
Directed graphs, DFS, DAGs,
TopSort

All mistakes are my own! - Ivan Abraham (Fall 2024)

Sides based on material by Kani, Erickson, Chekuri, et. al.

Definition

A directed graph is called a
directed acyclic graph (DAG) if
there is no directed cycle in .

G

G

Directed acyclic graphs

 2

1 3

2 4

 3

12

3

4

6

5

8

7

10

9

1211

13

14

1

2

5

3

7

10

9

1211

4

68

13

14

Directed acyclic graphs
Is this a DAG?

Sources and sinks

• A vertex is a source if it has no
in-coming edges.

• A vertex is a sink if it has no
out-going edges

u

u

Directed acyclic graphs

 4

1 3

2 4

SinkSource

Properties
Directed acyclic graphs

 5

Proposition: Every finite DAG has at least one source and at least one sink

Proof

Let be the longest path in . We claim that is a source
and is a sink.

For contradiction, suppose it is not. Then has an incoming edge which
either creates a cycle or a longer path both of which are contradictions.

Similarly so if has an outgoing edge.

G

P = v1, v2, . . . , vk G v1
vk

v1

vk

Properties
Directed acyclic graphs

 6

• is a DAG if and only if is a DAG.

• Recall is the graph with orientation of all edges reversed.

• is a DAG if and only each node is its own strongly connected component.

• In other words, a (directed) graph is acyclic, iff it has no strongly connected
subgraphs with more than one vertex.

G Grev

Grev G

G

Order on a set
Topological ordering

 7

A strict total order on a set is a binary relation on such that:

• is transitive.

• For any , exactly one of the following holds:

 or or

• Cannot have , such that and
 .

X ≺ X

≺

x, y ∈ X

x ≺ y y ≺ x x = y

x1, . . . , xm ∈ X x1 ≺ x2, . . . , xm−1 ≺ xm
xm ≺ x1

Note about convention

• We will consider the following notations equivalent

• Undirected graph edges:

• Directed graph edges:

 u → v ≡ (u, v) ≡ (u → v)

 8

uv = {u, v} = vu ∈ E

Topological ordering/sorting
Definition

A topological ordering / topological sorting
of is an ordering on such
that if then .

Informal equivalent definition:
One can order the vertices of the graph along
a line (say the -axis) such that all edges are
from left to right.

G = (V, E) ≺ V
(u → v) ∈ E u ≺ v

x

 9

1 3

2 4
Graph G

1 32 4

Topological Ordering of G

Exercise
Topological ordering in linear time

 10

Show algorithm can be implemented in time

Simple algorithm:

• Count the in-degree of each vertex

• For each vertex that is source, i.e., :

• Add to the topological sort

• Lower degree of vertices is connected to.

O(m + n)

degIn(v) = 0

v

v

D

Example
Topological sort

 11

Node Neighbors
A D E
B E
C
D F
E H G
F H
G
H

Adjacency List:

A B

D

C

F

E

H

G

Generate :degIn(v)
Degree Vertices

0 A B C

1 D F G

2 E H

A B C

D E

F G

H

Topological Ordering:

For each vertex that is
source ():

• Add to the
topological sort

• Lower degree of
vertices is
connected to.

degin(v) = 0

v

v

Repeat the steps
again.

E

F

H

G

Topological Sort

 12

A B

D

C

F

E

H

G

A B C D E F G H

Topological Ordering:

For each vertex that is
source ():

• Add to the
topological sort

• Lower degree of
vertices is
connected to.

degin(v) = 0

v

v

Node Neighbors
A D E
B E
C
D F
E H G
F H
G
H

Degree Vertices

0 A B C D E F G H

1

2

 13

A B

D

C

F

E

H

G

Multiple possible topological orderings

A B C D E F G H

ABC DE F GH

A B CD EF G H

DAGs and topological ordering

 14

• Note: A DAG may have many different topological sorts.

• Exercise: What is a DAG with the most number of distinct topological sorts
given vertices?

• Exercise: What is a DAG with the least number of distinct topological sorts
for given vertices?

