All mistakes are my own! - Ivan Abraham (Fall 2024)

Image by ChatGPT (probably collaborated with DALL-E)

Directed graphs, DFS, DAGs, TopSort Sides based on material by Kani, Erickson, Chekuri, et. al.

Definition Directed acyclic graphs

A directed graph G is called a *directed acyclic graph* (DAG) if there is no *directed* cycle in G. \downarrow Tells us that G is directed , indirected No such thing as an ells us
ugcle?
cycle? I val Gr is disterted (2)

Directed acyclic graphs Is this a DAG?

Directed acyclic graphs Is this a DAG?

- A vertex u is a source if it has no in-coming edges.
- A vertex u is a sink if it has no out-going edges

Sources and sinks Directed acyclic graphs

- **Proof:**
	- Let $P = v_1, v_2, \ldots, v_k$ be the longest path in G . We claim that v_1 is a source and v_k is a sink.

Proposition: Every *finite* DAG *G* has at least one source and at least one sink.

Proposition: Every *finite* DAG *G* has at least one source and at least one sink.

Proof:

roof:
Let $\widehat{\{\ell\!\!P}} \neq \widehat{\nu_1}, \nu_2, \ldots, \widehat{\nu_k}$ be the longest path in G . We claim that ν_1 is a source and v_k is a sink.

either creates a cycle **or** a longer path both of which are contradictions.

For contradiction, suppose it is not. Then v_1 has an incoming edge which

- **Proposition:** Every *finite* DAG *G* has at least one source and at least one sink. **Proof:**
	- Let $P = \nu_1, \nu_2, \ldots, \nu_k$ be the longest path in G . We claim that ν_1 is a source and v_k is a sink.
	- For contradiction, suppose it is not. Then ν_1 has an incoming edge which either creates a cycle **or** a longer path both of which are contradictions.
	- Similarly so if v_k has an outgoing edge.

- *G* is a DAG if and only if G^{rev} is a DAG.
	- Recall G^{rev} is the graph G with orientation of all edges reversed.

- *G* is a DAG if and only if G^{rev} is a DAG.
	- Recall G^{rev} is the graph G with orientation of all edges reversed.

- - subgraphs with more than one vertex.

• *G* is a DAG if and only each node is its own strongly connected component.

• In other words, a (directed) graph is acyclic, iff it has no strongly connected

Order on a set Topological ordering

A *strict total* order on a set X is a binary relation \prec on X such that: prec . ↑

• \lt is transitive. $a d b d c \implies a d c$

Order on a set Topological ordering

A *strict total* order on a set X is a binary relation \prec on X such that:

- ≺ is transitive.
- For any $x, y \in X$, exactly one of the following holds:

Order on a set Topological ordering
 Order on a set

A strict total order on a set X is a bi

A *strict total* order on a set X is a binary relation \prec on X such that:

- ≺ is transitive.
- For any $x, y \in X$, exactly one of the following holds:

x ≺ *y* or

is a binary relation
$$
\lt
$$
 on *X*
one of the following holds:
 $x \lt y$ or $y \lt y$ or $x = y$

Order on a set Topological ordering

A *strict total* order on a set X is a binary relation \prec on X such that:

• ≺ is transitive.

• For any $x, y \in X$, exactly one of the following holds:

• Cannot have $x_1, \ldots, x_m \in X$, such that $x_1 \prec x_2, \ldots, x_{m-1} \prec x_m$ and $x_m < x_1$ **pological ordering**
 er on a set
 x is transitive.
 $x \times y \in X$, exactly one of the following holds:
 $x \times y$ or $y \times x$ or $x = y$

Cannot have $x_1, ..., x_m \in X$, such that $x_1 \times x_2, ..., x_{m-1} \times x_m \times x_1$.

 $x < y$ or $y < x$ or $x = y$

Note about convention

- We will consider the following notations equivalent
	- Undirected graph edges:

 $uv = \{u, v\}$

• Directed graph edges:

 $u \rightarrow v$ \equiv $(u$

$$
,v\} = vu \in E
$$

$$
(u, v) \equiv (u \rightarrow v)
$$

Using Different series are from -
lwell of the
the number of points

Topological ordering/sorting Definition

A *topological ordering / topological sorting* of $G = (V, E)$ is an ordering \prec on V such that if $(u \rightarrow v) \in E$ then $u \prec v$.

English : If edges zoe men - it contren Eaglish : 4 Egges pour

Topological ordering/sorting Definition

A *topological ordering / topological sorting* of $G = (V, E)$ is an ordering \prec on V such that if $(u \rightarrow v) \in E$ then $u \prec v$.

Definition

Topological ordering/sorting

Definition

A topological ordering / topological sorting

of $G = (V, E)$ is an ordering \prec on V such

that if $(u \to v) \in E$ then $u \prec v$ A *topological ordering / topological sorting* of $G = (V, E)$ is an ordering \prec on V such that if $(u \rightarrow v) \in E$ then $u \prec v$.

