   TRUE 
 Add y to ToExplore 
 Add y to S 

Output S

← 1 ≤ i ≤ n

←

←



Search on graph 
Basic search

• BFS and DFS are 
special case of the 
following algorithm.

• BFS maintains 
ToExplore using a 
queue data 
structure

 26

Explore(G,u): 
Initialize: Set Visited[I]  FALSE for   
Lists: ToExplore, S 
Add u to ToExplore and to S, 
Visited[u]   TRUE 
while (ToExplore is non-empty) do 

Remove node x from ToExplore 
for each vertex y in Adj(x) do 

if (Visited[y] = FALSE) 
 Visited[y]   TRUE 
 Add y to ToExplore 
 Add y to S 

Output S

← 1 ≤ i ≤ n

←

←



Search on graph 
Basic search

• BFS and DFS are 
special case of the 
following algorithm.

• BFS maintains 
ToExplore using a 
queue data 
structure

• DFS maintains 
ToExplore using a 
stack data 
structure 

 26

Explore(G,u): 
Initialize: Set Visited[I]  FALSE for   
Lists: ToExplore, S 
Add u to ToExplore and to S, 
Visited[u]   TRUE 
while (ToExplore is non-empty) do 

Remove node x from ToExplore 
for each vertex y in Adj(x) do 

if (Visited[y] = FALSE) 
 Visited[y]   TRUE 
 Add y to ToExplore 
 Add y to S 

Output S

← 1 ≤ i ≤ n

←

←



Search on graph 
Example - maintain ToExplore as a queue
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1

2 3

4 5

6

7

8

Let u= 1

visiti
12345 6 78

z-D
S= 41, 2, 3 , 4 , 5, 7,

8
,63

⑤

E
-

Toexplore



Search on graph 
Exercise - maintain ToExplore as a stack

 28

1

2 3

4 5

6

7

8

-

Irisz
12345678

I
⑤ S=4/2 , 3 , 5, 7, 8 , 4 ,63
#7↳E>
↳

To Explore



Search on graph 
Basic search - modified to get search tree

 29

Explore(G,u): 
array Visited[1..n] 
Initialize: Set Visited[I]  FALSE for   
List: ToExplore, S 
Add u to ToExplore and to S, Visited[u]   TRUE 
Make tree T with root as u 
while (ToExplore is non-empty) do 

Remove node x from ToExplore 
for each vertex y in Adj(x) do 

if (Visited[y] = FALSE) 
 Visited[y]   TRUE 
 Add y to ToExplore 
 Add y to S 
 Add y to T with x as parent

Output S, T

← 1 ≤ i ≤ n

←

←



Search on graph 
Basic search - modified to get search tree

• The search tree for 
Explore(G, u) is tree 
rooted at u that 
spans the 
connected 
component of u. 
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Explore(G,u): 
array Visited[1..n] 
Initialize: Set Visited[I]  FALSE for   
List: ToExplore, S 
Add u to ToExplore and to S, Visited[u]   TRUE 
Make tree T with root as u 
while (ToExplore is non-empty) do 

Remove node x from ToExplore 
for each vertex y in Adj(x) do 

if (Visited[y] = FALSE) 
 Visited[y]   TRUE 
 Add y to ToExplore 
 Add y to S 
 Add y to T with x as parent

Output S, T

← 1 ≤ i ≤ n

←

←



Search on graph 
Basic search - modified to get search tree

• BFS and DFS will return 
different search trees on the 
following graph 

 30

1

2 3

4 5
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7

8

1

2 3

4 5

6

7

81

2 3

4 5

6

7

8

Verify these !
which is BFS ?

DFS ?



Directed graphs
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Directed graphs
Definition

A directed graph  consists of G = (V, E)

• A set of vertices/nodes  and V

• A set of edges .E ⊆ V × V
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Directed graphs
Definition

A directed graph  consists of G = (V, E)

• A set of vertices/nodes  and V

• A set of edges .E ⊆ V × V

An edge is an ordered pair of vertices:  
different from 

(u, v)
(v, u)
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Directed graphs
Definition

A directed graph  consists of G = (V, E)

• A set of vertices/nodes  and V

• A set of edges .E ∈ V ≠ V

An edge is an ordered pair of vertices:  
different from 

(u, v)
(v, u)

 32

A CB

E DF

G H



Directed graphs
Examples

In many situations relationship between vertices is asymmetric: 

 33
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• Road networks with one-way streets. 
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Directed graphs
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 to page  if  has a link to  . p pΔ p pΔ 
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Directed graphs
Examples

In many situations relationship between vertices is asymmetric: 

• Road networks with one-way streets. 