G

n

n

Direct topological ordering

 15

TopSort(G):
 Sorted ← NULL
degin[1 … n] 1
Tdegin[1 … n] NULL
Generate in-degree for each vertex
for each edge xy in G do

 degin[y]++
for each vertex v in G do

Tdegin[degin[v]].append(v)
Next we recursively add vertices with in-degree = 0 to
the sort list
while (Tdegin[0] is non-empty) do

Remove node x from Tdegin[0]
Sorted.append(x)
for each edge xy in Adj(x) do
 degin[y]--
 move y to Tdegin[degin[y]]

Output Sorted

← −
←

DAGs and topological ordering

 16

Lemma: A directed graph can be topologically ordered is a DAG

Proof: Proof by contradiction. Suppose is not a DAG and has a topological
ordering . Since is not a DAG, WLOG, take a cycle:

Then

A contradiction (to being an order). Not possible to topologically order the
vertices.

G ⟹ G

G
≺ G

C = u1 → u2 → . . . uk → u1 .

u1 ≺ u2 ≺ . . . ≺ uk ≺ u1 ⟹ u1 ≺ u1

≺

DFS in undirected graphs
Deep Dive into Depth First Search (DDiDFS?)

• Recall DFS is a special case of BasicSearch.

• DFS is useful in understanding graph structure.

• DFS also used to obtain linear time () algorithms for

• Finding cycles, search trees, etc.

• Finding strong connected components of directed graphs

• ...many other applications as well.

O(m + n)

 17

Recursive DFS

 18

Recursive version commonly implemented, has some desirable properties.

DFS(G):
for all do

Mark as unvisited
Set to null

 is set to ∅
while unvisited do

DFS()
Output

u ∈ V(G)
u

pred(u)
T

∃ u
u

T

DFS():
Mark as unvisited
for each do

if is not visited then
add edge to
set to
DFS()

u
u

v ∈ Out(u)
v

u → v T
pred(v) u
v

Implemented using a global array Visited for all recursive calls. is the search
tree/forest/

T

DFS with pre-post numbering

 19

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]
6 [5,]

Time = 0Time = 1Time = 2Time = 3Time = 4Time = 5Time = 6

Time = 6

DFS with pre-post numbering

 20

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]
6 [5,]
3 [7,]
7 [8,]
8 [9,]

Time = 7Time = 8Time = 9

6

Time = 10

DFS with pre-post numbering

 21

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]
6 [5, 6]
3 [7,]
7 [8,]
8 [9,]10

Time = 11Time = 12Time = 13Time = 14Time = 15

11
12

13
14
15

Time = 16

16

Time = 20

DFS with pre-post numbering

 22

Vertex [Pre, Post]
1 [1, 16]
2 [2, 15]
4 [3, 14]
5 [4, 13]
6 [5, 6]
3 [7, 12]
7 [8, 13]
8 [9, 10]
9 [17, 20]

10 [19, 19]

1

32

4 5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

DFS in directed graphs
Exercise - do DFS on this graph and verify search tree

 23

AB

D

C

FE

HG

AB

D

C

FE

HG

[1,16]

[2,11] [12,15]

[6,7]

[4,5]
[8,9]

[13,14][3,10]

Directed DFS with pre/post numbering

• DFS(G) takes time.

• Edges added form a branching: a forest of out-trees.

• Output of DFS(G) depends on the order in which vertices are considered.

• If is the first vertex considered by DFS(G) then DFS(u) outputs a directed
out-tree rooted at and a vertex is in if and only if

• For any two vertices the intervals and
are either disjoint or one is contained in the other.

O(m + n)

u
T u v T v ∈ rch(u)

x, y [pre(x), post(x)] [pre(y), post(y)]

 24

DFS trees and edge types
Edge classisifcations

Edges of can be classified with respect to the DFS tree as:

• Tree edges that belong to

• A forward edge is a non-tree edges such that
 .

• A backward edge is a non-tree edge such that
 .

• A cross edge is a non-tree edges such that the
intervals and are disjoint.

