
Directed graphs, DFS, DAGs, 
TopSort

All mistakes are my own! - Ivan Abraham (Fall 2024)

Sides based on material by Kani, Erickson, Chekuri, et. al.



Definition

A directed graph   is called a 
directed acyclic graph (DAG) if 
there is no directed cycle in  .
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Directed acyclic graphs
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Directed acyclic graphs
Is this a DAG?



Sources and sinks

• A vertex   is a source if it has no 
in-coming edges. 


• A vertex   is a sink if it has no 
out-going edges

u

u

Directed acyclic graphs
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SinkSource



Properties
Directed acyclic graphs
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Proposition: Every finite DAG   has at least one source and at least one sink 

Proof  

Let   be the longest path in  . We claim that   is a source 
and   is a sink. 


For contradiction, suppose it is not. Then   has an incoming edge which 
either creates a cycle or a longer path both of which are contradictions. 


Similarly so if   has an outgoing edge.

G

P = v1, v2, . . . , vk G v1
vk

v1

vk



Properties
Directed acyclic graphs
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•   is a DAG if and only if   is a DAG. 


• Recall   is the graph   with orientation of all edges reversed. 


•   is a DAG if and only each node is its own strongly connected component.


• In other words, a (directed) graph is acyclic, iff it has no strongly connected 
subgraphs with more than one vertex. 


G Grev

Grev G

G



Order on a set
Topological ordering
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A strict total order on a set   is a binary relation    on   such that:


•   is transitive.


• For any  , exactly one of the following holds:


   or   or  


• Cannot have  , such that   and 
 .

X ≺ X

≺

x, y ∈ X

x ≺ y y ≺ x x = y

x1, . . . , xm ∈ X x1 ≺ x2, . . . , xm−1 ≺ xm
xm ≺ x1



Note about convention

• We will consider the following notations equivalent


• Undirected graph edges:


• Directed graph edges:


 u → v ≡ (u, v) ≡ (u → v)
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uv = {u, v} = vu ∈ E



Topological ordering/sorting
Definition

A topological ordering / topological sorting 
of   is an ordering   on   such 
that if   then  .


Informal equivalent definition: 
One can order the vertices of the graph along 
a line (say the  -axis) such that all edges are 
from left to right.

G = (V, E) ≺ V
(u → v) ∈ E u ≺ v

x
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1 3

2 4
Graph  G

1 32 4

Topological Ordering of  G



Exercise
Topological ordering in linear time
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Show algorithm can be implemented in   time


Simple algorithm: 

• Count the in-degree of each vertex 


• For each vertex that is source, i.e.,  :


• Add   to the topological sort


• Lower degree of vertices   is connected to.

O(m + n)

degIn(v) = 0

v

v



D

Example
Topological sort
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Node Neighbors
A   D   E
B   E
C
D   F
E   H  G
F   H
G
H

Adjacency List:

A B

D

C

F

E

H

G

Generate  :degIn(v)
Degree Vertices

0   A   B   C             

1   D   F   G

2   E   H

A B C

D E

F G

H

Topological Ordering:

For each vertex that is 
source (   ):


• Add   to the 
topological sort


• Lower degree of 
vertices   is 
connected to.

degin(v) = 0

v

v

Repeat the steps 
again.

E

F

H

G



Topological Sort
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A B

D

C

F

E

H

G

A B C D E F G H

Topological Ordering:

For each vertex that is 
source (   ):


• Add   to the 
topological sort


• Lower degree of 
vertices   is 
connected to.

degin(v) = 0

v

v

Node Neighbors
A   D   E
B   E
C
D   F
E   H  G
F   H
G
H

Degree Vertices

0   A   B   C   D   E   F  G  H            

1

2   
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A B

D

C

F

E

H

G

Multiple possible topological orderings

A B C D E F G H

ABC DE F GH

A B CD EF G H



DAGs and topological ordering
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• Note: A DAG   may have many different topological sorts.


• Exercise: What is a DAG with the most number of distinct topological sorts 
given   vertices?


• Exercise: What is a DAG with the least number of distinct topological sorts 
for given   vertices?