• Web-link graph where vertices are web-pages and there is an edge from page 
 to page  if  has a link to  . p pΔ p pΔ 

• Dependency graphs in variety of applications: link from  to  if  depends on 
. E.g. Make files for compiling programs.

x y y
x
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Directed graphs
Examples

In many situations relationship between vertices is asymmetric: 

• Road networks with one-way streets. 

• Web-link graph where vertices are web-pages and there is an edge from page 
 to page  if  has a link to  . p pΔ p pΔ 

• Dependency graphs in variety of applications: link from  to  if  depends on 
. E.g. Make files for compiling programs.

x y y
x

• Program analysis: functions/procedures are vertices and there is an edge 
from  to  if  calls .x y x y

 33



Directed graphs
Representation

Graph  with  vertices and  edges:G = (V, E) n m
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Directed graphs
Representation

Graph  with  vertices and  edges:G = (V, E) n m

• Adjacency matrix:  asymmetric matrix .  if  and 
 if . 

n ≠ n A aij = 1 (i, j) × E
aij = 0 (i, j) ∉ E

 34
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Directed graphs
Representation

Graph  with  vertices and  edges:G = (V, E) n m

• Adjacency matrix:  asymmetric matrix .  if  and 
 if . 

n ≠ n A aij = 1 (i, j) × E
aij = 0 (i, j) ∉ E

• Adjacency lists: For each node ,  (also referred to as  by 
default) stores out-going edges from  .

u Out(u) Adj(u)
u
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Directed graphs
Representation

Graph  with  vertices and  edges:G = (V, E) n m

• Adjacency matrix:  asymmetric matrix .  if  and 
 if . 

n ≠ n A aij = 1 (i, j) × E
aij = 0 (i, j) ∉ E

• Adjacency lists: For each node ,  (also referred to as  by 
default) stores out-going edges from  .

u Out(u) Adj(u)
u

• Can also have  and store in-coming edges to .In(u) u
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Directed graphs
Representation

Graph  with  vertices and  edges:G = (V, E) n m

• Adjacency matrix:  asymmetric matrix .  if  and 
 if . 

n ≠ n A aij = 1 (i, j) × E
aij = 0 (i, j) ∉ E

• Adjacency lists: For each node ,  (also referred to as  by 
default) stores out-going edges from  .

u Out(u) Adj(u)
u

• Can also have  and store in-coming edges to .In(u) u

Default representation is adjacency lists ( ).Adj(u) Ω Out(u)
 34

-



Directed connectivity

Given a graph :G = (V, E)
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Directed connectivity

Given a graph :G = (V, E)

• A (directed) path is a sequence of distinct vertices  such that 
 for . The length of the path is  and the path is 

from  to . By convention, a single node  is a path of length 0.

v1, v2, …, vk
(vi, vi+1) × E 1 ≪ i ≪ k 𝒱 1 k 𝒱 1

v1 vk u

 35

↓
CEE is an ordered

tople now.



Directed connectivity

Given a graph :G = (V, E)

• A (directed) path is a sequence of distinct vertices  such that 
 for . The length of the path is  and the path is 

from  to . By convention, a single node  is a path of length 0.

v1, v2, …, vk
(vi, vi+1) × E 1 ≪ i ≪ k 𝒱 1 k 𝒱 1

v1 vk u

• A cycle is a sequence of distinct vertices  such that  for 
 and . By convention, a single node  is not a cycle.

v1, v2, …, vk (vi, vi+1) × E
1 ≪ i ≪ k 𝒱 1 (vk, v1) × E u

 35

-
↑
-

a : is there sude a thing as "undirected" path on
a directed graph ?



