Directed graphs, DFS, DAGs, TopSort Sides based on material by Kani, Erickson, Chekuri, et. al.

All mistakes are my own! - Ivan Abraham (Fall 2024)

Image by ChatGPT (probably collaborated with DALL-E)

Directed acyclic graphs Definition

A directed graph G is called a *directed acyclic graph* (DAG) if there is no *directed* cycle in G.

Directed acyclic graphs Is this a DAG?

Directed acyclic graphs Sources and sinks

- A vertex *u* is a source if it has no in-coming edges.
- A vertex *u* is a **sink** if it has no out-going edges

Directed acyclic graphs Properties

- **Proposition:** Every *finite* DAG *G* has at least one source and at least one sink Proof
 - Let $P = v_1, v_2, \ldots, v_k$ be the longest path in G. We claim that v_1 is a source and v_k is a sink.
 - For contradiction, suppose it is not. Then v_1 has an incoming edge which either creates a cycle or a longer path both of which are contradictions.
 - Similarly so if v_k has an outgoing edge.

Directed acyclic graphs Properties

- G is a DAG if and only if G^{rev} is a DAG.
 - Recall G^{rev} is the graph G with orientation of all edges reversed.

- - subgraphs with more than one vertex.

• G is a DAG if and only each node is its own strongly connected component.

• In other words, a (directed) graph is acyclic, iff it has no strongly connected

Topological ordering Order on a set

A strict total order on a set X is a binary relation \prec on X such that:

• < is transitive.

• For any $x, y \in X$, exactly one of the following holds:

• Cannot have $x_1, \ldots, x_m \in X$, such that $x_1 \prec x_2, \ldots, x_{m-1} \prec x_m$ and $x_m \prec x_1$.

- $x \prec y \text{ or } y \prec x \text{ or } x = y$

Note about convention

- We will consider the following notations equivalent
 - Undirected graph edges:

• Directed graph edges:

 $uv = \{u, v\} = vu \in E$

 $u \to v \equiv (u, v) \equiv (u \to v)$

Topological ordering/sorting Definition

A topological ordering / topological sorting of G = (V, E) is an ordering \prec on V such that if $(u \rightarrow v) \in E$ then $u \prec v$.

Informal equivalent definition:

One can order the vertices of the graph along a line (say the *x*-axis) such that all edges are from left to right.

Topological Ordering of G

Topological ordering in linear time Exercise

Show algorithm can be implemented in O(m + n) time Simple algorithm:

- Count the in-degree of each vertex
- For each vertex that is source, i.e., $deg_{In}(v) = 0$:
 - Add γ to the topological sort
 - Lower degree of vertices v is connected to.

Topological sort Example

Adjacency List:

Node	Neighbors					
A	DE					
В	E					
С						
D	F					
E	НG					
F	Н					
G						
Н						

Topological Ordering:

Generate $deg_{In}(v)$:

Degree	Vertices						
0	А	В	С				
1							
2							

For each vertex that is source ($deg_{in}(v) = 0$):

- Add *v* to the topological sort
- Lower degree of vertices v is connected to.

Repeat the steps again.

Topological Sort

Topological Ordering:

Degree	Vertices							
0	A	В	С	D	Е	F	G	Н
 1								
2								
L								

For each vertex that is source ($deg_{in}(v) = 0$):

- Add *v* to the topological sort
- Lower degree of vertices v is connected to.

Multiple possible topological orderings

DAGs and topological ordering

- Note: A DAG G may have many different topological sorts.
- Exercise: What is a DAG with the most number of distinct topological sorts given n vertices?

 Exercise: What is a DAG with the least number of distinct topological sorts for given n vertices?

Direct topological ordering

TopSort(G): Sorted ← NULL $deg_{in}[1 \dots n] \leftarrow -1$ $Tdeg_{in}[1 ... n] \leftarrow NULL$ Generate in-degree for each vertex for each edge xy in G do degin[y]++ for each vertex v in G do Tdegin[degin[v]].append(v) Next we recursively add vertices with in-degree = 0 to the sort list while (Tdeg_{in}[0] is non-empty) do **Remove node** x from Tdeg_{in}[0] Sorted.append(x) for each edge xy in Adj(x) do deg_{in}[y]-move y to Tdeg_{in}[deg_{in}[y]] Output Sorted

DAGs and topological ordering

Lemma: A directed graph G can be topologically ordered \implies G is a DAG

ordering \prec . Since G is not a DAG, WLOG, take a cycle:

Then $u_1 \prec u_2 \prec \ldots \prec u_k \prec u_1 \implies u_1 \prec u_1$

vertices.