Topological ordering/sorting Definition

A *topological ordering / topological sorting* of $G = (V, E)$ is an ordering \prec on V such that if $(u \rightarrow v) \in E$ then $u \prec v$.

*Informal equivalent definition***:**

One can order the vertices of the graph along a line (say the x -axis) such that all edges are from left to right.

Topological Ordering of *G*

Show algorithm can be implemented in $O(m + n)$ time **Simple algorithm:**

• Count the in-degree of each vertex

Show algorithm can be implemented in $O(m + n)$ time **Simple algorithm:**

- Count the in-degree of each vertex
- For each vertex that is source, i.e., $deg_{I_n}(v) = 0$:

- Count the in-degree of each vertex
- For each vertex that is source, i.e., $deg_{In}(v) \neq 0$:
	- Add *v* to the topological sort

 $mingth$

Show algorithm can be implemented in $O(m + n)$ time **Simple algorithm:** an
|
|-
| > number of edges coming in

Show algorithm can be implemented in $O(m + n)$ time **Simple algorithm:**

- Count the in-degree of each vertex
- For each vertex that is source, i.e., $deg_{I_n}(v) = 0$:
	- Add *v* to the topological sort
	- Lower degree of vertices *v* is connected to.

For each vertex that is source ($deg_{in}(v) = 0$):

- Add v to the topological sort
- Lower degree of vertices ν is connected to.

Topological Ordering:

instruments

Adjacency List:

For each vertex that is source ($deg_{in}(v) = 0$):

- Add v to the topological sort
- Lower degree of vertices ν is connected to.

Topological Ordering:

Generate $deg_{In}(v)$:

Adjacency List:

For each vertex that is source ($deg_{in}(v) = 0$):

- Add v to the topological sort
- Lower degree of vertices ν is connected to.

Topological Ordering:

Generate $deg_{I_n}(v)$:

Adjacency List:

For each vertex that is source ($deg_{in}(v) = 0$):

- Add v to the topological sort
- Lower degree of vertices ν is connected to.

Generate $deg_{I_n}(v)$:

Topological Ordering:

Adjacency List:

For each vertex that is source ($deg_{in}(v) = 0$):

- Add v to the topological sort
- Lower degree of vertices ν is connected to.

Generate $deg_{In}(v)$:

Topological Ordering:

Adjacency List:

For each vertex that is source ($deg_{in}(v) = 0$):

- Add v to the topological sort
- Lower degree of vertices ν is connected to.

Generate $deg_{I_n}(v)$:

Topological Ordering:

Adjacency List:

For each vertex that is source ($deg_{in}(v) = 0$):

- Add v to the topological sort
- Lower degree of vertices ν is connected to.

Generate $deg_{I_n}(v)$:

Topological Ordering:

Adjacency List:

For each vertex that is source ($deg_{in}(v) = 0$):

- Add v to the topological sort
- Lower degree of vertices ν is connected to.

Generate $deg_{I_n}(v)$:

Topological Ordering:

Adjacency List:

For each vertex that is source ($deg_{in}(v) = 0$):

- Add v to the topological sort
- Lower degree of vertices ν is connected to.

Generate $deg_{I_n}(v)$:

Topological Ordering:

Adjacency List:

For each vertex that is source ($deg_{in}(v) = 0$):

- Add v to the topological sort
- Lower degree of vertices ν is connected to.

Generate $deg_{I_n}(v)$:

Topological Ordering:

Adjacency List:

For each vertex that is source ($deg_{in}(v) = 0$):

- Add v to the topological sort
- Lower degree of vertices ν is connected to.

Topological Ordering:

Generate $deg_{I_n}(v)$:

Adjacency List:

For each vertex that is source ($deg_{in}(v) = 0$):

- Add v to the topological sort
- Lower degree of vertices ν is connected to.

Topological Ordering:

Generate $deg_{I_n}(v)$:

Adjacency List:

For each vertex that is source ($deg_{in}(v) = 0$):

- Add v to the topological sort
- Lower degree of vertices ν is connected to.

Topological Ordering:

Generate $deg_{I_n}(v)$:

Repeat the steps again.

A B C D E F
Example Topological sort

Adjacency List:

For each vertex that is source ($deg_{in}(v) = 0$):

- Add v to the topological sort
- Lower degree of vertices ν is connected to.

Topological Ordering:

Generate $deg_{In}(v)$:

Repeat the steps again.

A B C D E F

Example Topological sort

Adjacency List:

For each vertex that is source ($deg_{in}(v) = 0$):

- Add v to the topological sort
- Lower degree of vertices ν is connected to.

Generate $deg_{I_n}(v)$:

Topological Ordering:

Repeat the steps again.

Example Topological sort

Adjacency List:

- Add v to the topological sort
- Lower degree of vertices ν is connected to.

epeat the steps gain.

or each vertex that is source ($deg_{in}(v) = 0$):

Topological Ordering:

Generate $deg_{I_n}(v)$:

Topological sort

For each vertex that is source ($deg_{in}(v) = 0$):

Topological Ordering:

- Add v to the topological sort
- Lower degree of vertices ν is connected to.