G T

T

(x, y)
pre(x) < pre(y) < post(y) < post(x)

(y, x)
pre(x) < pre(y) < post(y) < post(x)

(x, y)
[pre(x), post(x)] [pre(y), post(y)]

 25

A

C D

B

Backward

Cross

Forward

Types of edges

 26

AB

D

C

FE

HG

[1,16]

[2,11] [12,15]

[6,7]

[4,5]
[8,9]

[13,14][3,10]

Back edges

Forward edges

Cross edges

DFS and cycle detection
Cycles in graphs

• Question: Given an undirected graph how do we check whether it has a cycle
and output one if it has one?

• Question: Given an directed graph how do we check whether it has a cycle
and output one if it has one?

 27

Cycle detection in directed graphs

Question: Given , is it a DAG?

• If it is, compute a topological sort. If it fails, then output the cycle .

• Compute .

• If there is a back edge then is not a DAG. Output cycle
formed by path from to in plus edge .

• Otherwise output nodes in decreasing post-visit order.

• Note: no need to sort, can output nodes in this order!

G

C
DFS(G)

e = (v, u) G C
u v T (v, u)

DFS(G)

 28

Use topological sorts

Topological sort a graph using DFS

 29

Example

A B

D

C

F

E

H

G

[13,14]

[15,16][1,12]

[2, 7] [8,11]

[3, 6] [9,10]

[4, 5]

Listing out the vertices in descending order of
post-visit numbers gives:

C, B, A, E, G, D, F, H

[1, 8]

[9,10][11, 16]

[12, 15] [2, 7]

[13, 14] [3, 4]

[5,6] ABC DE FG H

Back edge and cycles
Proposition: has a cycle there is a back-edge in DFS(G).

Proof: That is a back edge implies there is a cycle consisting of the
path from to in DFS search tree and the edge .

Only if: Suppose there is a cycle .

Let be first node in visited in DFS. All other nodes in are descendants
of since they are reachable from .

Therefore, (or if) is a back edge

G ⟺

(u, v) C
v u (u, v)

C = v1 → v2 → . . . → vk → v1

vi C C
vi vi

(vi−1, vi) (vk, v1) i = 1

 30

Decreasing post-visit order is a TS
Proposition: If is a DAG and , then is not in .

Proof: Assume and is an edge in . One of two
holds:

• Case 1: is contained in . Implies that is
explored during and hence is a descendent of . Edge
implies a cycle in but is assumed to be DAG.

• Case 2: is disjoint from . This cannot
happen since would have been explored from .

G post(v) > post(u) (u → v) G

post(u) < post(v) (u → v) G

[pre(u), post(u)] [pre(v), post(v)] u
DFS(v) v (u, v)

G G

[pre(u), post(u)] [pre(v), post(v)]
v u

 31

Strongly connected components (SCCs)

Algorithmic Problem

Find all SCCs of a given directed graph.

Previous lecture: Saw an time
algorithm.

This lecture: Sketch of a time algorithm.

O(n . (n + m))

O(n + m)

 32

A CB

E DF

G H

Graph of SCCs

Let be the strongly connected
components (i.e., SCCs) of . Denote
graph of SCCs is :

• Vertices are

• There is an edge if there is some
 and such that is an
edge in .

S1, S2, . . . Sk
G

GSCC

S1, S2, . . . Sk

(Si, Sj)
u ∈ Si v ∈ Sj (u, v)

G

 33

A CB

E DF

G H

Graph of SCCs GSCC

B, E, F A, C, D

G H

Meta-graph of SCCs

For any graph , the graph
 has no directed cycle!

G
GSCC

Structure of Graphs

• Undirected graph: connected components of and a partition of
 can be computed in time.

• Directed graph: the meta-graph of can be computed in
time. gives information on the partition of into strong connected
components and how they form a DAG structure.

Above structural decomposition will be useful in several algorithms.

G = (V, E)
V O(m + n)

GSCC G O(m + n)
GSCC V

 34

Linear time algorithm for finding all SCCs
Finding all SCCs of a Directed Graph

Problem: Given a directed graph , output all its strong connected components.

Straightforward algorithm:

G = (V, E)

 35

Mark all vertices in as not visited.
for each vertex not visited yet do

find SCC(G, u) the strong component of u:
Compute rch(G,) using
Compute rch(,) using
SCC(G, u) rch(G,) ∩ rch(,)
∀u ∈ SCC(G, u): Mark u as visited.