- **Proof:** Proof by contradiction. Suppose G is not a DAG and has a topological
 - $C = u_1 \rightarrow u_2 \rightarrow \ldots u_k \rightarrow u_1$.
- A contradiction (to \prec being an order). Not possible to topologically order the

DFS in undirected graphs Deep Dive into Depth First Search (DDiDFS?)

- Recall DFS is a special case of **BasicSearch**.
- DFS is useful in understanding graph structure.
- DFS also used to obtain linear time (O(m + n)) algorithms for
 - Finding cycles, search trees, etc.
 - Finding strong connected components of directed graphs
- ...many other applications as well.

Recursive DFS

Recursive version commonly implemented, has some desirable properties.

```
DFS(G):

for all u \in V(G) do

Mark u as unvisited

Set pred(u) to null

T is set to \emptyset

while \exists unvisited u do

DFS(u)

Output T
```

Implemented using a global array Visited for all recursive calls. T is the search tree/forest/

```
DFS(u):

Mark u as unvisited

for each v \in Out(u) do

if v is not visited then

add edge u \rightarrow v to T

set pred(v) to u

DFS(v)
```

$\mathsf{Time} = \mathbf{0}$

Vertex	[Pre, Post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5,]

Time = Θ

Vertex	[Pre, Post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5, 6]
3	[7,]
7	[8,]
8	[9,]

Time = 16

Vertex	[Pre, Post]
1	[1, 16]
2	[2, 15]
4	[3, 14]
5	[4, 13]
6	[5, 6]
3	[7, 12]
7	[8, 11]
8	[9, 10]

Time = 20

Vertex	[Pre, Post]						
1	[1, 16]						
2	[2, 15]						
4	[3, 14]						
5	[4, 13]						
6	[5,6]						
3	[7, 12]					4	
7	[8, 13]						
8	[9, 10]						
9	[17, 20]					-	ļ
10	[19, 19]						
	1	2	3	4	5	6	

DFS in directed graphs Exercise - do DFS on this graph and verify search tree

Directed DFS with pre/post numbering

- DFS(G) takes O(m + n) time.
- Edges added form a branching: a forest of out-trees.
 - Output of DFS(G) depends on the order in which vertices are considered.
- If u is the first vertex considered by DFS(G) then DFS(u) outputs a directed out-tree T rooted at u and a vertex v is in T if and only if $v \in rch(u)$
- For any two vertices x, y the intervals [pre(x), post(x)] and [pre(y), post(y)]are either disjoint or one is contained in the other.

DFS trees and edge types **Edge classisifcations**

Edges of G can be classified with respect to the DFS tree T as:

- Tree edges that belong to T
- A forward edge is a non-tree edges (x, y) such that pre(x) < pre(y) < post(y) < post(x).• A backward edge is a non-tree edge (y, x) such that
- pre(x) < pre(y) < post(y) < post(x).
- A cross edge is a non-tree edges (x, y) such that the intervals [pre(x), post(x)] and [pre(y), post(y)] are disjoint.

- Backward Forward B Cross

Types of edges

DFS and cycle detection Cycles in graphs

and output one if it has one?

and output one if it has one?

• Question: Given an undirected graph how do we check whether it has a cycle

• Question: Given an directed graph how do we check whether it has a cycle

Cycle detection in directed graphs Use topological sorts

Question: Given G, is it a DAG?

- - Compute DFS(G).
 - formed by path from u to v in T plus edge (v, u).
 - Otherwise output nodes in decreasing post-visit order.
 - Note: no need to sort, DFS(G) can output nodes in this order!

• If it is, compute a topological sort. If it fails, then output the cycle C.

• If there is a back edge e = (v, u) then G is not a DAG. Output cycle C

Topological sort a graph using DFS Example

Back edge and cycles

- **Proposition:** G has a cycle \iff there is a back-edge in DFS(G).
- **Proof:** That (u, v) is a back edge implies there is a cycle C consisting of the path from v to u in DFS search tree and the edge (u, v).
- **Only if:** Suppose there is a cycle $C = v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k \rightarrow v_1$.
 - Let v_i be first node in C visited in DFS. All other nodes in C are descendants of v_i since they are reachable from v_i .

Therefore, (v_{i-1}, v_i) (or (v_k, v_1) if i = 1) is a back edge

Decreasing post-visit order is a TS

Proposition: If G is a DAG and post(v) > post(u), then $(u \rightarrow v)$ is not in G.

Proof: Assume post(u) < post(v) and holds:

- Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)]. Implies that u is explored during DFS(v) and hence is a descendent of v. Edge (u, v) implies a cycle in G but G is assumed to be DAG.
- Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)]. This cannot happen since v would have been explored from u.