Multiple possible topological orderings

Multiple possible topological orderings

Multiple possible topological orderings

- **Note:** A DAG *G* may have many different topological sorts.
- **Exercise:** What is a DAG with the most number of distinct topological sorts given *n* vertices? completely disconnected (no edges whatsore)
- **Exercise:** What is a DAG with the least number of distinct topological sorts for given *n* vertices? ^A greeph that is a path (ou "chain")

Direct topological ordering

TopSort(G): Sorted ← NULL $deg_{in}[1 \t ... \t n] \leftarrow -1$ $\texttt{Tdeg}_{\texttt{in}}[\,1\;\;...\;\;n\,]\;\gets\;\texttt{NULL}$ *Generate in-degree for each vertex* **for** each edge *xy* **in** G **do** $deg_{in}[y]++$ **for** each vertex *v* **in** G **do** Tdegin[degin[v]].append(v) *Next we recursively add vertices with in-degree = 0 to the sort list* **while (**Tdegin[0] **is non-empty) do Remove node** *x* **from** Tdegin[0] Sorted.append(x) **for** each edge xy in *Adj(x)* **do** deg_{in}[y] **move** y to Tdegin[degin[y]] **Output** Sorted deg_{in}[0] is
move node x
rted.append(
c each edge
degin[y] - move y to
orted

DAGs and topological ordering Lemma: A directed graph G can be topologically ordered \Longrightarrow G is a DAG. without loss of generality **pological definition**
on G can be topolo
liction. Suppose G
not a DAG, WLOG **all ordering**
 b that does of general

pologically ordered $\implies G$ is a

se G is not a DAG and has a top

LOG, take a cycle:

Proof: Proof by contradiction. Suppose G is not a DAG and *has* a topological ordering ≺ . Since *G* is not a DAG, WLOG, take a cycle:

Lemma: A directed graph *G* can be topologically ordered \Longrightarrow *G* is a DAG.

Proof: Proof by contradiction. Suppose G is not a DAG and *has* a topological ordering ≺ . Since G is not a DAG, WLOG, take a cycle:

 $C = u_1 \rightarrow u_2 \rightarrow \ldots \rightarrow u_k \rightarrow u_1$

Lemma: A directed graph *G* can be topologically ordered \Longrightarrow *G* is a DAG.

Proof: Proof by contradiction. Suppose G is not a DAG and *has* a topological ordering ≺ . Since G is not a DAG, WLOG, take a cycle: emma
roof: F
rdering $\Rightarrow G$ is a DAG.
 as a topologica Example 1 A directed graph G can be topologically ord

1 Yoof by contradiction. Suppose G is not a DA

1 X . Since G is not a DAG, WLOG, take a cyc
 $C = u_1 \rightarrow u_2 \rightarrow \dots \rightarrow u_k$
 $u_2 \rightarrow \dots \rightarrow u_k$
 $u_1 \rightarrow u_2 \rightarrow \dots \rightarrow u_k$

コ,V
――> >

Then $u_1 \leq u_2 \leq ... \leq u_k \leq u_1 \implies u_1 \leq u_1$

ordering ≺ . Since G is not a DAG, WLOG, take a cycle:

$$
C = u_1 \rightarrow u
$$

 T hen $u_1 < u_2 < \ldots < u_k < u_1 \implies u_1 < u_1$

- **Lemma:** A directed graph G can be topologically ordered \Longrightarrow G is a DAG.
- Proof: Proof by contradiction. Suppose G is not a DAG and *has* a topological
	- $u_2 \rightarrow \ldots \rightarrow u_k \rightarrow u_1$
	- $\rightarrow u_k \rightarrow u_1$
 $\rightarrow u_k \rightarrow u_2$,
	-

A contradiction (to \leq being an order). Not possible to topologically order the vertices. -

• Recall DFS is a special case of BasicSearch.

- Recall DFS is a special case of BasicSearch.
- DFS is useful in understanding graph structure.

- Recall DFS is a special case of BasicSearch.
- DFS is useful in understanding graph structure.
- DFS also used to obtain linear time $(O(m+n))$ algorithms for

- Recall DFS is a special case of BasicSearch.
- DFS is useful in understanding graph structure.
- DFS also used to obtain linear time $(O(m+n))$ algorithms for
- Finding *cycles,* search trees, etc. Or Dive into Depth First

Call DFS is a special case of

S is useful in understanding

S also used to obtain linear

inding cycles, search trees,

- Recall DFS is a special case of BasicSearch.
- DFS is useful in understanding graph structure.
- DFS also used to obtain linear time $(O(m+n))$ algorithms for
	- Finding *cycles,* search trees, etc.
	- Finding strong connected components of directed graphs

- Recall DFS is a special case of BasicSearch.
- DFS is useful in understanding graph structure.
- DFS also used to obtain linear time $(O(m+n))$ algorithms for
	- Finding *cycles,* search trees, etc.
	- Finding strong connected components of directed graphs
- ...many other applications as well.

