
Directed graphs, DFS, DAGs,
TopSort

All mistakes are my own! - Ivan Abraham (Fall 2024)

Sides based on material by Kani, Erickson, Chekuri, et. al.

Definition

A directed graph is called a
directed acyclic graph (DAG) if
there is no directed cycle in .

G

G

Directed acyclic graphs

 2

1 3

2 4

b
Tells us that G is directed ,

indirected
No such thing as an

cycle, or a directed G.. yet anyway.

 3

1

2

5

3

7

10

9

1211

4

68

13

14

Directed acyclic graphs
Is this a DAG?

 3

12

3

4

6

5

8

7

10

9

1211

13

14

1

2

5

3

7

10

9

1211

4

68

13

14

Directed acyclic graphs
Is this a DAG?

easy peasy
Hmm... lemou is

saveezy

Sources and sinks

• A vertex is a source if it has no
in-coming edges.

u

• A vertex is a sink if it has no
out-going edges

u

Directed acyclic graphs

 4

1 3

2 4

SinkSource

Properties
Directed acyclic graphs

 5

Proposition: Every finite DAG has at least one source and at least one sink.G
Proof:

Let be the longest path in . We claim that is a source
and is a sink.

P = v1, v2, . . . , vk G v1
vk

Properties
Directed acyclic graphs

 5

Proposition: Every finite DAG has at least one source and at least one sink.G
Proof:

Let be the longest path in . We claim that is a source
and is a sink.

P = v1, v2, . . . , vk G v1
vk

For contradiction, suppose it is not. Then has an incoming edge which
either creates a cycle or a longer path both of which are contradictions.

v1

O

Properties
Directed acyclic graphs

 5

Proposition: Every finite DAG has at least one source and at least one sink.G
Proof:

Let be the longest path in . We claim that is a source
and is a sink.

P = v1, v2, . . . , vk G v1
vk

For contradiction, suppose it is not. Then has an incoming edge which
either creates a cycle or a longer path both of which are contradictions.

v1

Similarly so if has an outgoing edge.vk

Properties
Directed acyclic graphs

 6

• is a DAG if and only if is a DAG. G Grev

• Recall is the graph with orientation of all edges reversed. Grev G

Properties
Directed acyclic graphs

 6

• is a DAG if and only if is a DAG. G Grev

• Recall is the graph with orientation of all edges reversed. Grev G

• is a DAG if and only each node is its own strongly connected component.G

• In other words, a (directed) graph is acyclic, iff it has no strongly connected
subgraphs with more than one vertex.

Order on a set
Topological ordering

 7

A strict total order on a set is a binary relation on such that:X ≺ X

• is transitive.≺

prec .

↑

asbae = ac
2

Order on a set
Topological ordering

 7

A strict total order on a set is a binary relation on such that:X ≺ X

• is transitive.≺

• For any , exactly one of the following holds:x, y ∈ X

Order on a set
Topological ordering

 7

A strict total order on a set is a binary relation on such that:X ≺ X

• is transitive.≺

• For any , exactly one of the following holds:x, y ∈ X

 or or x ≺ y y ≺ x x = y

-

~ O

Order on a set
Topological ordering

 7

A strict total order on a set is a binary relation on such that:X ≺ X

• is transitive.≺

• For any , exactly one of the following holds:x, y ∈ X

 or or x ≺ y y ≺ x x = y

• Cannot have , such that and
.

x1, . . . , xm ∈ X x1 ≺ x2, . . . , xm−1 ≺ xm
xm ≺ x1
--

Note about convention

• We will consider the following notations equivalent

• Undirected graph edges:

• Directed graph edges:

u → v ≡ (u, v) ≡ (u → v)

 8

uv = {u, v} = vu ∈ E

↳ Different sources use them.... but

I will use them all freely-

Topological ordering/sorting
Definition

A topological ordering / topological sorting
of is an ordering on such
that if then .

G = (V, E) ≺ V
(u → v) ∈ E u ≺ v

 9

English : If edges zoe
from a soo then

- u is "smaller" the V.

Topological ordering/sorting
Definition

A topological ordering / topological sorting
of is an ordering on such
that if then .

G = (V, E) ≺ V
(u → v) ∈ E u ≺ v

 9

1 3

2 4
Graph G

Topological ordering/sorting
Definition

A topological ordering / topological sorting
of is an ordering on such
that if then .

G = (V, E) ≺ V
(u → v) ∈ E u ≺ v

 9

1 3

2 4
Graph G

1 32 4

Topological Ordering of G

-

*

Topological ordering/sorting
Definition

A topological ordering / topological sorting
of is an ordering on such
that if then .

G = (V, E) ≺ V
(u → v) ∈ E u ≺ v

Informal equivalent definition:
One can order the vertices of the graph along
a line (say the -axis) such that all edges are
from left to right.

x

 9

1 3

2 4
Graph G

1 32 4

Topological Ordering of G

Exercise
Topological ordering in linear time

 10

Show algorithm can be implemented in timeO(m + n)
Simple algorithm:
• Count the in-degree of each vertex

Exercise
Topological ordering in linear time

 10

Show algorithm can be implemented in timeO(m + n)
Simple algorithm:
• Count the in-degree of each vertex

• For each vertex that is source, i.e., :degIn(v) = 0

Exercise
Topological ordering in linear time

 10

Show algorithm can be implemented in timeO(m + n)
Simple algorithm:
• Count the in-degree of each vertex

• For each vertex that is source, i.e., :degIn(v) = 0

• Add to the topological sortv

->
number of edges coming in

E

Exercise
Topological ordering in linear time

 10

Show algorithm can be implemented in timeO(m + n)
Simple algorithm:
• Count the in-degree of each vertex

• For each vertex that is source, i.e., :degIn(v) = 0

• Add to the topological sortv

• Lower degree of vertices is connected to.v

Example
Topological sort

 11

Node Neighbors
A D E
B E
C
D F
E H G
F H
G
H

Adjacency List:

A B

D

C

F

E

H

G

Generate :degIn(v)
Degree Vertices

0 A B C
1 D F G
2 E H

Topological Ordering:

For each vertex that is
source ():

• Add to the
topological sort

• Lower degree of
vertices is
connected to.

degin(v) = 0
v

v

instalization

incorry edges ↑
a
no

- -

Example
Topological sort

 11

Node Neighbors
A D E
B E
C
D F
E H G
F H
G
H

Adjacency List:

A B

D

C

F

E

H

G

Generate :degIn(v)
Degree Vertices

0 A B C
1 D F G
2 E H

Topological Ordering:

For each vertex that is
source ():

• Add to the
topological sort

• Lower degree of
vertices is
connected to.

degin(v) = 0
v

v

Example
Topological sort

 11

Node Neighbors
A D E
B E
C
D F
E H G
F H
G
H

Adjacency List:

A B

D

C

F

E

H

G

Generate :degIn(v)
Degree Vertices

0 A B C
1 D F G
2 E H

A

Topological Ordering:

For each vertex that is
source ():

• Add to the
topological sort

• Lower degree of
vertices is
connected to.

degin(v) = 0
v

v

co ⑧
8

S

D

Example
Topological sort

 11

Node Neighbors
A D E
B E
C
D F
E H G
F H
G
H

Adjacency List:

A B

D

C

F

E

H

G

Generate :degIn(v)
Degree Vertices

0 A B C
1 D F G
2 E H

A

Topological Ordering:

For each vertex that is
source ():

• Add to the
topological sort

• Lower degree of
vertices is
connected to.

degin(v) = 0
v

v

E
X

-

D

Example
Topological sort

 11

Node Neighbors
A D E
B E
C
D F
E H G
F H
G
H

Adjacency List:

A B

D

C

F

E

H

G

Generate :degIn(v)
Degree Vertices

0 A B C
1 D F G
2 E H

A

Topological Ordering:

For each vertex that is
source ():

• Add to the
topological sort

• Lower degree of
vertices is
connected to.

degin(v) = 0
v

v

E

D

Example
Topological sort

 11

Node Neighbors
A D E
B E
C
D F
E H G
F H
G
H

Adjacency List:

A B

D

C

F

E

H

G

Generate :degIn(v)
Degree Vertices

0 A B C
1 D F G
2 E H

A B

Topological Ordering:

For each vertex that is
source ():

• Add to the
topological sort

• Lower degree of
vertices is
connected to.

degin(v) = 0
v

v

Repeat the steps
again.

E

D

Example
Topological sort

 11

Node Neighbors
A D E
B E
C
D F
E H G
F H
G
H

Adjacency List:

A B

D

C

F

E

H

G

Generate :degIn(v)
Degree Vertices

0 A B C
1 D F G
2 E H

A B

Topological Ordering:

For each vertex that is
source ():

• Add to the
topological sort

• Lower degree of
vertices is
connected to.

degin(v) = 0
v

v

Repeat the steps
again.

E

D

Example
Topological sort

 11

Node Neighbors
A D E
B E
C
D F
E H G
F H
G
H

Adjacency List:

A B

D

C

F

E

H

G

Generate :degIn(v)
Degree Vertices

0 A B C
1 D F G
2 E H

A B C

Topological Ordering:

For each vertex that is
source ():

• Add to the
topological sort

• Lower degree of
vertices is
connected to.

degin(v) = 0
v

v

Repeat the steps
again.

E

D

Example
Topological sort

 11

Node Neighbors
A D E
B E
C
D F
E H G
F H
G
H

Adjacency List:

A B

D

C

F

E

H

G

Generate :degIn(v)
Degree Vertices

0 A B C
1 D F G
2 E H

A B C D

Topological Ordering:

For each vertex that is
source ():

• Add to the
topological sort

• Lower degree of
vertices is
connected to.

degin(v) = 0
v

v

Repeat the steps
again.

E

-

D

Example
Topological sort

 11

Node Neighbors
A D E
B E
C
D F
E H G
F H
G
H

Adjacency List:

A B

D

C

F

E

H

G

Generate :degIn(v)
Degree Vertices

0 A B C
1 D F G
2 E H

A B C D

Topological Ordering:

For each vertex that is
source ():

• Add to the
topological sort

• Lower degree of
vertices is
connected to.

degin(v) = 0
v

v

Repeat the steps
again.

E F

D

Example
Topological sort

 11

Node Neighbors
A D E
B E
C
D F
E H G
F H
G
H

Adjacency List:

A B

D

C

F

E

H

G

Generate :degIn(v)
Degree Vertices

0 A B C
1 D F G
2 E H

A B C D E

Topological Ordering:

For each vertex that is
source ():

• Add to the
topological sort

• Lower degree of
vertices is
connected to.

degin(v) = 0
v

v

Repeat the steps
again.

E F

an

D

Example
Topological sort

 11

Node Neighbors
A D E
B E
C
D F
E H G
F H
G
H

Adjacency List:

A B

D

C

F

E

H

G

Generate :degIn(v)
Degree Vertices

0 A B C
1 D F G
2 E H

A B C D E

Topological Ordering:

For each vertex that is
source ():

• Add to the
topological sort

• Lower degree of
vertices is
connected to.

degin(v) = 0
v

v

Repeat the steps
again.

E F
H

G

D

Example
Topological sort

 11

Node Neighbors
A D E
B E
C
D F
E H G
F H
G
H

Adjacency List:

A B

D

C

F

E

H

G

Generate :degIn(v)
Degree Vertices

0 A B C
1 D F G
2 E H

A B C D E F

Topological Ordering:

For each vertex that is
source ():

• Add to the
topological sort

• Lower degree of
vertices is
connected to.

degin(v) = 0
v

v

Repeat the steps
again.

E F
H

G

or

D

Example
Topological sort

 11

Node Neighbors
A D E
B E
C
D F
E H G
F H
G
H

Adjacency List:

A B

D

C

F

E

H

G

Generate :degIn(v)
Degree Vertices

0 A B C
1 D F G
2 E H

A B C D E F

Topological Ordering:

For each vertex that is
source ():

• Add to the
topological sort

• Lower degree of
vertices is
connected to.

degin(v) = 0
v

v

Repeat the steps
again.

E F HG

D

Example
Topological sort

 11

Node Neighbors
A D E
B E
C
D F
E H G
F H
G
H

Adjacency List:

A B

D

C

F

E

H

G

Generate :degIn(v)
Degree Vertices

0 A B C
1 D F G
2 E H

A B C D E F G

Topological Ordering:

For each vertex that is
source ():

• Add to the
topological sort

• Lower degree of
vertices is
connected to.

degin(v) = 0
v

v

Repeat the steps
again.

E F HG

D

Example
Topological sort

 11

Node Neighbors
A D E
B E
C
D F
E H G
F H
G
H

Adjacency List:

A B

D

C

F

E

H

G

Generate :degIn(v)
Degree Vertices

0 A B C
1 D F G
2 E H

A B C D E F G H

Topological Ordering:

For each vertex that is
source ():

• Add to the
topological sort

• Lower degree of
vertices is
connected to.

degin(v) = 0
v

v

Repeat the steps
again.