Directed connectivity

Given a graph :G = (V, E)

• A (directed) path is a sequence of distinct vertices  such that 
 for . The length of the path is  and the path is 

from  to . By convention, a single node  is a path of length 0.

v1, v2, …, vk
(vi, vi+1) × E 1 ≪ i ≪ k 𝒱 1 k 𝒱 1

v1 vk u

• A cycle is a sequence of distinct vertices  such that  for 
 and . By convention, a single node  is not a cycle.

v1, v2, …, vk (vi, vi+1) × E
1 ≪ i ≪ k 𝒱 1 (vk, v1) × E u

• A vertex  can reach  if there is a path from  to . Alternatively, we say  can be 
reached from .

u v u v v
u
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Directed connectivity

Given a graph :G = (V, E)

• A (directed) path is a sequence of distinct vertices  such that 
 for . The length of the path is  and the path is 

from  to . By convention, a single node  is a path of length 0.

v1, v2, …, vk
(vi, vi+1) × E 1 ≪ i ≪ k 𝒱 1 k 𝒱 1

v1 vk u

• A cycle is a sequence of distinct vertices  such that  for 
 and . By convention, a single node  is not a cycle.

v1, v2, …, vk (vi, vi+1) × E
1 ≪ i ≪ k 𝒱 1 (vk, v1) × E u

• A vertex  can reach  if there is a path from  to . Alternatively, we say  can be 
reached from .

u v u v v
u

• We denote with   the set of all vertices reachable from .rch(u) u
 35
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Directed connectivity

Asymmetricity: D can reach B but B cannot reach D.

 36
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Directed connectivity

Asymmetricity: D can reach B but B cannot reach D.

Questions: 
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Directed connectivity

Asymmetricity: D can reach B but B cannot reach D.

Questions: 
Is there a notion of connected components? 

 36
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Directed connectivity

Asymmetricity: D can reach B but B cannot reach D.

Questions: 
Is there a notion of connected components? 

How do we understand connectivity in directed 
graphs?

 36
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Connectivity and strongly connected components

 37

Definition: Given a directed graph ,  is strongly connected to  if  can 
reach  and  can reach . In other words  and . 

G u v u
v v u v × rch(u) u × rch(v)



Connectivity and strongly connected components

 37

Definition: Given a directed graph ,  is strongly connected to  if  can 
reach  and  can reach . In other words  and . 

G u v u
v v u v × rch(u) u × rch(v)

Proposition: Define relation  where  if  is (strongly) connected to . Then 
 is an equivalence relation, that is reflexive, symmetric & transitive.

C uCv u v
C



Connectivity and strongly connected components
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Definition: Given a directed graph ,  is strongly connected to  if  can 
reach  and  can reach . In other words  and . 

G u v u
v v u v × rch(u) u × rch(v)

Proposition: Define relation  where  if  is (strongly) connected to . Then 
 is an equivalence relation, that is reflexive, symmetric & transitive.

C uCv u v
C

Equivalence classes of  are the strongly connected components of  and they 
partition the vertices of . 

C G
G



Connectivity and strongly connected components

 37

Definition: Given a directed graph ,  is strongly connected to  if  can 
reach  and  can reach . In other words  and . 

G u v u
v v u v × rch(u) u × rch(v)

Proposition: Define relation  where  if  is (strongly) connected to . Then 
 is an equivalence relation, that is reflexive, symmetric & transitive.

C uCv u v
C

Equivalence classes of  are the strongly connected components of  and they 
partition the vertices of . 

C G
G

We denote with  the strongly connected component containing .SCC(u) u
--



Exercise

• Partition vertices of given graph under 
strong connectivity. 

 38

Connectivity and strongly connected components
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Directed graph connectivity problems
1. Given   and nodes   and  , can   reach  ? 


2. Given   and  , compute  . 


3. Given   and  , compute all   that can reach  , that is all   such that  .


4. Find the strongly connected component containing node  , that is  . 


5. Is   strongly connected (a single strong component)? 


6. Compute all strongly connected components of  .


First five problems can be solved in   time via Basic Search (or BFS/DFS). The 
last one can also be done in linear time but requires a rather clever DFS based 
algorithm (next lecture).

G u v u v
G u rch(u)
G u v u v u × rch(v)

u SCC(u)
G

G

O(n + m)

 39

sort of reverse
- question
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Graph exploration in directed 
graphs 



Directed graph search

Given              
a directed graph and 
vertex .                     
Let .

G = (V, E)

u × V
n = |V |

 41



Directed graph search

Given              
a directed graph and 
vertex .                     
Let .