Recursive DFS

Recursive version commonly implemented, has some desirable properties.

 $\overline{\mathrm{DFS(G)}}$ for all $u \in V(G)$ do **Mark as unvisited** *u* Set $pred(u)$ to null **is set to** ∅ *T* \textbf{while} ∃ $\textbf{unvisited}$ \textit{u} do DFS(") vertex **Output** *T* - > Expla

Recursive DFS

Recursive version commonly implemented, has some desirable properties.

```
DFS(G): 
    for all u \in V(G) do
         Mark as unvisited
u
         Set pred(u) to null
    is set to ∅
T
    \textbf{while} ∃ unvisited u do
         DFS(u)Output
T
```
 $\mathrm{DFS}\,(\,\mathcal{U}\,):$ Mark \overline{u} as visited for each $v \in Out(u)$ do if v is not visited then add edge $u \rightarrow v$ to T set $pred(v)$ to u $DFS(V)$ \overline{u} as visited \overline{u} isited

Out(u)

not v.

Recursive DFS

Recursive version commonly implemented, has some desirable properties.

Implemented using a global array *Visited* for all recursive calls. T is the search tree. $\frac{\texttt{set} \textit{pred}(v) \texttt{te}}{\texttt{DFS}(v)}$
Visited for all recursive calls Tight

 $\mathrm{DFS}\,(\,\mathcal{U}\,):$ Mark u as visited for each $v \in Out(u)$ do if v is not visited then add edge $u \rightarrow v$ to T set $pred(v)$ to u $DFS(V)$ $\frac{ \text{inside } p }{\text{visited } } \in Out(u)$

DFS with pre-post numbering *Vertex [Pre, Post]* first visit when we are
done of that vertex

pre ,post - > timestamps

$Time = 0$

Vertex [Pre, Post]

$Time = 1$

Vertex [Pre, Post]

Time = 20 (skipped a few steps)

V

DFS in directed graphs Exercise - do DFS on this graph and verify search tree -

DFS in directed graphs Exercise - do DFS on this graph and verify search tree

Directed DFS with pre/post numbering

• *DFS(G)* takes $O(m+n)$ time.

Directed DFS with pre/post numbering

- *DFS(G)* takes $O(m + n)$ time.
- Edges added form a *branching*: a forest of **out**-trees.

Directed DFS with pre/post numbering with pre/pos
 n) time.

pranching: a forest of

ppends on the order **ST NUM
out**-trees.
in which ve

- *DFS(G)* takes $O(m+n)$ time.
- Edges added form a *branching*: a forest of **out**-trees.
	-

• *Output of DFS(G) depends on the order in which vertices are considered.*

Directed DFS with pre/post numbering

- *DFS(G)* takes $O(m + n)$ time.
- Edges added form a *branching*: a forest of **out**-trees.
	- *Output of DFS(G) depends on the order in which vertices are considered.*
- If *u* is the first vertex considered by *DFS(G)* then *DFS(u)* outputs a disected out-tree T rooted at u and a vertex v is in T if and only if $v \in rch(u)$ rtices are conside.

(*u*) outputs a dixect

(*f* $v \in rch(u)$

Directed DFS with pre/post numbering

- *DFS(G)* takes $O(m+n)$ time.
- Edges added form a *branching*: a forest of **out**-trees.
	- *Output of DFS(G) depends on the order in which vertices are considered.*
- If *u* is the first vertex considered by *DFS(G)* then *DFS(u)* outputs a directed out-tree T rooted at u and a vertex v is in T if and only if $v \in rch(u)$ e first vert
T rooted
wo vertic
r<u> disjoint</u> **with pre/post n**
 n) time.
 branching: a forest of out-ti
 lepends on the order in whi

considered by *DFS(G)* then
 u and a vertex *v* is in *T* if an
 x, *y* the intervals [pre(*x*), po

pne is contained in t
- For any two vertices x, y the intervals $[pre(x), post(x)]$ and $[pre(y), post(y)]$ are either disjoint or one is contained in the other.

↳

• Tree edges that belong to *T* $\frac{10T}{T}$

- Tree edges that belong to *T*
- A forward edge is a non-tree edges (x, y) such that $pre(x)$ \le $pre(y)$ \le $post(y)$ \le $post(x)$.

- Tree edges that belong to *T*
- A forward edge is a non-tree edges (x, y) such that $\mathsf{pre}(x) < \mathsf{pre}(y) < \mathsf{post}(y) < \mathsf{post}(x)$.