E F HG

Topological sort

 12

A B

D

C

F

E

H

G

A B C D E F G H

Topological Ordering:

For each vertex that is
source ():

• Add to the
topological sort

• Lower degree of
vertices is
connected to.

degin(v) = 0
v

v

Node Neighbors
A D E
B E
C
D F
E H G
F H
G
H

Degree Vertices
0 A B C D E F G H
1
2

 13

A B

D

C

F

E

H

G

Multiple possible topological orderings

A B C D E F G H

 13

A B

D

C

F

E

H

G

Multiple possible topological orderings

A B C D E F G H

ABC DE F GH

 13

A B

D

C

F

E

H

G

Multiple possible topological orderings

A B C D E F G H

ABC DE F GH

A B CD EF G H
Arrowsso
left bright

DAGs and topological ordering

 14

• Note: A DAG may have many different topological sorts.G

• Exercise: What is a DAG with the most number of distinct topological sorts
given vertices?n

• Exercise: What is a DAG with the least number of distinct topological sorts
for given vertices?n

completely disconnected (no edges
whatsore)

A greeph that is a path (ou "chain")

Direct topological ordering

 15

TopSort(G):
 Sorted ← NULL
degin[1 … n] 1
Tdegin[1 … n] NULL
Generate in-degree for each vertex
for each edge xy in G do

 degin[y]++
for each vertex v in G do

Tdegin[degin[v]].append(v)
Next we recursively add vertices with in-degree = 0 to
the sort list
while (Tdegin[0] is non-empty) do

Remove node x from Tdegin[0]
Sorted.append(x)
for each edge xy in Adj(x) do
 degin[y]--
 move y to Tdegin[degin[y]]

Output Sorted

← −
←

G

DAGs and topological ordering

 16

Lemma: A directed graph can be topologically ordered is a DAG.G ⟹ G

Proof: Proof by contradiction. Suppose is not a DAG and has a topological
ordering . Since is not a DAG, WLOG, take a cycle:

G
≺ G

without loss ofgenerality

↑
--

-

DAGs and topological ordering

 16

Lemma: A directed graph can be topologically ordered is a DAG.G ⟹ G

Proof: Proof by contradiction. Suppose is not a DAG and has a topological
ordering . Since is not a DAG, WLOG, take a cycle:

G
≺ G

C = u1 → u2 → . . . → uk → u1

DAGs and topological ordering

 16

Lemma: A directed graph can be topologically ordered is a DAG.G ⟹ G

Proof: Proof by contradiction. Suppose is not a DAG and has a topological
ordering . Since is not a DAG, WLOG, take a cycle:

G
≺ G

C = u1 → u2 → . . . → uk → u1

Then u1 ≺ u2 ≺ . . . ≺ uk ≺ u1 ⟹ u1 ≺ u1

-

-

->
-

[-- contlets
~ un

DAGs and topological ordering

 16

Lemma: A directed graph can be topologically ordered is a DAG.G ⟹ G

Proof: Proof by contradiction. Suppose is not a DAG and has a topological
ordering . Since is not a DAG, WLOG, take a cycle:

G
≺ G

C = u1 → u2 → . . . → uk → u1

Then u1 ≺ u2 ≺ . . . ≺ uk ≺ u1 ⟹ u1 ≺ u1

A contradiction (to being an order). Not possible to topologically order the
vertices.

≺
↳ =U ,

-

DFS in undirected graphs
Deep Dive into Depth First Search (DDiDFS?)

• Recall DFS is a special case of BasicSearch.

 17

DFS in undirected graphs
Deep Dive into Depth First Search (DDiDFS?)

• Recall DFS is a special case of BasicSearch.

• DFS is useful in understanding graph structure.

 17

DFS in undirected graphs
Deep Dive into Depth First Search (DDiDFS?)

• Recall DFS is a special case of BasicSearch.

• DFS is useful in understanding graph structure.

• DFS also used to obtain linear time () algorithms for O(m + n)

 17

DFS in undirected graphs
Deep Dive into Depth First Search (DDiDFS?)

• Recall DFS is a special case of BasicSearch.

• DFS is useful in understanding graph structure.

• DFS also used to obtain linear time () algorithms for O(m + n)
• Finding cycles, search trees, etc.

 17

--

DFS in undirected graphs
Deep Dive into Depth First Search (DDiDFS?)

• Recall DFS is a special case of BasicSearch.

• DFS is useful in understanding graph structure.

• DFS also used to obtain linear time () algorithms for O(m + n)
• Finding cycles, search trees, etc.

• Finding strong connected components of directed graphs

 17

DFS in undirected graphs
Deep Dive into Depth First Search (DDiDFS?)

• Recall DFS is a special case of BasicSearch.

• DFS is useful in understanding graph structure.

• DFS also used to obtain linear time () algorithms for O(m + n)
• Finding cycles, search trees, etc.

• Finding strong connected components of directed graphs

• ...many other applications as well.

 17

Recursive DFS

 18

Recursive version commonly implemented, has some desirable properties.

DFS(G):
for all do

Mark as unvisited
Set to null

 is set to ∅
while unvisited do

DFS()
Output

u ∈ V(G)
u

pred(u)
T

∃ u
u

T

-> Expla

vertex

Recursive DFS

 18

Recursive version commonly implemented, has some desirable properties.

DFS(G):
for all do

Mark as unvisited
Set to null

 is set to ∅
while unvisited do

DFS()
Output

u ∈ V(G)
u

pred(u)
T

∃ u
u

T

DFS():
Mark as visited
for each do

if is not visited then
add edge to
set to
DFS()

u
u

v ∈ Out(u)
v

u → v T
pred(v) u
v

⑳ t

-

Recursive DFS

 18

Recursive version commonly implemented, has some desirable properties.

DFS(G):
for all do

Mark as unvisited
Set to null

 is set to ∅
while unvisited do

DFS()
Output

u ∈ V(G)
u

pred(u)
T

∃ u
u

T

DFS():
Mark as visited
for each do

if is not visited then
add edge to
set to
DFS()

u
u

v ∈ Out(u)
v

u → v T
pred(v) u
v

Implemented using a global array Visited for all recursive calls. is the search
tree.