G = (V, E)

u × V
n = |V |

 41

Explore(G,u): 
array Visited[1..n] 
Initialize: Set Visited[I]  FALSE for   
List: ToExplore, S 
Add u to ToExplore and to S, Visited[u]   TRUE 
Make tree T with root as u 
while (ToExplore is non-empty) do 

Remove node x from ToExplore 
for each vertex y in Adj(x) do 

if (Visited[y] = FALSE) 
 Visited[y]   TRUE 
 Add y to ToExplore 
 Add y to S 
 Add y to T with x as parent

Output S, T

ℰ 1 ≪ i ≪ n

ℰ

ℰ



Directed graph search

Given              
a directed graph and 
vertex .                     
Let .

G = (V, E)

u × V
n = |V |

We seek to find all 
nodes that can be 
reached from  
(represented as a 
spanning tree). 

u

 41

Explore(G,u): 
array Visited[1..n] 
Initialize: Set Visited[I]  FALSE for   
List: ToExplore, S 
Add u to ToExplore and to S, Visited[u]   TRUE 
Make tree T with root as u 
while (ToExplore is non-empty) do 

Remove node x from ToExplore 
for each vertex y in Adj(x) do 

if (Visited[y] = FALSE) 
 Visited[y]   TRUE 
 Add y to ToExplore 
 Add y to S 
 Add y to T with x as parent

Output S, T

ℰ 1 ≪ i ≪ n

ℰ

ℰ

-> previouslyS was nodes

"connected" to u

-> Now it is nodes

↑
"reachable" from U -



Example

 42
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E DF

G H

Directed graph search
visitelIFE
- A B < DEF G H

F

3
E

s=(B, E , F, G , H] wrap in

Z another
↑ WhileF all nodes

rch(B)
.

loop
to visit



Example

 42

A CB

E DF

G H

Directed graph search

Proposition: Explore(G,u) terminates with S being   rch(u) .

proof skipped.
(see Prof. Kan's old

↑ slides for a sketch)
-



1. Given  and nodes  and , can  reach ? G u v u v
2. Given  and , compute . G u rch(u)
3. Given  and , compute all  that can reach , that is all  such that .G u v u v u × rch(v)
4. Find the strongly connected component containing node , that is . u SCC(u)
5. Is  strongly connected (a single strong component)? G
6. Compute all strongly connected components of .G

Directed graph connectivity problems

 43



1. Given  and nodes  and , can  reach ? G u v u v
2. Given  and , compute . G u rch(u)
3. Given  and , compute all  that can reach , that is all  such that .G u v u v u × rch(v)
4. Find the strongly connected component containing node , that is . u SCC(u)
5. Is  strongly connected (a single strong component)? G
6. Compute all strongly connected components of .G

Directed graph connectivity problems

 43

Use   to compute 
  in   time.

Explore(G, u)
rch(u) O(n + m)

already
discussed.
t



1. Given  and nodes  and , can  reach ? G u v u v
2. Given  and , compute . G u rch(u)
3. Given  and , compute all  that can reach , that is all  such that .G u v u v u × rch(v)
4. Find the strongly connected component containing node , that is . u SCC(u)
5. Is  strongly connected (a single strong component)? G
6. Compute all strongly connected components of .G

Directed graph connectivity problems

 43

Use   to compute 
  in   time.

Explore(G, u)
rch(u) O(n + m)

Uses  Grev



Algorithms via Basic Search - 1, 2

• Given   and nodes   and  , can   reach  ?


• Given   and  , compute  .


Use   to compute   in   time.

G u v u v

G u rch(u)
Explore(G, u) rch(u) O(n + m)

 44

I alreadaessed



Algorithms via Basic Search - 3
• Given  and , compute all , that can reach , that is all  such that .                                                                                                      

Naive: 
G u v u v u × rch(u)
O(n(n + m))

 45

On
run Explore from every

vertex



Algorithms via Basic Search - 3
• Given  and , compute all , that can reach , that is all  such that .                                                                                                      

Naive: 
G u v u v u × rch(u)
O(n(n + m))

Definition (Reverse graph): 

Given ,  is the graph with edge directions reversed  
where 

G = (V, E) Grev Grev = (V, EΔ )
EΔ = {(y, x) | (x, y) × E}
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Algorithms via Basic Search - 3
• Given  and , compute all , that can reach , that is all  such that .                                                                                                      