Edges of *G* can be classified with respect to the DFS tree *T* as:

• A backward edge is a non-tree edge (y, x) such that $\mathsf{pre}(x) < \mathsf{pre}(y) < \mathsf{post}(y) < \mathsf{post}(x)$. &

- Tree edges that belong to *T*
- A forward edge is a non-tree edges (x, y) such that $\mathsf{pre}(x) < \mathsf{pre}(y) < \mathsf{post}(y) < \mathsf{post}(x)$.
- A backward edge is a non-tree edge (y, x) such that $\mathsf{pre}(x) < \mathsf{pre}(y) < \mathsf{post}(y) < \mathsf{post}(x)$.
- A cross edge is a non-tree edges (x, y) such that the $\textsf{intervals}$ [pre(*x*), post(*x*)] and [pre(*y*), post(*y*)] are disjoint. Fram be classified with respect to the DFS

yes that belong to T

d edge is a non-tree edges (x, y) such there $(x, y) <$ post $(y) <$ post (x) .

yard edge is a non-tree edge (y, x) such that
 \Rightarrow pre $(y) <$ post $(y) <$ post (x)

26

26

DFS and cycle detection Cycles in graphs

- **Question:** Given an undirected graph how do we check whether it has a cycle and output one if it has one? Reall T λ , spons V (Set of vectors) \Rightarrow of an edge is not m T, then there is a cycle S
- and output one if it has one?

• **Question:** Given an directed graph how do we check whether it has a cycle

Cycle detection in directed graphs Use topological sorts

• If it is, compute a topological sort. If it fails, then output the cycle *C*.

Cycle detection in directed graphs Use topological sorts

• If it is, compute a topological sort. If it fails, then output the cycle *C*.

- - Compute *DFS*(*G*).

- - Compute *DFS*(*G*).
	- formed by path from u to v in T plus edge (v, u) .

• If it is, compute a topological sort. If it fails, then output the cycle *C*.

• If there is a back edge $e = (v, u)$ then G is not a DAG. Output cycle C

Cycle detection in directed graphs Use topological sorts

• If it is, compute a topological sort. If it fails, then output the cycle *C*.

• If there is a back edge $e = (v, u)$ then G is not a DAG. Output cycle C

Cycle detection in directed graphs Use topological sorts

- - Compute *DFS*(*G*).
	- formed by path from u to v in T plus edge (v, u) .
	- Otherwise output nodes in decreasing post-visit order.

- - Compute *DFS*(*G*).
	- formed by path from u to v in T plus edge (v, u) .
	- Otherwise output nodes in decreasing post-visit order.
	- **Note**: no need to sort, $DFS(G)$ can output nodes in this order!

• If it is, compute a topological sort. If it fails, then output the cycle *C*.

• If there is a back edge $e = (v, u)$ then G is not a DAG. Output cycle C

Cycle detection in directed graphs Use topological sorts

Listing out the vertices in descending order of post-visit numbers gives:

Listing out the vertices in descending order of post-visit numbers gives:

Listing out the vertices in descending order of post-visit numbers gives:

C, B, A, E, G, D, F, H

Listing out the vertices in descending order of

Back edge and cycles

Proposition: *G* has a cycle \Longleftrightarrow there is a *back-edge* in DFS(G).

Back edge and cycles

Proposition: *G* has a cycle \Longleftrightarrow there is a *back-edge* in DFS(G).

path from v to u in DFS search tree and the edge (u, v) .

-
- **Proof:** That (u, v) is a back edge implies there is a cycle C consisting of the

Back edge and cycles Proposition: *G* has a cycle ⇔ there is a *back-edge* in DFS(G). -

Proof: That (u, v) is a back edge implies there is a cycle C consisting of the path from v to u in DFS search tree and the edge (u, v) . Proof:
path fr
Only in

Only if: Suppose there is a cycle $C = v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k \rightarrow v_1$.

Back edge and cycles

Proposition: *G* has a cycle \Longleftrightarrow there is a *back-edge* in DFS(G).

path from v to u in DFS search tree and the edge (u, v) .

Only if: Suppose there is a cycle $C = v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k \rightarrow v_1$.

of v_i since they are reachable from v_i .

-
- **Proof:** That (u, v) is a back edge implies there is a cycle C consisting of the
	-
	- Let v_i be first node in C visited in DFS. All other nodes in C are descendants

Back edge and cycles

- **Proposition:** *G* has a cycle \Longleftrightarrow there is a *back-edge* in DFS(G).
- **Proof:** That (u, v) is a back edge implies there is a cycle C consisting of the path from v to u in DFS search tree and the edge (u, v) . ck edge in
earch tree
- *Only if:* Suppose there is $\underset{\sim}{\text{Gycle}}\mathcal{L} = v_1 \to v_2 \to \ldots \to v_k \to v_1$.
	- Let v_i be first node in C visited in DFS. All other nodes in C are descendants of v_i since they are reachable from v_i . st node in C visite
hey are reachable
 (v_{i-1}, v_i) (or (v_k, v)
	- Therefore, (v_{i-1}, v_i) (or (v_k, v_1) if $i = 1$) is a back edge
		-

Decreasing post-visit order is a TS Proposition: If *G* is a DAG and $post(v) > post(u)$, then $(u \rightarrow v)$ is not in $\left(G, \right)$ g pos g post-visit order is a TS

s a DAG and post(v) > post(u), then $(u \rightarrow v)$ is not in G.