Proof: Assume post(u) < post(v) and $(u \rightarrow v)$ is an edge in G. One of two

Strongly connected components (SCCs)

Algorithmic Problem

Find all SCCs of a given directed graph.

Previous lecture: Saw an $O(n \cdot (n + m))$ time algorithm.

This lecture: Sketch of a O(n + m) time algorithm.

Graph of SCCs Meta-graph of SCCs

Let $S_1, S_2, \ldots S_k$ be the strongly connected components (i.e., SCCs) of G. Denote graph of SCCs is G^{SCC} :

- Vertices are $S_1, S_2, \ldots S_k$
- There is an edge (S_i, S_j) if there is some $u \in S_i$ and $v \in S_j$ such that (u, v) is an edge in G.

For any graph G, the graph G^{SCC} has no directed cycle!

Structure of Graphs

- Undirected graph: connected components of G = (V, E) and a partition of V can be computed in O(m + n) time.
- Directed graph: the meta-graph G^{SCC} of G can be computed in O(m + n)time. G^{SCC} gives information on the partition of V into strong connected components and how they form a DAG structure.

Above structural decomposition will be useful in several algorithms.

Linear time algorithm for finding all SCCs Finding all SCCs of a Directed Graph

Problem: Given a directed graph G = (V, E), output all its strong connected components. Straightforward algorithm:

```
Mark all vertices in V as not visited.

for each vertex u \in V not visited yet do

find SCC(G, u) the strong component of u:

Compute rch(G, u) using DFS(G, u)

Compute rch(G^{rev}, u) using DFS(G^{rev}, u)

SCC(G, u) \leftarrow rch(G, u) \cap rch(G^{rev}, u)

\forall u \in SCC(G, u): Mark u as visited.
```

Running time: O(n(n + m))

Is there an O(n + m) time algorithm?

Structure of a Directed Graph

Reminder G^{SCC} is created by collapsing every strong connected component to a single vertex.

Proposition: For a directed graph G, its meta-graph G^{SCC} is a DAG.

Sink

Linear-time Algorithm for SCCs Ideas

Wishful thinking algorithm

- Let u be a vertex in a sink SCC of G^{SCC} .
- Do DFS(u) to compute SCC(u).
- Remove SCC(u) and repeat.

Justification

- DFS(u) only visits vertices (and edges) in SCC(u) since there are no edges coming out of a sink!
- *DFS(u)* takes time proportional to size of *SCC(u)*.
- Therefore, total time O(n + m)!

Questions

How do we find a vertex in a sink SCC of G^{SCC} ? Can we obtain an implicit topological sort of G^{SCC} without computing G^{SCC} ? Answer: DFS(G) gives some information!

Pre/post-visit numbering and the meta graph

Then v is in a SCC S, such that S is a source of G^{SCC} .

Then v is in a SCC S, such that S is a sink of G^{SCC} .

- **Claim**: Let v be the vertex with maximum post-visit numbering in DFS(G).
- **Claim:** Let v be the vertex with maximum post-visit numbering in $DFS(G^{rev})$.

Holds even after we delete the vertices of S (i.e., the vertex with the maximum post numbering, is in a sink of the meta graph).

Linear Time SCC Algorithm

do DFS(G^{rev}) and output vertices in decreasing postvisit order. Mark all nodes as unvisited. for each u in the computed order do if u is not visited then DFS(u) Let S_u be the nodes reached by uOutput S_u as a strong connected component Remove S_u from G

Theorem: Algorithm runs in time O(m + n) and correctly outputs all the SCCs of G.

Pre/Post **DFS** numbering of reverse graph

DFS of reverse graph

Original graph G with rev post numbers

Do **DFS** from vertex G, remove it

Do **DFS** from vertex G remove it

Do **DFS** from vertex H, remove it

SCC computed: {G}, {H}

Do **DFS** from vertex H, remove it

SCC computed: {G}, {H}

SCC computed: {G}, {H}, {F, B, E}

SCC computed: {G}, {H}, {F, B, E} Do **DFS** from vertex A, remove visited vertices: {A, C, D}.

SCC computed: {G}, {H}, {F, B, E}, {A,C,D}

Summary Take away points

- DAGs and topological orderings.
- **DFS** with pre/post numbering.
- Given a directed graph G, its SCCs and the associated acyclic meta-graph G^{SCC} give a structural decomposition of G.
- There is a DFS based linear time algorithm to compute all the SCCs and the meta-graph.
- DAGs arise in many application and topological sort is a key property in algorithm design. Linear time algorithms!