G

n

n



Direct topological ordering
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TopSort(G): 
  Sorted ← NULL 
degin[1 … n]  1 
Tdegin[1 … n]  NULL
Generate in-degree for each vertex
for each edge xy in G do 

 degin[y]++
for each vertex v in G do 

Tdegin[degin[v]].append(v)
Next we recursively add vertices with in-degree = 0 to 
the sort list
while (Tdegin[0] is non-empty) do 

Remove node x from Tdegin[0] 
Sorted.append(x)
for each edge xy in Adj(x) do
    degin[y]--
    move y to Tdegin[degin[y]]

Output Sorted

← −
←



DAGs and topological ordering
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Lemma: A directed graph   can be topologically ordered     is a DAG 

Proof: Proof by contradiction. Suppose   is not a DAG and has a topological 
ordering   . Since   is not a DAG, WLOG, take a cycle:


 


Then  


A contradiction (to   being an order). Not possible to topologically order the 
vertices.

G ⟹ G

G
≺ G

C = u1 → u2 → . . . uk → u1 .

u1 ≺ u2 ≺ . . . ≺ uk ≺ u1 ⟹ u1 ≺ u1

≺



DFS in undirected graphs
Deep Dive into Depth First Search (DDiDFS?)

• Recall DFS is a special case of BasicSearch. 


• DFS is useful in understanding graph structure. 


• DFS also used to obtain linear time ( ) algorithms for 


• Finding cycles, search trees, etc.  


• Finding strong connected components of directed graphs 


• ...many other applications as well.

O(m + n)

 17



Recursive DFS 
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Recursive version commonly implemented, has some desirable properties.

DFS(G): 
for all   do 

Mark   as unvisited 
Set   to null 

  is set to ∅ 
while   unvisited   do

DFS( )
Output  

u ∈ V(G)
u

pred(u)
T

∃ u
u

T

DFS( ): 
Mark   as unvisited 
for each   do 

if   is not visited then 
add edge   to   
set   to   
DFS( )

u
u

v ∈ Out(u)
v

u → v T
pred(v) u
v

Implemented using a global array Visited for all recursive calls.   is the search 
tree/forest/

T



DFS with pre-post numbering
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1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,      ]
2 [2,      ]
4 [3,      ]
5 [4,      ]
6 [5,      ]

Time = 0Time = 1Time = 2Time = 3Time = 4Time = 5Time = 6



Time = 6

DFS with pre-post numbering
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1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,      ]
2 [2,      ]
4 [3,      ]
5 [4,      ]
6 [5,      ]
3 [7,      ]
7 [8,      ]
8 [9,      ]

Time = 7Time = 8Time = 9

6



Time = 10

DFS with pre-post numbering
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1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,      ]
2 [2,      ]
4 [3,      ]
5 [4,      ]
6 [5,  6  ]
3 [7,      ]
7 [8,      ]
8 [9,      ]10

Time = 11Time = 12Time = 13Time = 14Time = 15

11
12

13
14
15

Time = 16

16



Time = 20

DFS with pre-post numbering
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Vertex [Pre, Post]
1 [1, 16]
2 [2, 15]
4 [3, 14]
5 [4, 13]
6 [ 5, 6 ]
3 [7, 12]
7 [8, 13]
8 [9, 10]
9 [17, 20]

10 [19, 19]

1

32

4 5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20



DFS in directed graphs
Exercise - do DFS on this graph and verify search tree
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AB

D

C

FE

HG

AB

D

C

FE

HG

[1,16]

[2,11] [12,15]

[6,7]

[4,5]
[8,9]

[13,14][3,10]



Directed DFS with pre/post numbering

• DFS(G) takes   time. 


• Edges added form a branching: a forest of out-trees.


• Output of DFS(G) depends on the order in which vertices are considered.


• If   is the first vertex considered by DFS(G) then DFS(u) outputs a directed 
out-tree   rooted at   and a vertex   is in   if and only if   


• For any two vertices   the intervals  and   
are either disjoint or one is contained in the other.

O(m + n)

u
T u v T v ∈ rch(u)

x, y [pre(x), post(x)] [pre(y), post(y)]

 24



DFS trees and edge types
Edge classisifcations 

Edges of   can be classified with respect to the DFS tree   as:


• Tree edges that belong to   


• A forward edge is a non-tree edges   such that 
 . 


• A backward edge is a non-tree edge   such that  
 . 


• A cross edge is a non-tree edges   such that the 
intervals   and   are disjoint.