Decreasing post-visit order is a TS

Proof: Assume $post(u) < post(v)$ and $(u \rightarrow v)$ is an edge in G. One of two holds:

- **Proposition:** If G is a DAG and $post(v) > post(u)$, then $(u \rightarrow v)$ is not in G.
	-

Decreasing post-visit order is a TS | **pos**
a DAG a
(u) < p

Proof: Assume $post(u) < post(v)$ and $(u \rightarrow v)$ is an edge in G. One of two holds: $\frac{1}{2}$ and p
t(*u*) < post(1

explored during $DFS(v)$ and hence is a descendent of v . Edge implies a cycle in G but G is assumed to be DAG. $\frac{1}{2}$: [pre(*u*), post(*u*)] is contained in [pre(*v*), post($\frac{1}{2}$: [pre(*u*), post($\frac{1}{2}$ ored during $\overline{DFS}(v)$ and hence is a descendent of

Proposition: If *G* is a DAG and $post(v) > post(u)$, then $(u \rightarrow v)$ is not in *G*.

• Case 1: $[pre(u), post(u)]$ is contained in $[pre(v), post(v)]$. Implies that u is $[pre(u), post(u)]$ is contained in $[pre(v), post(v)]$. Implies that u $DFS(v)$ and hence is a descendent of v . Edge (u, v) \bigcirc (v)]. Implies the $\frac{1}{2}$. Edge (u, v)

Decreasing post-visit order is a TS Proposition: If G is a DAG and $post(v) > post(u)$, then $(u \rightarrow v)$ is not in G. Verify this hold for the graphs on the previous **g post-visit order**

s a DAG and post(v) > post(u

st(u) < post(v) and ($u \rightarrow v$) is

), post(u)] is contained in [preg *DFS*(v) and hence is a descries in *G* but *G* is assumed to be

), post(u)] is disjoin

Proof: Assume $post(u) < post(v)$ and $(u \rightarrow v)$ is an edge in G. One of two holds:

- Case 1: $[pre(u), post(u)]$ is contained in $[pre(v), post(v)]$. Implies that u is explored during $DFS(v)$ and hence is a descendent of v . Edge (u, v) implies a cycle in G but G is assumed to be DAG.
- Case 2: $[pre(u), post(u)]$ is disjoint from $[pre(v), post(v)]$. This cannot happen since v would have been explored from u.

Strongly connected components (SCCs)

Algorithmic problem

Find all SCCs of a given directed graph.

Strongly connected components (SCCs)

Algorithmic problem Find all SCCs of a given directed graph. **Previous lecture:** Saw an $O(n \cdot (n + m))$ time algorithm. ↑ ↑

Strongly connected components (SCCs)

Algorithmic problem

Find all SCCs of a given directed graph.

Previous lecture: Saw an $O(n \cdot (n + m))$ time algorithm. reviou:
|gorithr
|his lec

This lecture: Sketch of a $O(n + m)$ time algorithm.

Linear time algorithm for finding all SCCs Finding all SCCs of a Directed Graph

Problem: Given a directed graph $G = (V, E)$, output all its strong connected components. Straightforward algorithm:

Linear time algorithm for finding all SCCs Finding all SCCs of a Directed Graph

Problem: Given a directed graph $G = (V, E)$, output all its strong connected components. Straightforward algorithm:

```
Mark all vertices in V as not visited.
for each vertex u \in V not visited yet do
```
find SCC(G, u) **the strong component of u**: **Compute** rch(G, *u*) using $DFS(G, u)$ Compute $rch(G^{rev} , u)$ using $\overline{DFS}(G^{rev}, u)$ $SCC(G, u) \Leftarrow rch(G, u) \cap rch(G^{rev}, u)$ ∀u ∈ SCC(G, u): **Mark u as visited**. -> Discussed ont of u:
S(G) last time E), output all its
as not visited.
t visited yet d
strong component
 u) using $DFSG$
 $\frac{v}{c}$, u) using DF
 $\frac{ch(G, u) \cap rch(G)}{c}$
: Mark u as vis $\begin{array}{c}\n\bullet \\
\downarrow \\
\downarrow\n\end{array}$

Linear time algorithm for finding all SCCs Finding all SCCs of a Directed Graph

Problem: Given a directed graph $G = (V, E)$, output all its strong connected components. Straightforward algorithm:

> Mark all vertices in V as not visited. for each vertex $u \in V$ not visited yet do

```
find SCC(G, u) the strong component of u: 
      Compute rch(G, u) using DFS(G, u)Compute rch(G^{rev}, u) using DFS(G^{rev}, u)SCC(G, u) \Leftarrow rch(G, u) \cap rch(G^{rev}, u)∀u ∈ SCC(G, u): Mark u as visited.
```