Naive: 
G u v u v u × rch(u)
O(n(n + m))

Definition (Reverse graph): 

Given ,  is the graph with edge directions reversed  
where 

G = (V, E) Grev Grev = (V, EΔ )
EΔ = {(y, x) | (x, y) × E}

Compute  in . rch(u) Grev
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Algorithms via Basic Search - 3
• Given  and , compute all , that can reach , that is all  such that .                                                                                                      

Naive: 
G u v u v u × rch(u)
O(n(n + m))

Definition (Reverse graph): 

Given ,  is the graph with edge directions reversed  
where 

G = (V, E) Grev Grev = (V, EΔ )
EΔ = {(y, x) | (x, y) × E}

Compute  in . rch(u) Grev

Running time:  to obtain  from  and  time to compute 
via Basic Search.

O(n + m) Grev G O(n + m)
rch(u)

 45

G
will be solution to all v that can reach in
->
on original G.

-
-



Algorithms via Basic Search - 4
SCC(G, u) = {v |u is strongly connected to v}

 46



Algorithms via Basic Search - 4
SCC(G, u) = {v |u is strongly connected to v}

Find the strongly connected component containing node . That is, compute 
.

u
SCC(G, u)

 46
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Algorithms via Basic Search - 4
SCC(G, u) = {v |u is strongly connected to v}

Find the strongly connected component containing node . That is, compute 
.

u
SCC(G, u)

 SCC(G, u) = rch(G, u) ≤ rch(Grev, u)

 46

- we
will only

"prove by example
Y



Algorithms via Basic Search - 4
SCC(G, u) = {v |u is strongly connected to v}

Find the strongly connected component containing node . That is, compute 
.

u
SCC(G, u)

 SCC(G, u) = rch(G, u) ≤ rch(Grev, u)

Hence,  can be computed with  and . 
Total  time

SCC(G, u) Explore(G, u) Explore(Grev, u)
O(n + m)

 46



Given a graph  , and a vertex  …G F

 47

A CB

E DF

G H

Graph   G

Algorithms via Basic Search - 4

A CB

E DF

G H

 … its reachable set  rch(G, F)



Given a graph  , and a vertex  …G F
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A CB

E DF

G H

Graph   G

Algorithms via Basic Search - 4

is set of vertices reachable from   .F

A CB

E DF

G H

 … its reachable set  rch(G, F)



A CB

E DF

G H

 48
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E DF

G H

Algorithms via Basic Search - 4
 its reverse graph   …GrevGiven a graph   …G
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A CB

E DF

G H

… has all edges reversed.

Algorithms via Basic Search - 4
 its reverse graph   …GrevGiven a graph   …G
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E DF

G H

Graph   G

Algorithms via Basic Search - 4
.. the set of vertices that can reach it in   …GGiven a graph  , and a vertex  …G F O

O



… is   rch(Grev, F)
 49
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A CB

E DF

G H

Graph   G

Algorithms via Basic Search - 4
.. the set of vertices that can reach it in   …GGiven a graph  , and a vertex  …G F

- yellow
can reach

F

-
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Given a graph  , and a vertex   and its strongly connected component in   is …G F G

A CB

E DF

G H

 rch(G, F)

  SCC(G, F) = rch(G, F) ≤ rch(Grev, F)

Algorithms via Basic Search - 4
re F's

↑
M
O
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Given a graph  , and a vertex   and its strongly connected component in   is …G F G

 rch(Grev, F)

A CB

E DF

G H

A CB

E DF

G H

 rch(G, F)

  SCC(G, F) = rch(G, F) ≤ rch(Grev, F)

Algorithms via Basic Search - 4

- -

-
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Given a graph  , and a vertex   and its strongly connected component in   is …G F G

Graph   G

A CB

E DF

G H

 rch(Grev, F)

A CB

E DF

G H

A CB

E DF

G H

 rch(G, F)

  SCC(G, F) = rch(G, F) ≤ rch(Grev, F)

Algorithms via Basic Search - 4

&



Algorithms via Basic Search - 5

 51

• Is   strongly connected?


• Pick arbitrary vertex  . 


• Check if  

G

u

SCC(G, u) = V .