T

-

O

- G

DFS with pre-post numbering

 19

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]

pre , post -> timestamps

first visit
Ame when we are↑ -

done or that vertex

DFS with pre-post numbering

 19

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]

Time = 0

DFS with pre-post numbering

 19

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]

Time = 1

DFS with pre-post numbering

 19

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,]

Time = 1

↓
-

DFS with pre-post numbering

 19

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,]

Time = 2

DFS with pre-post numbering

 19

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,]
2 [2,]

Time = 2

DFS with pre-post numbering

 19

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,]
2 [2,]

Time = 3

DFS with pre-post numbering

 19

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,]
2 [2,]
4 [3,]

Time = 3

DFS with pre-post numbering

 19

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,]
2 [2,]
4 [3,]

Time = 4

DFS with pre-post numbering

 19

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]

Time = 4

DFS with pre-post numbering

 19

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]

Time = 5

DFS with pre-post numbering

 19

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]
6 [5,]

Time = 5

at this point
t

Ilabandon" mode 6
we

DFS with pre-post numbering

 19

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]
6 [5,]

Time = 6

Time = 6

DFS with pre-post numbering

 20

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]
6 [5,]

Time = 6

DFS with pre-post numbering

 20

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]
6 [5,]6

DFS with pre-post numbering

 20

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]
6 [5,]

Time = 7

6

DFS with pre-post numbering

 20

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]
6 [5,]

Time = 7

6

DFS with pre-post numbering

 20

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]
6 [5,]
3 [7,]

Time = 7

6
->O

DFS with pre-post numbering

 20

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]
6 [5,]
3 [7,]

Time = 8

6

DFS with pre-post numbering

 20

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]
6 [5,]
3 [7,]

Time = 8

6

DFS with pre-post numbering

 20

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]
6 [5,]
3 [7,]
7 [8,]

Time = 8

6

DFS with pre-post numbering

 20

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]
6 [5,]
3 [7,]
7 [8,]

Time = 9

6

DFS with pre-post numbering

 20

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]
6 [5,]
3 [7,]
7 [8,]

Time = 9

6

DFS with pre-post numbering

 20

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]
6 [5,]
3 [7,]
7 [8,]

6

DFS with pre-post numbering

 20

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]
6 [5,]
3 [7,]
7 [8,]
8 [9,]

6

DFS with pre-post numbering

 21

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]
6 [5, 6]
3 [7,]
7 [8,]
8 [9,]

Time = 10

DFS with pre-post numbering

 21

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]
6 [5, 6]
3 [7,]
7 [8,]
8 [9,]

Time = 10

DFS with pre-post numbering

 21

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]
6 [5, 6]
3 [7,]
7 [8,]
8 [9,] b

we abandoned

8 at time 10.

Time = 10

DFS with pre-post numbering

 21

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]
6 [5, 6]
3 [7,]
7 [8,]
8 [9,]10

DFS with pre-post numbering

 21

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]
6 [5, 6]
3 [7,]
7 [8,]
8 [9,]10

Time = 11

DFS with pre-post numbering

 21

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]
6 [5, 6]
3 [7,]
7 [8,]
8 [9,]10

Time = 11

11

DFS with pre-post numbering

 21

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]
6 [5, 6]
3 [7,]
7 [8,]
8 [9,]10

Time = 12

11

DFS with pre-post numbering

 21

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]
6 [5, 6]
3 [7,]
7 [8,]
8 [9,]10

Time = 12

11
12

DFS with pre-post numbering

 21

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]
6 [5, 6]
3 [7,]
7 [8,]
8 [9,]10

Time = 13

11
12

DFS with pre-post numbering

 21

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]
6 [5, 6]
3 [7,]
7 [8,]
8 [9,]10

Time = 13

11
12

13

DFS with pre-post numbering

 21

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]
6 [5, 6]
3 [7,]
7 [8,]
8 [9,]10

Time = 14

11
12

13

DFS with pre-post numbering

 21

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]
6 [5, 6]
3 [7,]
7 [8,]
8 [9,]10

Time = 14

11
12

13
14

DFS with pre-post numbering

 21

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]
6 [5, 6]
3 [7,]
7 [8,]
8 [9,]10

Time = 15

11
12

13
14

DFS with pre-post numbering

 21

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]
6 [5, 6]
3 [7,]
7 [8,]
8 [9,]10

Time = 15

11
12

13
14
15

DFS with pre-post numbering

 21

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]
6 [5, 6]
3 [7,]
7 [8,]
8 [9,]10

11
12

13
14
15

Time = 16

DFS with pre-post numbering

 21

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]
6 [5, 6]
3 [7,]
7 [8,]
8 [9,]10

11
12

13
14
15

DFS with pre-post numbering

 21

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]
6 [5, 6]
3 [7,]
7 [8,]
8 [9,]10

11
12

13
14
15
16

↓

⑧

Time = 20 (skipped a few steps)

DFS with pre-post numbering

 22

Vertex [Pre, Post]
1 [1, 16]
2 [2, 15]
4 [3, 14]
5 [4, 13]
6 [5, 6]
3 [7, 12]
7 [8, 11]
8 [9, 10]
9 [17, 20]

10 [18, 19]

1

32

4 5

6

7

8

9

10

DFS with pre-post numbering

 22

Vertex [Pre, Post]
1 [1, 16]
2 [2, 15]
4 [3, 14]
5 [4, 13]
6 [5, 6]
3 [7, 12]
7 [8, 11]
8 [9, 10]
9 [17, 20]

10 [18, 19]

1

32

4 5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

V

These timestamps can also

& be thought of as the
time interal at which

the cull DFS(V) was on

the antime stack (ECE 220)
↓
-

-
one way 8
to visualize
the time

starps

DFS in directed graphs
Exercise - do DFS on this graph and verify search tree

 23

AB

D

C

FE

HG

-

↳ oo at home

↓
start here.

DFS in directed graphs
Exercise - do DFS on this graph and verify search tree

 23

AB

D

C

FE

HG

AB

D

C

FE

HG

[1,16]

[2,11] [12,15]

[6,7]

[4,5]
[8,9]

[13,14][3,10]

O

Directed DFS with pre/post numbering

• DFS(G) takes time. O(m + n)

 24

Directed DFS with pre/post numbering

• DFS(G) takes time. O(m + n)
• Edges added form a branching: a forest of out-trees.

 24

Directed DFS with pre/post numbering

• DFS(G) takes time. O(m + n)
• Edges added form a branching: a forest of out-trees.

• Output of DFS(G) depends on the order in which vertices are considered.

 24

-

-

Directed DFS with pre/post numbering

• DFS(G) takes time. O(m + n)
• Edges added form a branching: a forest of out-trees.