Linear time algorithm for finding all SCCs Finding all SCCs of a Directed Graph

Problem: Given a directed graph $G = (V, E)$, output all its strong connected components. Straightforward algorithm:

> Mark all vertices in V as not visited. for each vertex $u \in V$ not visited yet do

Running time: $O(n(n+m))$

Question: Is there an $O(n + m)$ time algorithm?

```
find SCC(G, u) the strong component of u: 
      Compute rch(G, u) using DFS(G, u)Compute rch(G^{rev}, u) using DFS(G^{rev}, u)SCC(G, u) \Leftarrow rch(G, u) \cap rch(G^{rev}, u)∀u ∈ SCC(G, u): Mark u as visited.
```
Let $S_1, S_2, \ldots S_k$ be the strongly connected components (i.e., SCCs) of G . Denote graph of SCCs as G^{SCL} : *G GSCC*

Graph of SCCs Meta-graph of SCCs

Graph of SCCs Meta-graph of SCCs

Let $S_1, S_2, \ldots S_k$ be the strongly connected components (i.e., SCCs) of G. Denote graph of SCCs as G^{SCC} .

• Vertices of G^{SCC} are $S_1, S_2, \ldots S_k$

Graph of SCCs Meta-graph of SCCs

Let $S_1, S_2, \ldots S_k$ be the strongly connected components (i.e., SCCs) of G. Denote graph of SCCs as G^{SCC} .

- Vertices of G^{SCC} are $S_1, S_2, \ldots S_k$
- There is an edge (S_i, S_j) if there is some $u \in S_i$ and $v \in S_j$ such that (u, v) is an edge in G.

Graph of SCCs Meta-graph of SCCs

Let $S_1, S_2, \ldots S_k$ be the strongly connected components (i.e., SCCs) of G. Denote graph of SCCs as G^{SCC} .

- Vertices of G^{SCC} are $S_1, S_2, \ldots S_k$
- There is an edge (S_i, S_j) if there is some $u \in S_i$ and $v \in S_j$ such that (u, v) is an edge in G.

For any graph G , the graph **has no directed cycle!** For any graph G , the graph
 G^{SCC} has no directed cycle! \mathcal{L} fact!

Proposition: For a directed graph *G*, its meta-graph *G^{SCC}* is a DAG.

Linear-time Algorithm for SCCs Idea gorith
um
and sections

Wishful thinking algorithm

• Let *u* be a vertex in a sink SCC of . *GSCC* e
2

Wishful thinking algorithm

- Let *u* be a vertex in a sink SCC of . *GSCC*
- Do *DFS*(*u*) to compute *SCC*(*u*).

Wishful thinking algorithm

- Let *u* be a vertex in a sink SCC of . *GSCC*
- Do *DFS*(*u*) to compute *SCC*(*u*).
- Remove *SCC*(*u*) and repeat.

Wishful thinking algorithm

- Let *u* be a vertex in a sink SCC of . *GSCC*
- Do *DFS*(*u*) to compute *SCC*(*u*).
- Remove *SCC*(*u*) and repeat.

Wishful thinking algorithm

- Let *u* be a vertex in a sink SCC of . *GSCC*
- Do *DFS*(*u*) to compute *SCC*(*u*).
- Remove *SCC*(*u*) and repeat.

• DFS(*u*) only visits vertices (and edges) in $SCC(u)$ since there are no edges coming out of a sink!

Justification

Wishful thinking algorithm

- Let *u* be a vertex in a sink SCC of . *GSCC*
- Do $DFS(u)$ to compute $SCC(u)$.
- Remove *SCC*(*u*) and repeat.

Justification

- DFS(*u*) only visits vertices (and edges) in $SCC(u)$ since there are no edges coming out of a sink! **SCCS**

fication
 $\partial FS(u)$ only visits vertices (a

dges) in $SCC(u)$ since there

<u>oo edges coming out of a sinl</u>
 $\partial FS(u)$ takes time proportion

o size of $SCC(u)$.
- DFS(*u*) takes time proportional to size of $SCC(u)$.

Wishful thinking algorithm 2 FWCL 4 Justification

- Let *u* be a vertex in a sink SCC of . *GSCC*
- Do *DFS*(*u*) to compute *SCC*(*u*).
- Remove *SCC*(*u*) and repeat.

H_0 to [↑] find ?

- DFS(*u*) only visits vertices (and edges) in $SCC(u)$ since there are no edges coming out of a sink!
- DFS(*u*) takes time proportional to size of $SCC(u)$.
- Therefore, total time $O(n + m)!$

On the right the SCC $\{G\}$ is a sink and the SCC $\{A, C, D\}$ is a source.

encoded in details

Questions Question: How do we find a vertex in a sink SCC of G^{SCC} ? Can we obtain an *implicit* topological sort of G^{SCC} without computing G^{SCC} ? *GSCC* G^{SCC} without computing G^{SCC} **Okay but …** Think : ^a chicken or egg problem- ↑ topc
topc
1e0

Questions Okay but …

implicit topological sort of G^{SCC} without computing G^{SCC} ?