V
u ∈ V

u DFS(G, u)
Grev u DFS(Grev, u)

⇐ u Grev u

Running time:

Is there an time algorithm?

O(n(n + m))

O(n + m)

Structure of a Directed Graph

Reminder is created by collapsing every strong connected component to
a single vertex.

Proposition: For a directed graph , its meta-graph is a DAG.

GSCC

G GSCC

 36

A CB

E DF

G H

B, E, F A, C, D

G H

Source

Sink

[7,8] [12,15] [13,14]

[11,16]

[4,5][2,3]

[6,9][1,10]

Linear-time Algorithm for SCCs
Ideas

Wishful thinking algorithm

• Let be a vertex in a sink SCC of
 .

• Do to compute .

• Remove and repeat.

Justification

• only visits vertices (and
edges) in since there are
no edges coming out of a sink!

• takes time proportional
to size of .

• Therefore, total time !

u
GSCC

DFS(u) SCC(u)

SCC(u)

DFS(u)
SCC(u)

DFS(u)
SCC(u)

O(n + m)

 37

Questions

How do we find a vertex in a sink SCC of ?

Can we obtain an implicit topological sort of without computing ?

Answer: gives some information!

GSCC

GSCC GSCC

DFS(G)

 38

Pre/post-visit numbering and the meta graph

Claim: Let be the vertex with maximum post-visit numbering in .
Then is in a SCC , such that is a source of .

Claim: Let be the vertex with maximum post-visit numbering in .
Then is in a SCC , such that is a sink of .

Holds even after we delete the vertices of (i.e., the vertex with the
maximum post numbering, is in a sink of the meta graph).

v DFS(G)
v S S GSCC

v DFS(Grev)
v S S GSCC

S

 39

Linear Time SCC Algorithm

Theorem: Algorithm runs in time and correctly outputs all the SCCs of .O(m + n) G

 40

do DFS() and output vertices in decreasing postvisit order.
Mark all nodes as unvisited.
for each in the computed order do

if is not visited then
DFS()
Let be the nodes reached by
Output as a strong connected component
Remove from

Grev

u
u

u
Su u

Su
Su G

Linear Time Algorithm - An Example

 41

A CB

E DF

G H

Graph G
A CB

E DF

G H

Reverse Graph Grev DFS of reverse graph
A CB

E DF

G H

A CB

E DF

G H

[3,4]

[2,5]

[14,15]
[13,16]

[8,11]

[1,6]
[7,12]

[9,10]

Pre/Post DFS numbering
of reverse graph

Linear Time Algorithm - An Example

 42

Original graph G with rev post numbers

A CB

E DF

G H

12 6 4

5

15
9

11
10

Do DFS from vertex G, remove it

 ⟹

A CB

E DF

H

12 6 4

5

15

1110

SCC computed:

{G}

Linear Time Algorithm - An Example

 43

Do DFS from vertex G remove it

 ⟹

A CB

E DF

H

12 6 4

5

15

1110

SCC computed:

{G}

Do DFS from vertex H, remove it

A CB

E DF

12 6 4

51110

SCC computed:

{G}, {H}

Do DFS from vertex H, remove it

SCC computed:

{G}, {H}

Linear Time Algorithm - An Example

 44

 ⟹

A C

D

6 4

5

SCC computed:

{G}, {H}, {F, B, E}

A CB

E DF

12 6 4

51110

Do DFS from vertex B,

remove visited vertices: {F, B, E}.

SCC computed:

{G}, {H}, {F, B, E}

Do DFS from vertex B,

remove visited vertices: {F, B, E}.

Linear Time Algorithm - An Example

 45

 ⟹

Do DFS from vertex A,

remove visited vertices: {A, C, D}.

A C

D

6 4

5

A CB

E DF

G H

SCC computed:

{G}, {H}, {F, B, E}, {A,C,D}

Summary
Take away points

• DAGs and topological orderings.

• DFS with pre/post numbering.

• Given a directed graph , its SCCs and the associated acyclic meta-graph
 give a structural decomposition of .

• There is a DFS based linear time algorithm to compute all the SCCs and the
meta-graph.

• DAGs arise in many application and topological sort is a key property in
algorithm design. Linear time algorithms!

G
GSCC G

 46

