Directed graphs, DFS, DAGs,
TopSort

Sides based on material by Kani, Erickson, Chekuri, et. al.

All mistakes are my own! - lvan Abraham (Fall 2024)

Image by ChatGPT (probably collaborated with DALL-E)

Directed acyclic graphs

Definition

A directed graph G is called a
directed acyclic graph (DAQG) if
there is no directed cycle in G.

Directed acyclic graphs
Is this a DAG?

(1) (4

Directed acyclic graphs

Sources and sinks

e Avertex /IS a If It has no
iINn-coming edges.

e Avertex iz is a sink if it has no
out-going edges

/

Sink

Directed acyclic graphs

Properties

Proposition: Every finite DAG G has at least one source and at least one sink

Proof

Let P = v, Vv,,...,V, be the longest path in G. We claim that v, is a source
and v, Is a sink.

For contradiction, suppose it is not. Then v, has an incoming edge which
either creates a cycle or a longer path both of which are contradictions.

Similarly so if v, has an outgoing edge.

Directed acyclic graphs

Properties

« GisaDAG ifand only if G'*" is a DAG.

» Recall G’ is the graph G with orientation of all edges reversed.

» (5 is a DAG if and only each node is its own strongly connected component.

* |n other words, a (directed) graph is acyclic, iff it has no strongly connected
subgraphs with more than one vertex.

Topological ordering
Order on a set

A strict total order on a set X is a binary relation < on X such that:
e < s transitive.
e Forany x,y € X, exactly one of the following holds:
x<yory<xorx =y

e Cannot have x;,...,x, € X,suchthatx; <x,,...,x,_; <x_ and
X, < Xi.

Note about convention

 We will consider the following notations equivalent
* Undirected graph edges:
w ={u,v} =vu ek

* Directed graph edges:

u—->v = Wv) = (u-v)

Topological ordering/sorting

Definition

A topological ordering / topological sorting
of G = (V, E) is an ordering < on V such
that if (u — v) € E thenu < v.

@O—®

Graph G

Informal equivalent definition: /’\

One can order the vertices of the graph along a e

a line (say the x-axis) such that all edges are

from left to right. | |
Topological Ordering of G

Topological ordering In linear time

Exercise

Show algorithm can be implemented in O(m + n) time

Simple algorithm:

 Count the in-degree of each vertex

» For each vertex that is source, i.e., deg; (v) = 0:

 Add v to the topological sort

 |Lower degree of vertices v Is connected to.

10

Topological sort

Example
Adjacency List: Generate deg;,(v):

%\)\ ©| =2

Neighbors For each vertex that is

source (deg, (v) = 0):

« Add v to the
topological sort

* Lower degree of

vertices v Is
connected to.

Repeat the steps
again.

)
%

Topological Ordering:

11

Topological Sort

QO j—— mj«—— W

N\
o/
|

Topological Ordering:

Node Neighbors

A D E

B E

C

D F

E H G

F H

G

H

Degree Vertices
0 A B CDETFGH
:
2

12

For each vertex that is
source (deg;,(v) = 0):

« Add v to the
topological sort

* Lower degree of

vertices v Is
connected to.

Multiple possible topological orderings

OWPOWOPFO B fe) W

29 © B o Azem

%/i © & « B W W @
c

DAGs and topological ordering

* Note: A DAG G may have many different topological sorts.

 Exercise: What is a DAG with the most number of distinct topological sorts
given n vertices?

 Exercise: What is a DAG with the least number of distinct topological sorts
for given n vertices”?

14

Direct topological ordering

TopSort (G):
Sorted <« NULL
degin[l .. n] <« —1
Tdegin[l .. n] <« NULL

for each edge xy in G do
degin[y]++

for each vertex v in G do
Tdegin[degin[V]].append(v)

while (Tdegin[0] is non-empty) do
Remove node x from Tdegin[O0]
Sorted.append(x)
for each edge xy in Adj(x) do
degin[y]--
move y to Tdegin[degin[V]]
Output Sorted

15

DAGs and topological ordering

Lemma: A directed graph G can be topologically ordered =—> G is a DAG

Proof: Proof by contradiction. Suppose G is not a DAG and has a topological
ordering < . Since G is not a DAG, WLOG, take a cycle:

C=u —>u —...u — U.
Thenu <u, <...<uy <uy = u <y

A contradiction (to < being an order). Not possible to topologically order the
vertices.

16

DFS in undirected graphs

Deep Dive into Depth First Search (DDIDFS?)

 Recall DFS is a special case of BasicSearch.

 DFS is useful in understanding graph structure.

» DFS also used to obtain linear time (O(m + n)) algorithms for
* Finding cycles, search trees, etc.
* Finding strong connected components of directed graphs

e ...many other applications as well.

17

Recursive DFS

Recursive version commonly implemented, has some desirable properties.