Answer: *DFS*(*G*) gives some information!

Question: How do we find a vertex in a sink SCC of G^{SCC} ? Can we obtain an

Questions Okay but …

implicit topological sort of G^{SCC} without computing G^{SCC} ?

Answer: *DFS*(*G*) gives some information!

Claim: Let v be the vertex with **maximum** post-visit numbering in $DFS(G)$. Then ν is in a SCC S , such that S is a source of G^{SCC} .

Question: How do we find a vertex in a sink SCC of G^{SCC} ? Can we obtain an

Answer: *DFS*(*G*) gives some information!

Then ν is in a SCC S , such that S is a source of G^{SCC} .

Then ν is in a SCC S , such that S is a sink of G^{SCC} .

- **Question:** How do we find a vertex in a sink SCC of G^{SCC} ? Can we obtain an
	-
- **Claim**: Let v be the vertex with **maximum** post-visit numbering in $DFS(G)$.
- **Claim:** Let v be the vertex with maximum post-visit numbering in $DFS(G^{rev})$. *v* be the vertex with maximum post-visit numbering in $\overline{DFS(G^{rev})}$ Ls See plazza about volvez Gler is in $DFS(G)$.

Questions Okay but …

implicit topological sort of G^{SCC} without computing G^{SCC} ?

necessary -

Source

On the right the SCC {*G*} is a sink and the SCC {*A*,*C*, *D*} is a source.

Sink

Linear Time SCC Algorithm

do DFS(G^{rev}) and output vertices in decreasing postvisit order. **Mark all nodes as unvisited.** for each u in the computed order do if *u* is not visited then DFS**()** *u* Let S_u be the nodes reached by u Output S_u as a strong connected component Remove S_u from G

Linear Time SCC Algorithm

do DFS(G^{rev}) and output vertices in decreasing postvisit order. **Mark all nodes as unvisited.** for each u in the computed order do if *u* is not visited then DFS**()** *u* Let S_u be the nodes reached by u Output S_u as a strong connected component Remove S_u from G

Theorem: Algorithm runs in time *O*(*m* + *n*) and correctly outputs all the SCCs of *G*.

Reverse Graph G^{rev} **DFS** of reverse graph

Reverse Graph G^{rev} **DFS** of reverse graph

[9,10]

Pre/Post **DFS** numbering of reverse graph

G annotated with *G^{rev*}'s post numbers

G annotated with *G^{rev*}'s post numbers

Do **DFS** from vertex *G* and remove it

G annotated with *G^{rev*}'s post numbers

 \implies

Do **DFS** from vertex *G* and remove it

G annotated with *G^{rev*}'s post numbers

 \implies

Do **DFS** from vertex *G* and remove it

Do **DFS** from vertex *H* and remove it

Do **DFS** from vertex *H* and remove it

SCC computed: ${G}, {H}$

≺

Do **DFS** from vertex *B* and remove "it"

SCC computed: ${G}, {H}$

Linear Time Algorithm - An Example

SCC computed: ${G}, {H}$

Linear Time Algorithm - An Example

Do **DFS** from vertex *B* and remove "it"

≺

SCC computed: {G}, {H}, {F, B, E}

Remove visited vertices: {F, B, E}.

Do **DFS** from vertex *A* and remove "it".

Linear Time Algorithm - An Example

Do **DFS** from vertex *A* and remove "it".

Linear Time Algorithm - An Example

Remove visited vertices: {A, C, D}.

Do **DFS** from vertex *A* and remove "it".

Linear Time Algorithm - An Example

≺

Remove visited vertices: {A, C, D}.

Remove visited vertices: {A, C, D}.

Do **DFS** from vertex *A* and remove "it".

Linear Time Algorithm - An Example

≺

SCC computed: {G}, {H}, {F, B, E}, {A,C,D}

Do **DFS** from vertex *A* and remove "it".

Linear Time Algorithm - An Example

SCC computed: {G}, {H}, {F, B, E}, {A,C,D}

• DAGs and topological orderings.

- DAGs and topological orderings.
- **DFS** with pre/post numbering.

- DAGs and topological orderings.
- **DFS** with pre/post numbering.
- \bullet Given a directed graph G , its SCCs and the associated acyclic meta-graph G^{SCC} give a structural decomposition of G .

- DAGs and topological orderings.
- **DFS** with pre/post numbering.
- \bullet Given a directed graph G , its SCCs and the associated acyclic meta-graph G^{SCC} give a structural decomposition of G .
- There is a DFS based linear time algorithm to compute all the SCCs and the meta-graph.

- DAGs and topological orderings.
- **DFS** with pre/post numbering.
- \bullet Given a directed graph G , its SCCs and the associated acyclic meta-graph G^{SCC} give a structural decomposition of G .
- There is a DFS based linear time algorithm to compute all the SCCs and the meta-graph.
- DAGs arise in many application and topological sort is a key property in algorithm design. Linear time algorithms!