• Output of DFS(G) depends on the order in which vertices are considered.

• If is the first vertex considered by DFS(G) then DFS(u) outputs a directed
out-tree rooted at and a vertex is in if and only if

u
T u v T v ≺ rch(u)

 24

- undiretod
case, DFS CelMonneted"will

nodes
to c

②

Directed DFS with pre/post numbering

• DFS(G) takes time. O(m + n)
• Edges added form a branching: a forest of out-trees.

• Output of DFS(G) depends on the order in which vertices are considered.

• If is the first vertex considered by DFS(G) then DFS(u) outputs a directed
out-tree rooted at and a vertex is in if and only if

u
T u v T v ≺ rch(u)

• For any two vertices the intervals and
are either disjoint or one is contained in the other.

x, y [pre(x), post(x)] [pre(y), post(y)]

 24

--
↳ think of the rontine stack !

DFS trees and edge types
Edge classisifcations

Edges of can be classified with respect to the DFS tree as:G T

 25

A

C D

B

Backward

Cross

Forward
-T

DFS trees and edge types
Edge classisifcations

Edges of can be classified with respect to the DFS tree as:G T

• Tree edges that belong to T

 25

A

C D

B

Backward

Cross

Forward
=

-
-

-

DFS trees and edge types
Edge classisifcations

Edges of can be classified with respect to the DFS tree as:G T

• Tree edges that belong to T

• A forward edge is a non-tree edges such that
.

(x, y)
pre(x) < pre(y) < post(y) < post(x)

 25

A

C D

B

Backward

Cross

Forward

②

②⑨ &

8

DFS trees and edge types
Edge classisifcations

Edges of can be classified with respect to the DFS tree as:G T

• Tree edges that belong to T

• A forward edge is a non-tree edges such that
.

(x, y)
pre(x) < pre(y) < post(y) < post(x)

• A backward edge is a non-tree edge such that
.
(y, x)

pre(x) < pre(y) < post(y) < post(x)

 25

A

C D

B

Backward

Cross

Forward

↑

O
&

DFS trees and edge types
Edge classisifcations

Edges of can be classified with respect to the DFS tree as:G T

• Tree edges that belong to T

• A forward edge is a non-tree edges such that
.

(x, y)
pre(x) < pre(y) < post(y) < post(x)

• A backward edge is a non-tree edge such that
.
(y, x)

pre(x) < pre(y) < post(y) < post(x)

• A cross edge is a non-tree edges such that the
intervals and are disjoint.

(x, y)
[pre(x), post(x)] [pre(y), post(y)]

 25

A

C D

B

Backward

Cross

Forward

--

Types of edges

 26

AB

D

C

FE

HG

[1,16]

[2,11] [12,15]

[6,7]

[4,5]
[8,9]

[13,14][3,10]

Types of edges

 26

AB

D

C

FE

HG

[1,16]

[2,11] [12,15]

[6,7]

[4,5]
[8,9]

[13,14][3,10]

Back edges

Types of edges

 26

AB

D

C

FE

HG

[1,16]

[2,11] [12,15]

[6,7]

[4,5]
[8,9]

[13,14][3,10]

Back edges

Forward edges

Types of edges

 26

AB

D

C

FE

HG

[1,16]

[2,11] [12,15]

[6,7]

[4,5]
[8,9]

[13,14][3,10]

Back edges

Forward edges

Cross edges

Excuse :

↑Tonfirm shele

#25's defintie
hold for

It
were

edges

DFS and cycle detection
Cycles in graphs

• Question: Given an undirected graph how do we check whether it has a cycle
and output one if it has one?

• Question: Given an directed graph how do we check whether it has a cycle
and output one if it has one?

 27

o

Reall T
, Spons V (Set of retice) => If an edge is

not m T Then there is a cycle
S

Cycle detection in directed graphs

Question: Given , is it a DAG?G

• If it is, compute a topological sort. If it fails, then output the cycle .C

 28

Use topological sorts

Cycle detection in directed graphs

Question: Given , is it a DAG?G

• If it is, compute a topological sort. If it fails, then output the cycle .C
• Compute . DFS(G)

 28

Use topological sorts

Cycle detection in directed graphs

Question: Given , is it a DAG?G

• If it is, compute a topological sort. If it fails, then output the cycle .C
• Compute . DFS(G)
• If there is a back edge then is not a DAG. Output cycle

formed by path from to in plus edge .
e = (v, u) G C

u v T (v, u)

 28

Use topological sorts

Cycle detection in directed graphs

Question: Given , is it a DAG?G

• If it is, compute a topological sort. If it fails, then output the cycle .C
• Compute . DFS(G)
• If there is a back edge then is not a DAG. Output cycle

formed by path from to in plus edge .
e = (v, u) G C

u v T (v, u)
• Otherwise output nodes in decreasing post-visit order.

 28

Use topological sorts

Cycle detection in directed graphs

Question: Given , is it a DAG?G

• If it is, compute a topological sort. If it fails, then output the cycle .C
• Compute . DFS(G)
• If there is a back edge then is not a DAG. Output cycle

formed by path from to in plus edge .
e = (v, u) G C

u v T (v, u)
• Otherwise output nodes in decreasing post-visit order.
• Note: no need to sort, can output nodes in this order!DFS(G)

 28

Use topological sorts

Topological sort a graph using DFS

 29

Example

A B

D

C

F

E

H

G

Listing out the vertices in descending order of
post-visit numbers gives:

Topological sort a graph using DFS

 29

Example

A B

D

C

F

E

H

G

[13,14]

[15,16][1,12]

[2, 7] [8,11]

[3, 6] [9,10]

[4, 5]

Listing out the vertices in descending order of
post-visit numbers gives:

Topological sort a graph using DFS

 29

Example

A B

D

C

F

E

H

G

[13,14]

[15,16][1,12]

[2, 7] [8,11]

[3, 6] [9,10]

[4, 5]

Listing out the vertices in descending order of
post-visit numbers gives:

C, B, A, E, G, D, F, H

Topological sort a graph using DFS

 29

Example

A B

D

C

F

E

H

G

[13,14]

[15,16][1,12]

[2, 7] [8,11]

[3, 6] [9,10]

[4, 5]

Listing out the vertices in descending order of
post-visit numbers gives:

C, B, A, E, G, D, F, H

ABC DE FG H

Topological sort a graph using DFS

 29

Example

A B

D

C

F

E

H

G

[13,14]

[15,16][1,12]

[2, 7] [8,11]