DFS(G): DFS (u) :

for all u € V(G) do Mark 1 as unvisited

Mark 1 as unvisited for each v € Out(u) do

Set pred(u) to null if v is not visited then
I is set to @ add edge u —>v to T
while d unvisited u do set pred(v) to u

DFS () DFS (V)
Output 7

Implemented using a global array Visited for all recursive calls. / is the search
tree/forest/

18

DFS with pre-post numbering

Time =

Vertex [Pre, Post]
3 .

o 6 A~ DN
TE|B S| =

DFS with pre-post numbering

Time =98

Vertex [Pre, Post]
; .

O IN W O | G~ D
W oo N O~
o

DFS with pre-post numbering

Time =18
Vertex [Pre, Post|
1 1,16]
2 2,15]
4 3,14
5 4,13]
6 5, 6]
3 7,12]
7 8,11
8 9,10

DFS with pre-post numbering

Time =20

\ertex [Pre, Post]
R 0O 006
2 2, 15]
4 3, 14] / \ /
5 4, 13]
e | (56 / N\ / N
> O—0
7 8, 13]
8 9, 10]
9 17,20 -
10 19, 191 -

11 12 3 4 |5 16 |7 8 |9 10 11 [12 [13 (14 115 |16 117 (18 119 |20

DFS in directed graphs

Exercise - do DFS on this graph and verify search tree

Directed DFS with pre/post numbering

e DFS(G) takes O(m + n) time.
 Edges added form a branching: a forest of out-trees.

 Qutput of DFS(G) depends on the order in which vertices are considered.

o If uis the first vertex considered by DFS(G) then DFS(u) outputs a directed
out-tree 7 rooted at 1 and a vertex visin T if and only if v € rch(u)

 For any two vertices x, y the intervals |pre(x), post(x)|and |pre(y), post(y)]
are either disjoint or one is contained in the other.

24

DFS trees and edge types

Edge classisifcations

Edges of G can be classified with respect to the DFS tree 7" as:

* Tree edges that belong to 1’ o |,
4
\ !
. Backward ,' v Forward
A forward edge is a non-tree edges (x, y) such that '
pre(x) < pre(y) < post(y) < post(x). '/
4
« A backward edge is a non-tree edge (y, x) such that !
pre(x) < pre(y) < post(y) < post(x). @4 --------

A cross edge is a non-tree edges (x, y) such that the
intervals [pre(x), post(x)] and |pre(y), post(y)] are disjoint.

25

Types of edges

[1,10]

[12,19]
Back edges

Forward edges
[13,14]

Cross edges

26

DFS and cycle detection
Cycles in graphs

* Question: Given an undirected graph how do we check whether it has a cycle
and output one if it has one?

* Question: Given an directed graph how do we check whether it has a cycle
and output one If it has one”

27

Cycle detection in directed graphs

Use topological sorts

Question: Given G, is it a DAG?

o Ifitis, compute a topological sort. If it fails, then output the cycle C.
« Compute DFS(G).

o If there is a back edge ¢ = (v, 1) then G is not a DAG. Output cycle C
formed by path from 1 to v in 7 plus edge (v, u).

* Otherwise output nodes in decreasing post-visit order.

* Note: no need to sort, DFS(() can output nodes in this order!

28

Topological sort a graph using DFS

Example

11, 16]

1,12] A
[12, 15] l
2,71 \ P
13, 14] l
3, 0] F
5,6] l
4, 5] H

AN

1, 8]

13,14]
B C
l 2, 7]
E) 18,11]
-
G) [9,10]

9,10]

15,106]

Listing out the vertices in descending order of
post-visit numbers gives:

C,B,AEGD,FH

29

Back edge and cycles

Proposition: G has a cycle < there is a back-edge in

Proof: That (1, v) is a back edge implies there is a cycle C consisting of the
path from v to u in search tree and the edge (u, V).

Only if: Suppose thereisacycle C =v, = v, = ... = v, = V.

Let v; be first node in C visited in . All other nodes in C are descendants
of v; since they are reachable from v..

Therefore, (v;_;,Vv;) (or (v, v,) if 1 = 1) is a back edge

30

Decreasing post-visit orderis a TS

Proposition: If G is a DAG and post(v) > post(u), then (# — Vv) is not in G.

Proof: Assume post(#) < post(v) and (# — Vv) is an edge in G. One of two
holds:

. |pre(u), post(u)] is contained in [pre(v), post(v)]. Implies that u is
explored during DFS(v) and hence is a descendent of v. Edge (u, v)
implies a cycle in G but G is assumed to be DAG.

. |pre(u), post(u)] is disjoint from [pre(v), post(v)]. This cannot
happen since v would have been explored from .

31

Strongly connected components (

Algorithmic Problem

Find all s of a given directed graph.

Previous lecture: Saw an O(n . (n + m)) time
algorithm.