G T

T

(x, y)
pre(x) < pre(y) < post(y) < post(x)

(y, x)
pre(x) < pre(y) < post(y) < post(x)

(x, y)
[pre(x), post(x)] [pre(y), post(y)]
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A

C D

B

Backward

Cross

Forward



Types of edges

 26

AB

D

C

FE

HG

[1,16]

[2,11] [12,15]

[6,7]

[4,5]
[8,9]

[13,14][3,10]

Back edges

Forward edges

Cross edges



DFS and cycle detection
Cycles in graphs

• Question: Given an undirected graph how do we check whether it has a cycle 
and output one if it has one?


• Question: Given an directed graph how do we check whether it has a cycle 
and output one if it has one?

 27



Cycle detection in directed graphs

Question: Given  , is it a DAG?


• If it is, compute a topological sort. If it fails, then output the cycle  .


• Compute  . 


• If there is a back edge   then   is not a DAG. Output cycle   
formed by path from   to   in   plus edge  . 


• Otherwise output nodes in decreasing post-visit order. 


• Note: no need to sort,   can output nodes in this order!

G

C
DFS(G)

e = (v, u) G C
u v T (v, u)

DFS(G)

 28

Use topological sorts



Topological sort a graph using DFS
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Example

A B

D

C

F

E

H

G

[13,14]

[15,16][1,12]

[2, 7] [8,11]

[3, 6] [9,10]

[4, 5]

Listing out the vertices in descending order of 
post-visit numbers gives:


C, B, A, E, G, D, F, H

[1, 8]

[9,10][11, 16]

[12, 15] [2, 7]

[13, 14] [3, 4]

[5,6] ABC DE FG H



Back edge and cycles
Proposition:   has a cycle   there is a back-edge in DFS(G).


Proof: That   is a back edge implies there is a cycle   consisting of the 
path from   to   in DFS search tree and the edge  .  

Only if: Suppose there is a cycle  . 


Let   be first node in   visited in DFS. All other nodes in   are descendants 
of   since they are reachable from  .


Therefore,   (or   if  ) is a back edge

G ⟺

(u, v) C
v u (u, v)

C = v1 → v2 → . . . → vk → v1

vi C C
vi vi

(vi−1, vi) (vk, v1) i = 1

 30



Decreasing post-visit order is a TS
Proposition: If   is a DAG and  , then   is not in  .


Proof: Assume   and   is an edge in  . One of two 
holds:


• Case 1:   is contained in  . Implies that   is 
explored during   and hence is a descendent of  . Edge   
implies a cycle in   but   is assumed to be DAG.


• Case 2:   is disjoint from  . This cannot 
happen since   would have been explored from  .

G post(v) > post(u) (u → v) G

post(u) < post(v) (u → v) G

[pre(u), post(u)] [pre(v), post(v)] u
DFS(v) v (u, v)

G G

[pre(u), post(u)] [pre(v), post(v)]
v u

 31



Strongly connected components (SCCs)

Algorithmic Problem  

Find all SCCs of a given directed graph.


Previous lecture: Saw an   time 
algorithm. 


This lecture: Sketch of a   time algorithm.

O(n . (n + m))

O(n + m)

 32

A CB

E DF

G H



Graph of SCCs
                                                                                              
Let   be the strongly connected 
components (i.e., SCCs) of  . Denote 
graph of SCCs is  :


• Vertices are  


• There is an edge   if there is some 
  and   such that   is an 
edge in  .

S1, S2, . . . Sk
G

GSCC

S1, S2, . . . Sk

(Si, Sj)
u ∈ Si v ∈ Sj (u, v)

G
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A CB

E DF

G H

Graph of SCCs  GSCC

B, E, F A, C, D

G H

Meta-graph of SCCs

For any graph  , the graph 
  has no directed cycle!

G
GSCC



Structure of Graphs

• Undirected graph: connected components of   and a partition of 
  can be computed in   time. 


• Directed graph: the meta-graph   of   can be computed in   
time.   gives information on the partition of   into strong connected 
components and how they form a DAG structure. 


Above structural decomposition will be useful in several algorithms.

G = (V, E)
V O(m + n)

GSCC G O(m + n)
GSCC V

 34



Linear time algorithm for finding all SCCs
Finding all SCCs of a Directed Graph

Problem: Given a directed graph  , output all its strong connected components.


Straightforward algorithm:

G = (V, E)

 35

Mark all vertices in   as not visited. 
for each vertex   not visited yet do 

find SCC(G, u) the strong component of u:   
Compute rch(G,  ) using   
Compute rch(  ,  ) using  
SCC(G, u)   rch(G,  ) ∩ rch(  ,  ) 
∀u ∈ SCC(G, u): Mark u as visited.