[3, 6] [9,10]

[4, 5]

Listing out the vertices in descending order of
post-visit numbers gives:

C, B, A, E, G, D, F, H

[1, 8]

[9,10][11, 16]

[12, 15] [2, 7]

[13, 14] [3, 4]

[5,6]

ABC DE FG H

O
z

Z O -

=
-

- z

2

Topological sort a graph using DFS

 29

Example

A B

D

C

F

E

H

G

[13,14]

[15,16][1,12]

[2, 7] [8,11]

[3, 6] [9,10]

[4, 5]

Listing out the vertices in descending order of
post-visit numbers gives:

C, B, A, E, G, D, F, H

[1, 8]

[9,10][11, 16]

[12, 15] [2, 7]

[13, 14] [3, 4]

[5,6]

ABC DE FG H

A BCD EF GH

Back edge and cycles
Proposition: has a cycle there is a back-edge in DFS(G).G ∈

 30

Back edge and cycles
Proposition: has a cycle there is a back-edge in DFS(G).G ∈
Proof: That is a back edge implies there is a cycle consisting of the
path from to in DFS search tree and the edge .

(u, v) C
v u (u, v)

 30

Back edge and cycles
Proposition: has a cycle there is a back-edge in DFS(G).G ∈
Proof: That is a back edge implies there is a cycle consisting of the
path from to in DFS search tree and the edge .

(u, v) C
v u (u, v)

Only if: Suppose there is a cycle . C = v1 − v2 − . . . − vk − v1

 30

I

of ve

-
"If and onlynecessary

alofferent"

-

Back edge and cycles
Proposition: has a cycle there is a back-edge in DFS(G).G ∈
Proof: That is a back edge implies there is a cycle consisting of the
path from to in DFS search tree and the edge .

(u, v) C
v u (u, v)

Only if: Suppose there is a cycle . C = v1 − v2 − . . . − vk − v1

Let be first node in visited in DFS. All other nodes in are descendants
of since they are reachable from .

vi C C
vi vi

 30

Back edge and cycles
Proposition: has a cycle there is a back-edge in DFS(G).G ∈
Proof: That is a back edge implies there is a cycle consisting of the
path from to in DFS search tree and the edge .

(u, v) C
v u (u, v)

Only if: Suppose there is a cycle . C = v1 − v2 − . . . − vk − v1

Let be first node in visited in DFS. All other nodes in are descendants
of since they are reachable from .

vi C C
vi vi

Therefore, (or if) is a back edge(vi→1, vi) (vk, v1) i = 1

 30

&

--

Decreasing post-visit order is a TS
Proposition: If is a DAG and , then is not in .G post(v) > post(u) (u − v) G

 31

=
- 0

Decreasing post-visit order is a TS
Proposition: If is a DAG and , then is not in .G post(v) > post(u) (u − v) G

Proof: Assume and is an edge in . One of two
holds:

post(u) < post(v) (u − v) G

 31

Decreasing post-visit order is a TS
Proposition: If is a DAG and , then is not in .G post(v) > post(u) (u − v) G

Proof: Assume and is an edge in . One of two
holds:

post(u) < post(v) (u − v) G

• Case 1: is contained in . Implies that is
explored during and hence is a descendent of . Edge
implies a cycle in but is assumed to be DAG.

[pre(u), post(u)] [pre(v), post(v)] u
DFS(v) v (u, v)

G G

 31

-

-
-

O
- - -

- -

Decreasing post-visit order is a TS
Proposition: If is a DAG and , then is not in .G post(v) > post(u) (u − v) G

Proof: Assume and is an edge in . One of two
holds:

post(u) < post(v) (u − v) G

• Case 1: is contained in . Implies that is
explored during and hence is a descendent of . Edge
implies a cycle in but is assumed to be DAG.

[pre(u), post(u)] [pre(v), post(v)] u
DFS(v) v (u, v)

G G

• Case 2: is disjoint from . This cannot
happen since would have been explored from .

[pre(u), post(u)] [pre(v), post(v)]
v u

 31

Verify this hold
for the graphs
onthe previoustates

-

Strongly connected components (SCCs)

Algorithmic problem
Find all SCCs of a given directed graph.

 32

A CB

E DF

G H

Strongly connected components (SCCs)

Algorithmic problem
Find all SCCs of a given directed graph.

Previous lecture: Saw an time
algorithm.

O(n . (n + m))

 32

A CB

E DF

G H

of vertices

↑

↑

Y
of edges

Strongly connected components (SCCs)

Algorithmic problem
Find all SCCs of a given directed graph.

Previous lecture: Saw an time
algorithm.

O(n . (n + m))

This lecture: Sketch of a time algorithm.O(n + m)

 32

A CB

E DF

G H-

Linear time algorithm for finding all SCCs
Finding all SCCs of a Directed Graph

Problem: Given a directed graph , output all its strong connected components.

Straightforward algorithm:

G = (V, E)

 33

Linear time algorithm for finding all SCCs
Finding all SCCs of a Directed Graph

Problem: Given a directed graph , output all its strong connected components.

Straightforward algorithm:

G = (V, E)

 33

Mark all vertices in as not visited.
for each vertex not visited yet do

find SCC(G, u) the strong component of u:
Compute rch(G,) using
Compute rch(,) using
SCC(G, u) rch(G,) ∩ rch(,)
∀u ∈ SCC(G, u): Mark u as visited.

V
u ≺ V

u DFS(G, u)
Grev u DFS(Grev, u)

≡ u Grev u

-> Discussed
⑧ last time
E
-

Linear time algorithm for finding all SCCs
Finding all SCCs of a Directed Graph

Problem: Given a directed graph , output all its strong connected components.

Straightforward algorithm:

G = (V, E)

 33

Mark all vertices in as not visited.
for each vertex not visited yet do

find SCC(G, u) the strong component of u:
Compute rch(G,) using
Compute rch(,) using
SCC(G, u) rch(G,) ∩ rch(,)
∀u ∈ SCC(G, u): Mark u as visited.

V
u ≺ V

u DFS(G, u)
Grev u DFS(Grev, u)

≡ u Grev u

Running time: O(n(n + m))
-

Linear time algorithm for finding all SCCs
Finding all SCCs of a Directed Graph

Problem: Given a directed graph , output all its strong connected components.

Straightforward algorithm:

G = (V, E)

 33

Mark all vertices in as not visited.
for each vertex not visited yet do

find SCC(G, u) the strong component of u:
Compute rch(G,) using
Compute rch(,) using
SCC(G, u) rch(G,) ∩ rch(,)
∀u ∈ SCC(G, u): Mark u as visited.

