
Directed graphs, DFS, DAGs,
TopSort

All mistakes are my own! - Ivan Abraham (Fall 2024)

Sides based on material by Kani, Erickson, Chekuri, et. al.

Definition

A directed graph ￼ is called a
directed acyclic graph (DAG) if
there is no directed cycle in ￼ .

G

G

Directed acyclic graphs

￼2

1 3

2 4

￼3

12

3

4

6

5

8

7

10

9

1211

13

14

1

2

5

3

7

10

9

1211

4

68

13

14

Directed acyclic graphs
Is this a DAG?

Sources and sinks

• A vertex ￼ is a source if it has no
in-coming edges.

• A vertex ￼ is a sink if it has no
out-going edges

u

u

Directed acyclic graphs

￼4

1 3

2 4

SinkSource

Properties
Directed acyclic graphs

￼5

Proposition: Every finite DAG ￼ has at least one source and at least one sink

Proof

Let ￼ be the longest path in ￼ . We claim that ￼ is a source
and ￼ is a sink.

For contradiction, suppose it is not. Then ￼ has an incoming edge which
either creates a cycle or a longer path both of which are contradictions.

Similarly so if ￼ has an outgoing edge.

G

P = v1, v2, . . . , vk G v1
vk

v1

vk

Properties
Directed acyclic graphs

￼6

• ￼ is a DAG if and only if ￼ is a DAG.

• Recall ￼ is the graph ￼ with orientation of all edges reversed.

• ￼ is a DAG if and only each node is its own strongly connected component.

• In other words, a (directed) graph is acyclic, iff it has no strongly connected
subgraphs with more than one vertex.

G Grev

Grev G

G

Order on a set
Topological ordering

￼7

A strict total order on a set ￼ is a binary relation ￼ on ￼ such that:

• ￼ is transitive.

• For any ￼ , exactly one of the following holds:

 ￼ or ￼ or ￼

• Cannot have ￼ , such that ￼ and
￼ .

X ≺ X

≺

x, y ∈ X

x ≺ y y ≺ x x = y

x1, . . . , xm ∈ X x1 ≺ x2, . . . , xm−1 ≺ xm
xm ≺ x1

Note about convention

• We will consider the following notations equivalent

• Undirected graph edges:

• Directed graph edges:

￼u → v ≡ (u, v) ≡ (u → v)

￼8

uv = {u, v} = vu ∈ E

Topological ordering/sorting
Definition

A topological ordering / topological sorting
of ￼ is an ordering ￼ on ￼ such
that if ￼ then ￼ .

Informal equivalent definition:
One can order the vertices of the graph along
a line (say the ￼ -axis) such that all edges are
from left to right.

G = (V, E) ≺ V
(u → v) ∈ E u ≺ v

x

￼9

1 3

2 4
Graph ￼G

1 32 4

Topological Ordering of ￼G

Exercise
Topological ordering in linear time

￼10

Show algorithm can be implemented in ￼ time

Simple algorithm:

• Count the in-degree of each vertex

• For each vertex that is source, i.e., ￼ :

• Add ￼ to the topological sort

• Lower degree of vertices ￼ is connected to.

O(m + n)

degIn(v) = 0

v

v

D

Example
Topological sort

￼11

Node Neighbors
A D E
B E
C
D F
E H G
F H
G
H

Adjacency List:

A B

D

C

F

E

H

G

Generate ￼ :degIn(v)
Degree Vertices

0 A B C

1 D F G

2 E H

A B C

D E

F G

H

Topological Ordering:

For each vertex that is
source (￼):

• Add ￼ to the
topological sort

• Lower degree of
vertices ￼ is
connected to.

degin(v) = 0

v

v

Repeat the steps
again.

E

F

H

G

Topological Sort

￼12

A B

D

C

F

E

H

G

A B C D E F G H

Topological Ordering:

For each vertex that is
source (￼):

• Add ￼ to the
topological sort

• Lower degree of
vertices ￼ is
connected to.

degin(v) = 0

v

v

Node Neighbors
A D E
B E
C
D F
E H G
F H
G
H

Degree Vertices

0 A B C D E F G H

1

2

￼13

A B

D

C

F

E

H

G

Multiple possible topological orderings

A B C D E F G H

ABC DE F GH

A B CD EF G H

DAGs and topological ordering

￼14

• Note: A DAG ￼ may have many different topological sorts.

• Exercise: What is a DAG with the most number of distinct topological sorts
given ￼ vertices?

• Exercise: What is a DAG with the least number of distinct topological sorts
for given ￼ vertices?