V
u ∈ V

u DFS(G, u)
Grev u DFS(Grev, u)

⇐ u Grev u

Running time:  


Is there an   time algorithm?

O(n(n + m))

O(n + m)



Structure of a Directed Graph

Reminder   is created by collapsing every strong connected component to 
a single vertex. 


Proposition: For a directed graph  , its meta-graph   is a DAG.

GSCC

G GSCC
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A CB

E DF

G H

B, E, F A, C, D

G H

Source

Sink

[7,8] [12,15] [13,14]

[11,16]

[4,5][2,3]

[6,9][1,10]



Linear-time Algorithm for SCCs
Ideas

Wishful thinking algorithm 


• Let   be a vertex in a sink SCC of 
  .


• Do   to compute  .


• Remove   and repeat.


Justification  

•   only visits vertices (and 
edges) in   since there are 
no edges coming out of a sink!


•   takes time proportional 
to size of  .


• Therefore, total time  !

u
GSCC

DFS(u) SCC(u)

SCC(u)

DFS(u)
SCC(u)

DFS(u)
SCC(u)

O(n + m)

 37



Questions 

How do we find a vertex in a sink SCC of  ? 


Can we obtain an implicit topological sort of   without computing  ? 


Answer:   gives some information!

GSCC

GSCC GSCC

DFS(G)

 38



Pre/post-visit numbering and the meta graph

Claim: Let   be the vertex with maximum post-visit numbering in  . 
Then   is in a SCC  , such that   is a source of  . 

Claim: Let   be the vertex with maximum post-visit numbering in  . 
Then   is in a SCC  , such that   is a sink of  . 

Holds even after we delete the vertices of   (i.e., the vertex with the 
maximum post numbering, is in a sink of the meta graph).

v DFS(G)
v S S GSCC

v DFS(Grev)
v S S GSCC

S

 39



Linear Time SCC Algorithm

Theorem: Algorithm runs in time   and correctly outputs all the SCCs of  .O(m + n) G

 40

do DFS( ) and output vertices in decreasing postvisit order. 
Mark all nodes as unvisited.
for each   in the computed order do 

if   is not visited then 
DFS( ) 
Let   be the nodes reached by   
Output   as a strong connected component 
Remove   from  

Grev

u
u

u
Su u

Su
Su G



Linear Time Algorithm - An Example
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A CB

E DF

G H

Graph  G
A CB

E DF

G H

Reverse Graph  Grev DFS of reverse graph
A CB

E DF

G H

A CB

E DF

G H

[3,4]

[2,5]

[14,15]
[13,16]

[8,11]

[1,6]
[7,12]

[9,10]

Pre/Post DFS numbering 
of reverse graph



Linear Time Algorithm - An Example
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Original graph G with rev post numbers

A CB

E DF

G H

12 6 4

5

15
9

11
10

Do DFS from vertex G, remove it

 ⟹

A CB

E DF

H

12 6 4

5

15

1110

SCC computed:

{G}



Linear Time Algorithm - An Example
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Do DFS from vertex G remove it

 ⟹

A CB

E DF

H

12 6 4

5

15

1110

SCC computed:

{G}

Do DFS from vertex H, remove it

A CB

E DF

12 6 4

51110

SCC computed:

{G}, {H}



Do DFS from vertex H, remove it

SCC computed:

{G}, {H}

Linear Time Algorithm - An Example
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 ⟹

A C

D

6 4

5

SCC computed:

{G}, {H}, {F, B, E}

A CB

E DF

12 6 4

51110

Do DFS from vertex B, 

remove visited vertices: {F, B, E}.



SCC computed:

{G}, {H}, {F, B, E}

Do DFS from vertex B, 

remove visited vertices: {F, B, E}.

Linear Time Algorithm - An Example

 45

 ⟹

Do DFS from vertex A, 

remove visited vertices: {A, C, D}.

A C

D

6 4

5

A CB

E DF

G H

SCC computed:

{G}, {H}, {F, B, E}, {A,C,D}



Summary
Take away points

• DAGs and topological orderings. 


• DFS with pre/post numbering. 


• Given a directed graph  , its SCCs and the associated acyclic meta-graph 
  give a structural decomposition of  . 


• There is a DFS based linear time algorithm to compute all the SCCs and the 
meta-graph. 


• DAGs arise in many application and topological sort is a key property in 
algorithm design. Linear time algorithms!

G
GSCC G

 46