V
u ≺ V

u DFS(G, u)
Grev u DFS(Grev, u)

≡ u Grev u

Running time: O(n(n + m))
Question: Is there an time algorithm?O(n + m)

Graph of SCCs

Let be the strongly connected
components (i.e., SCCs) of . Denote
graph of SCCs as :

S1, S2, . . . Sk
G

GSCC

 34

A CB

E DF

G H

Meta-graph of SCCs

Graph of SCCs

Let be the strongly connected
components (i.e., SCCs) of . Denote
graph of SCCs as :

S1, S2, . . . Sk
G

GSCC

• Vertices of are GSCC S1, S2, . . . Sk

 34

A CB

E DF

G H

B, E, F A, C, D

G H

Meta-graph of SCCs 08

Ze

Graph of SCCs

Let be the strongly connected
components (i.e., SCCs) of . Denote
graph of SCCs as :

S1, S2, . . . Sk
G

GSCC

• Vertices of are GSCC S1, S2, . . . Sk

• There is an edge if there is some
 and such that is an

edge in .

(Si, Sj)
u ≺ Si v ≺ Sj (u, v)

G

 34

A CB

E DF

G H

B, E, F A, C, D

G H

Meta-graph of SCCs 00
O

Graph of SCCs

Let be the strongly connected
components (i.e., SCCs) of . Denote
graph of SCCs as :

S1, S2, . . . Sk
G

GSCC

• Vertices of are GSCC S1, S2, . . . Sk

• There is an edge if there is some
 and such that is an

edge in .

(Si, Sj)
u ≺ Si v ≺ Sj (u, v)

G

 34

A CB

E DF

G H

B, E, F A, C, D

G H

Meta-graph of SCCs

For any graph , the graph
 has no directed cycle!

G
GSCC - Fact 1 Proof? Exercise

-

Reminder is created by collapsing every strong connected component to
a single vertex.

GSCC

 35

A CB

E DF

G H

B, E, F A, C, D

G H

Connected structure of a directed graph

Reminder is created by collapsing every strong connected component to
a single vertex.

GSCC

Proposition: For a directed graph , its meta-graph is a DAG.G GSCC

 35

A CB

E DF

G H

B, E, F A, C, D

G H

Connected structure of a directed graph
DAG⑨II TaSort
O

·soutbine-post

Linear-time Algorithm for SCCs
Idea

Wishful thinking algorithm

• Let be a vertex in a sink SCC of
 .

u
GSCC

 36

-

-

Linear-time Algorithm for SCCs
Idea

Wishful thinking algorithm

• Let be a vertex in a sink SCC of
 .

u
GSCC

• Do to compute .DFS(u) SCC(u)

 36

Linear-time Algorithm for SCCs
Idea

Wishful thinking algorithm

• Let be a vertex in a sink SCC of
 .

u
GSCC

• Do to compute .DFS(u) SCC(u)

• Remove and repeat.SCC(u)

 36

Linear-time Algorithm for SCCs
Idea

Wishful thinking algorithm

• Let be a vertex in a sink SCC of
 .

u
GSCC

• Do to compute .DFS(u) SCC(u)

• Remove and repeat.SCC(u)

 36

Linear-time Algorithm for SCCs
Idea

Wishful thinking algorithm

• Let be a vertex in a sink SCC of
 .

u
GSCC

• Do to compute .DFS(u) SCC(u)

• Remove and repeat.SCC(u)

Justification

• only visits vertices (and
edges) in since there are
no edges coming out of a sink!

DFS(u)
SCC(u)

 36

Linear-time Algorithm for SCCs
Idea

Wishful thinking algorithm

• Let be a vertex in a sink SCC of
 .

u
GSCC

• Do to compute .DFS(u) SCC(u)

• Remove and repeat.SCC(u)

Justification

• only visits vertices (and
edges) in since there are
no edges coming out of a sink!

DFS(u)
SCC(u)

• takes time proportional
to size of .
DFS(u)

SCC(u)

 36

-

Linear-time Algorithm for SCCs
Idea

Wishful thinking algorithm

• Let be a vertex in a sink SCC of
 .

u
GSCC

• Do to compute .DFS(u) SCC(u)

• Remove and repeat.SCC(u)

Justification

• only visits vertices (and
edges) in since there are
no edges coming out of a sink!

DFS(u)
SCC(u)

• takes time proportional
to size of .
DFS(u)

SCC(u)

• Therefore, total time !O(n + m)

 36

How to

↑ find?

Reminder is created by collapsing every strong connected component to
a single vertex.

GSCC

 37

A CB

E DF

G H

B, E, F A, C, D

G H

Connected structure of a directed graph

Reminder is created by collapsing every strong connected component to
a single vertex.

GSCC

On the right the SCC is a sink and the SCC is a source.{G} {A, C, D}

 37

A CB

E DF

G H

B, E, F A, C, D

G H

Source

Sink

Connected structure of a directed graph

E

Questions

Question: How do we find a vertex in a sink SCC of ? Can we obtain an
implicit topological sort of without computing ?

GSCC

GSCC GSCC

 38

Okay but …
Think : a chicken or

egg problem-

↑

*
encoded in details

Questions

Question: How do we find a vertex in a sink SCC of ? Can we obtain an
implicit topological sort of without computing ?

GSCC

GSCC GSCC

Answer: gives some information!DFS(G)

 38

Okay but …

Questions

Question: How do we find a vertex in a sink SCC of ? Can we obtain an
implicit topological sort of without computing ?

GSCC

GSCC GSCC

Answer: gives some information!DFS(G)
Claim: Let be the vertex with maximum post-visit numbering in .
Then is in a SCC , such that is a source of .

v DFS(G)
v S S GSCC

 38

Okay but …

Questions

Question: How do we find a vertex in a sink SCC of ? Can we obtain an
implicit topological sort of without computing ?

GSCC

GSCC GSCC

Answer: gives some information!DFS(G)
Claim: Let be the vertex with maximum post-visit numbering in .
Then is in a SCC , such that is a source of .

v DFS(G)
v S S GSCC

Claim: Let be the vertex with maximum post-visit numbering in .
Then is in a SCC , such that is a sink of .

v DFS(Grev)
v S S GSCC

 38

Okay but …

②
↳See plazza about why ver is

necessary
-

Reminder is created by collapsing every strong connected component to
a single vertex.