G

n

n

Direct topological ordering

￼15

TopSort(G):
 Sorted ← NULL
degin[1 … n] 1
Tdegin[1 … n] NULL
Generate in-degree for each vertex
for each edge xy in G do

 degin[y]++
for each vertex v in G do

Tdegin[degin[v]].append(v)
Next we recursively add vertices with in-degree = 0 to
the sort list
while (Tdegin[0] is non-empty) do

Remove node x from Tdegin[0]
Sorted.append(x)
for each edge xy in Adj(x) do
 degin[y]--
 move y to Tdegin[degin[y]]

Output Sorted

← −
←

DAGs and topological ordering

￼16

Lemma: A directed graph ￼ can be topologically ordered ￼ ￼ is a DAG

Proof: Proof by contradiction. Suppose ￼ is not a DAG and has a topological
ordering ￼ . Since ￼ is not a DAG, WLOG, take a cycle:

￼

Then ￼

A contradiction (to ￼ being an order). Not possible to topologically order the
vertices.

G ⟹ G

G
≺ G

C = u1 → u2 → . . . uk → u1 .

u1 ≺ u2 ≺ . . . ≺ uk ≺ u1 ⟹ u1 ≺ u1

≺

DFS in undirected graphs
Deep Dive into Depth First Search (DDiDFS?)

• Recall DFS is a special case of BasicSearch.

• DFS is useful in understanding graph structure.

• DFS also used to obtain linear time (￼) algorithms for

• Finding cycles, search trees, etc.

• Finding strong connected components of directed graphs

• ...many other applications as well.

O(m + n)

￼17

Recursive DFS

￼18

Recursive version commonly implemented, has some desirable properties.

DFS(G):
for all ￼ do

Mark ￼ as unvisited
Set ￼ to null

￼ is set to ∅
while ￼ unvisited ￼ do

DFS(￼)
Output ￼

u ∈ V(G)
u

pred(u)
T

∃ u
u

T

DFS(￼):
Mark ￼ as unvisited
for each ￼ do

if ￼ is not visited then
add edge ￼ to ￼
set ￼ to ￼
DFS(￼)

u
u

v ∈ Out(u)
v

u → v T
pred(v) u
v

Implemented using a global array Visited for all recursive calls. ￼ is the search
tree/forest/

T

DFS with pre-post numbering

￼19

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]
6 [5,]

Time = 0Time = 1Time = 2Time = 3Time = 4Time = 5Time = 6

Time = 6

DFS with pre-post numbering

￼20

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]
6 [5,]
3 [7,]
7 [8,]
8 [9,]

Time = 7Time = 8Time = 9

6

Time = 10

DFS with pre-post numbering

￼21

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]
6 [5, 6]
3 [7,]
7 [8,]
8 [9,]10

Time = 11Time = 12Time = 13Time = 14Time = 15

11
12

13
14
15

Time = 16

16

Time = 20

DFS with pre-post numbering

￼22

Vertex [Pre, Post]
1 [1, 16]
2 [2, 15]
4 [3, 14]
5 [4, 13]
6 [5, 6]
3 [7, 12]
7 [8, 13]
8 [9, 10]
9 [17, 20]

10 [19, 19]

1

32

4 5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

DFS in directed graphs
Exercise - do DFS on this graph and verify search tree

￼23

AB

D

C

FE

HG

AB

D

C

FE

HG

[1,16]

[2,11] [12,15]

[6,7]

[4,5]
[8,9]

[13,14][3,10]

Directed DFS with pre/post numbering

• DFS(G) takes ￼ time.

• Edges added form a branching: a forest of out-trees.

• Output of DFS(G) depends on the order in which vertices are considered.

• If ￼ is the first vertex considered by DFS(G) then DFS(u) outputs a directed
out-tree ￼ rooted at ￼ and a vertex ￼ is in ￼ if and only if ￼

• For any two vertices ￼ the intervals ￼ and ￼
are either disjoint or one is contained in the other.

O(m + n)

u
T u v T v ∈ rch(u)

x, y [pre(x), post(x)] [pre(y), post(y)]

￼24

DFS trees and edge types
Edge classisifcations

Edges of ￼ can be classified with respect to the DFS tree ￼ as:

• Tree edges that belong to ￼

• A forward edge is a non-tree edges ￼ such that
￼ .

• A backward edge is a non-tree edge ￼ such that
￼ .

• A cross edge is a non-tree edges ￼ such that the
intervals ￼ and ￼ are disjoint.

G T

T

(x, y)
pre(x) < pre(y) < post(y) < post(x)

(y, x)
pre(x) < pre(y) < post(y) < post(x)

(x, y)
[pre(x), post(x)] [pre(y), post(y)]

￼25

A

C D

B

Backward

Cross

Forward

Types of edges

￼26

AB

D

C

FE

HG

[1,16]

[2,11] [12,15]

[6,7]

[4,5]
[8,9]

[13,14][3,10]

Back edges

Forward edges

Cross edges

DFS and cycle detection
Cycles in graphs

• Question: Given an undirected graph how do we check whether it has a cycle
and output one if it has one?