This lecture: Sketch of a O(n + m) time algorithm.

S

Graph of

Meta-graph of S

Let 5, 9,, .. .9, be the strongly connected

components (i.e., SCCs) of G. Denote
graph of sis G ¢

» Vertices are 5, 5,,...9,

» There is an edge (5, Sj) if there is some
u € S;and v € 5; such that (i, v) is an
edge in G.

For any graph G, the graph
G°¢C has no directed cycle!

33

T\T‘ N

B,E, F

— A C,D

|

G

S

|

H

Graph of s G>¢C

Structure of Graphs

» Undirected graph: connected components of G = (V, E) and a partition of
V can be computed in O(m + n) time.

. Directed graph: the meta-graph G°¢¢ of G can be computed in O(m + n)

time. G°¢¢ gives information on the partition of V into strong connected
components and how they form a DAG structure.

Above structural decomposition will be useful in several algorithms.

34

Linear time algorithm for finding all
Finding all SCCs of a Directed Graph

Problem: Given a directed graph G = (V, E), output all its strong connected components.

Straightforward algorithm:

Mark all vertices in V as not visited.
for each vertex u €V not visited yet do
find (G, u) the strong component of u:
Compute rch(G, u) using DFS(G,u)
Compute rch(G'™ , u) using DFS(G'®", u)
(G, u) <€ rch(G, u) N rch(G™ , u)
Yu € (G, u): Mark u as visited.

Running time: O(n(n + m))

Is there an O(n + m) time algorithm?

35

Structure of a Directed Graph

[7,8] [12,15] [13,14]
Source

B,E, F — AC,D

T N

G — H

[1,10]

[4,9]

Sink

Reminder G°¢ is created by collapsing every strong connected component to
a single vertex.

Proposition: For a directed graph G, its meta-graph G°‘Cisa

36

Linear-time Algorithm for S
Ideas
Wishful thinking algorithm Justification
 Let u be avertex in a sink of o DFS(u) only visits vertices (and
G ¢ edges) in SCC(u) since there are

no edges coming out of a sink!
e Do DFS(u) to compute SCC(u).
« DFS(u) takes time proportional

« Remove SCC(u) and repeat. to size of SCC(u).

» Therefore, total time O(n + m)!

37

Questions

How do we find a vertex in a sink of G°¢¢?
Can we obtain an implicit topological sort of G°¢C without computing G°C¢?

Answer: DFS(G) gives some information!

38

Pre/post-visit numbering and the meta graph

Claim: Let v be the vertex with maximum post-visit numbering in DFS(G).
Thenvisin a S such that S is a source of G°¢¢.

Claim: Let v be the vertex with maximum post-visit numbering in DFS(G'").
Then visin a S. such that S is a sink of G°¢¢.

Holds even after we delete the vertices of (i.e., the vertex with the
maximum post numbering, is in a sink of the meta graph).

39

Linear Time Algorithm

do DFS(G’™) and output vertices in decreasing postvisit order.
Mark all nodes as unvisited.
for each u in the computed order do
if u is not visited then

DES (u)

Let 5, be the nodes reached by u

Output S, as a strong connected component

Remove 5, from G

Theorem: Algorithm runs in time O(m + n) and correctly outputs all the s of G.

40

Linear Time Algorithm - An Example

Graph G Reverse Graph G"” DFS of reverse graph
@\’@‘\@

G /@

Pre/Post DFS numbering , .
of reverse graph @QC n 18,11] D) [2,5]

o .
-~ -
"y mm=

Linear Time Algorithm - An Example

Original graph G with rev post numbers Do DFS from vertex G, remove it

12 6 4

computed:
{G}

42

Linear Time Algorithm - An Example

Do DFS from vertex G remove it Do DFS from vertex H, remove it
12 6 12 6 4
5)- 0

10 (E 11

15

computed: computed:

G} G}, (H}

43

Linear Time Algorithm - An Example

Do DFS from vertex B,

Do DFS f tex H it
0 rom vertex H, remove | remove visited vertices: {F, B, E}.

4 6 4
v — v
S

computed: computed:
{G}, {H} {G}, {H}, {F, B, E}

44

Linear Time Algorithm - An Example

Do DFS from vertex B, Do DFS from vertex A,
remove visited vertices: {F, B, E}. remove visited vertices: {A, C, D}.
6 4
; ©
v —
S
computed:

G}, {H}, {F B, E} computed:

G}, {H} {F B, E}, (AG,Dj

45

Summary

Take away points

. s and topological orderings.

 DFS with pre/post numbering.

» Given a directed graph G, its s and the associated acyclic meta-graph
G°C¢ give a structural decomposition of G.

 There is a DFS based linear time algorithm to compute all the s and the
meta-grapnh.

. s arise In many application and topological sort is a key property in
algorithm design. Linear time algorithms!

46