GSCC

 39

A CB

E DF

G H

B, E, F A, C, D

G H

Connected structure of a directed graph

Reminder is created by collapsing every strong connected component to
a single vertex.

GSCC

 39

A CB

E DF

G H

B, E, F A, C, D

G H

[7,8] [12,15] [13,14]

[11,16]

[4,5][2,3]

[6,9][1,10]

Connected structure of a directed graph

G

O

Reminder is created by collapsing every strong connected component to
a single vertex.

GSCC

On the right the SCC is a sink and the SCC is a source.{G} {A, C, D}

 39

A CB

E DF

G H

B, E, F A, C, D

G H

Source

Sink

[7,8] [12,15] [13,14]

[11,16]

[4,5][2,3]

[6,9][1,10]

Connected structure of a directed graph

Linear Time SCC Algorithm

 40

do DFS() and output vertices in decreasing postvisit order.
Mark all nodes as unvisited.
for each in the computed order do

if is not visited then
DFS()
Let be the nodes reached by
Output as a strong connected component
Remove from

Grev

u
u

u
Su u

Su
Su G

Linear Time SCC Algorithm

Theorem: Algorithm runs in time and correctly outputs all the SCCs of .O(m + n) G

 40

do DFS() and output vertices in decreasing postvisit order.
Mark all nodes as unvisited.
for each in the computed order do

if is not visited then
DFS()
Let be the nodes reached by
Output as a strong connected component
Remove from

Grev

u
u

u
Su u

Su
Su G

Linear Time Algorithm - An Example

 41

A CB

E DF

G H

Graph G

Linear Time Algorithm - An Example

 41

A CB

E DF

G H

Graph G
A CB

E DF

G H

Reverse Graph Grev

Linear Time Algorithm - An Example

 41

A CB

E DF

G H

Graph G
A CB

E DF

G H

Reverse Graph Grev DFS of reverse graph
A CB

E DF

G H

Linear Time Algorithm - An Example

 41

A CB

E DF

G H

Graph G
A CB

E DF

G H

Reverse Graph Grev DFS of reverse graph
A CB

E DF

G H

A CB

E DF

G H

[3,4]

[2,5]

[14,15]
[13,16]

[8,11]

[1,6]
[7,12]

[9,10]
Pre/Post DFS numbering
of reverse graph

Linear Time Algorithm - An Example

 42

 annotated with ’s post numbersG Grev

A CB

E DF

G H

12 6 4

5

15
16

11
10

Linear Time Algorithm - An Example

 42

 annotated with ’s post numbersG Grev

A CB

E DF

G H

12 6 4

5

15
16

11
10

Do DFS from vertex and remove itG

Linear Time Algorithm - An Example

 42

 annotated with ’s post numbersG Grev

A CB

E DF

G H

12 6 4

5

15
16

11
10

Do DFS from vertex and remove itG

 ←

A CB

E DF

H

12 6 4

5

15

1110

Linear Time Algorithm - An Example

 42

 annotated with ’s post numbersG Grev

A CB

E DF

G H

12 6 4

5

15
16

11
10

Do DFS from vertex and remove itG

 ←

A CB

E DF

H

12 6 4

5

15

1110

SCC computed:

{G}

Linear Time Algorithm - An Example

 43

Do DFS from vertex and remove itH

SCC computed:

{G}

A CB

E DF

H

12 6 4

5

15

11
10

Linear Time Algorithm - An Example

 43

Do DFS from vertex and remove itH

SCC computed:

{G}

 ≺

A CB

E DF

12 6 4

51110

SCC computed:

{G}, {H}

A CB

E DF

H

12 6 4

5

15

11
10

Do DFS from vertex and remove “it”B

SCC computed:

{G}, {H}

Linear Time Algorithm - An Example

 44

A CB

E DF

12 6 4

511
10

Do DFS from vertex and remove “it”B

SCC computed:

{G}, {H}

Linear Time Algorithm - An Example

 44

 ≺

A C

D

6 4

5

SCC computed:

{G}, {H}, {F, B, E}

Remove visited vertices: {F, B, E}.

A CB

E DF

12 6 4

511
10

SCC computed:

{G}, {H}, {F, B, E}

Do DFS from vertex and remove “it”.A

Linear Time Algorithm - An Example

 45

A C

D

6 4

5

SCC computed:

{G}, {H}, {F, B, E}

Do DFS from vertex and remove “it”.A

Linear Time Algorithm - An Example

 45

Remove visited vertices: {A, C, D}.

A C

D

6 4

5

SCC computed:

{G}, {H}, {F, B, E}

Do DFS from vertex and remove “it”.A

Linear Time Algorithm - An Example

 45

 ≺

Remove visited vertices: {A, C, D}.

A C

D

6 4

5

SCC computed:

{G}, {H}, {F, B, E}

Do DFS from vertex and remove “it”.A

Linear Time Algorithm - An Example

 45

 ≺

Remove visited vertices: {A, C, D}.

SCC computed:

{G}, {H}, {F, B, E}, {A,C,D}

A C

D

6 4

5 Howe

SCC computed:

{G}, {H}, {F, B, E}

Do DFS from vertex and remove “it”.A

Linear Time Algorithm - An Example

 45

 ≺

Remove visited vertices: {A, C, D}.

A CB

E DF

G H

SCC computed:

{G}, {H}, {F, B, E}, {A,C,D}

A C

D

6 4

5

Robert Tarjan's Kosaraja .

(see Jef's book)
↓
Ineverte

today
Cessentially)

Summary
Take away points

• DAGs and topological orderings.

 46

Summary
Take away points

• DAGs and topological orderings.

• DFS with pre/post numbering.

 46

Summary
Take away points

• DAGs and topological orderings.

• DFS with pre/post numbering.

• Given a directed graph , its SCCs and the associated acyclic meta-graph
 give a structural decomposition of .

G
GSCC G

 46

Summary
Take away points

• DAGs and topological orderings.

• DFS with pre/post numbering.

• Given a directed graph , its SCCs and the associated acyclic meta-graph
 give a structural decomposition of .

G
GSCC G

• There is a DFS based linear time algorithm to compute all the SCCs and the
meta-graph.

 46

Summary
Take away points

• DAGs and topological orderings.

• DFS with pre/post numbering.

• Given a directed graph , its SCCs and the associated acyclic meta-graph
 give a structural decomposition of .

G
GSCC G

• There is a DFS based linear time algorithm to compute all the SCCs and the
meta-graph.

• DAGs arise in many application and topological sort is a key property in
algorithm design. Linear time algorithms!

 46