• Question: Given an directed graph how do we check whether it has a cycle
and output one if it has one?

￼27

Cycle detection in directed graphs

Question: Given ￼ , is it a DAG?

• If it is, compute a topological sort. If it fails, then output the cycle ￼ .

• Compute ￼ .

• If there is a back edge ￼ then ￼ is not a DAG. Output cycle ￼
formed by path from ￼ to ￼ in ￼ plus edge ￼ .

• Otherwise output nodes in decreasing post-visit order.

• Note: no need to sort, ￼ can output nodes in this order!

G

C
DFS(G)

e = (v, u) G C
u v T (v, u)

DFS(G)

￼28

Use topological sorts

Topological sort a graph using DFS

￼29

Example

A B

D

C

F

E

H

G

[13,14]

[15,16][1,12]

[2, 7] [8,11]

[3, 6] [9,10]

[4, 5]

Listing out the vertices in descending order of
post-visit numbers gives:

C, B, A, E, G, D, F, H

[1, 8]

[9,10][11, 16]

[12, 15] [2, 7]

[13, 14] [3, 4]

[5,6] ABC DE FG H

Back edge and cycles
Proposition: ￼ has a cycle ￼ there is a back-edge in DFS(G).

Proof: That ￼ is a back edge implies there is a cycle ￼ consisting of the
path from ￼ to ￼ in DFS search tree and the edge ￼ .

Only if: Suppose there is a cycle ￼ .

Let ￼ be first node in ￼ visited in DFS. All other nodes in ￼ are descendants
of ￼ since they are reachable from ￼ .

Therefore, ￼ (or ￼ if ￼) is a back edge

G ⟺

(u, v) C
v u (u, v)

C = v1 → v2 → . . . → vk → v1

vi C C
vi vi

(vi−1, vi) (vk, v1) i = 1

￼30

Decreasing post-visit order is a TS
Proposition: If ￼ is a DAG and ￼ , then ￼ is not in ￼ .

Proof: Assume ￼ and ￼ is an edge in ￼ . One of two
holds:

• Case 1: ￼ is contained in ￼ . Implies that ￼ is
explored during ￼ and hence is a descendent of ￼ . Edge ￼
implies a cycle in ￼ but ￼ is assumed to be DAG.

• Case 2: ￼ is disjoint from ￼ . This cannot
happen since ￼ would have been explored from ￼ .

G post(v) > post(u) (u → v) G

post(u) < post(v) (u → v) G

[pre(u), post(u)] [pre(v), post(v)] u
DFS(v) v (u, v)

G G

[pre(u), post(u)] [pre(v), post(v)]
v u

￼31

Strongly connected components (SCCs)

Algorithmic Problem

Find all SCCs of a given directed graph.

Previous lecture: Saw an ￼ time
algorithm.

This lecture: Sketch of a ￼ time algorithm.

O(n . (n + m))

O(n + m)

￼32

A CB

E DF

G H

Graph of SCCs

Let ￼ be the strongly connected
components (i.e., SCCs) of ￼ . Denote
graph of SCCs is ￼ :

• Vertices are ￼

• There is an edge ￼ if there is some
￼ and ￼ such that ￼ is an
edge in ￼ .

S1, S2, . . . Sk
G

GSCC

S1, S2, . . . Sk

(Si, Sj)
u ∈ Si v ∈ Sj (u, v)

G

￼33

A CB

E DF

G H

Graph of SCCs ￼GSCC

B, E, F A, C, D

G H

Meta-graph of SCCs

For any graph ￼ , the graph
￼ has no directed cycle!

G
GSCC

Structure of Graphs

• Undirected graph: connected components of ￼ and a partition of
￼ can be computed in ￼ time.

• Directed graph: the meta-graph ￼ of ￼ can be computed in ￼
time. ￼ gives information on the partition of ￼ into strong connected
components and how they form a DAG structure.

Above structural decomposition will be useful in several algorithms.

G = (V, E)
V O(m + n)

GSCC G O(m + n)
GSCC V

￼34

Linear time algorithm for finding all SCCs
Finding all SCCs of a Directed Graph

Problem: Given a directed graph ￼ , output all its strong connected components.

Straightforward algorithm:

G = (V, E)

￼35

Mark all vertices in ￼ as not visited.
for each vertex ￼ not visited yet do

find SCC(G, u) the strong component of u:
Compute rch(G, ￼) using ￼
Compute rch(￼ , ￼) using ￼
SCC(G, u) ￼ rch(G, ￼) ∩ rch(￼ , ￼)
∀u ∈ SCC(G, u): Mark u as visited.

V
u ∈ V

u DFS(G, u)
Grev u DFS(Grev, u)

⇐ u Grev u

Running time: ￼

Is there an ￼ time algorithm?

O(n(n + m))

O(n + m)

Structure of a Directed Graph

Reminder ￼ is created by collapsing every strong connected component to
a single vertex.

Proposition: For a directed graph ￼ , its meta-graph ￼ is a DAG.

GSCC

G GSCC

￼36

A CB

E DF

G H

B, E, F A, C, D

G H

Source

Sink

[7,8] [12,15] [13,14]

[11,16]

[4,5][2,3]

[6,9][1,10]

Linear-time Algorithm for SCCs
Ideas

Wishful thinking algorithm

• Let ￼ be a vertex in a sink SCC of
￼ .

• Do ￼ to compute ￼ .

• Remove ￼ and repeat.

Justification

• ￼ only visits vertices (and
edges) in ￼ since there are
no edges coming out of a sink!

• ￼ takes time proportional
to size of ￼ .

• Therefore, total time ￼ !

u
GSCC

DFS(u) SCC(u)

SCC(u)

DFS(u)
SCC(u)

DFS(u)
SCC(u)

O(n + m)

￼37

Questions

How do we find a vertex in a sink SCC of ￼ ?

Can we obtain an implicit topological sort of ￼ without computing ￼ ?

Answer: ￼ gives some information!

GSCC

GSCC GSCC

DFS(G)

￼38

Pre/post-visit numbering and the meta graph

Claim: Let ￼ be the vertex with maximum post-visit numbering in ￼ .
Then ￼ is in a SCC ￼ , such that ￼ is a source of ￼ .

Claim: Let ￼ be the vertex with maximum post-visit numbering in ￼ .
Then ￼ is in a SCC ￼ , such that ￼ is a sink of ￼ .

Holds even after we delete the vertices of ￼ (i.e., the vertex with the
maximum post numbering, is in a sink of the meta graph).

v DFS(G)
v S S GSCC

v DFS(Grev)
v S S GSCC

S

￼39

Linear Time SCC Algorithm

Theorem: Algorithm runs in time ￼ and correctly outputs all the SCCs of ￼ .O(m + n) G

￼40

do DFS(￼) and output vertices in decreasing postvisit order.
Mark all nodes as unvisited.
for each ￼ in the computed order do

if ￼ is not visited then
DFS(￼)
Let ￼ be the nodes reached by ￼
Output ￼ as a strong connected component
Remove ￼ from ￼

Grev

u
u

u
Su u

Su
Su G

Linear Time Algorithm - An Example

￼41

A CB

E DF

G H

Graph ￼G
A CB

E DF

G H

Reverse Graph ￼Grev DFS of reverse graph
A CB

E DF

G H

A CB

E DF

G H

[3,4]

[2,5]

[14,15]
[13,16]

[8,11]

[1,6]
[7,12]

[9,10]

Pre/Post DFS numbering
of reverse graph

Linear Time Algorithm - An Example

￼42

Original graph G with rev post numbers

A CB

E DF

G H

12 6 4

5

15
9

11
10

Do DFS from vertex G, remove it

￼⟹

A CB

E DF

H

12 6 4

5

15

1110

SCC computed:

{G}

Linear Time Algorithm - An Example

￼43

Do DFS from vertex G remove it

￼⟹

A CB

E DF

H

12 6 4

5

15

1110

SCC computed:

{G}

Do DFS from vertex H, remove it

A CB

E DF

12 6 4

51110

SCC computed:

{G}, {H}

Do DFS from vertex H, remove it

SCC computed:

{G}, {H}

Linear Time Algorithm - An Example

￼44

￼⟹

A C

D

6 4

5

SCC computed:

{G}, {H}, {F, B, E}

A CB

E DF

12 6 4

51110

Do DFS from vertex B,

remove visited vertices: {F, B, E}.

SCC computed:

{G}, {H}, {F, B, E}

Do DFS from vertex B,

remove visited vertices: {F, B, E}.

Linear Time Algorithm - An Example

￼45

￼⟹

Do DFS from vertex A,

remove visited vertices: {A, C, D}.

A C

D

6 4

5

A CB

E DF

G H

SCC computed:

{G}, {H}, {F, B, E}, {A,C,D}

Summary
Take away points

• DAGs and topological orderings.

• DFS with pre/post numbering.

• Given a directed graph ￼ , its SCCs and the associated acyclic meta-graph
￼ give a structural decomposition of ￼ .

• There is a DFS based linear time algorithm to compute all the SCCs and the
meta-graph.

• DAGs arise in many application and topological sort is a key property in
algorithm design. Linear time algorithms!

G
GSCC G

￼46

