Directed graphs, DFS, DAGs, TopSort Sides based on material by Kani, Erickson, Chekuri, et. al.

All mistakes are my own! - Ivan Abraham (Fall 2024)

Image by ChatGPT (probably collaborated with DALL-E)

Directed acyclic graphs Definition

A directed graph G is called a directed acyclic graph (DAG) if there is no *directed* cycle in G. Tells vs mad Gris discented. No such thing as an indispected 2 ayde, ou a discented Gr. yet anyway.

Directed acyclic graphs Is this a DAG?

Directed acyclic graphs Is this a DAG?

Directed acyclic graphs Sources and sinks

- A vertex *u* is a source if it has no in-coming edges.
- A vertex *u* is a **sink** if it has no out-going edges

- **Proposition:** Every *finite* DAG *G* has **Proof:**
 - Let $P = v_1, v_2, \dots, v_k$ be the longes and v_k is a sink.

Proposition: Every *finite* DAG G has at least one source and at least one sink.

Let $P = v_1, v_2, \ldots, v_k$ be the longest path in G. We claim that v_1 is a source

Proposition: Every *finite* DAG *G* has at least one source and at least one sink.

Proof:

Let $P \neq v_1, v_2, \ldots, v_k$ be the longest path in G. We claim that v_1 is a source and v_k is a sink.

either creates a cycle or a longer path both of which are contradictions.

For contradiction, suppose it is not. Then v_1 has an incoming edge which

- **Proposition:** Every *finite* DAG G has at least one source and at least one sink. **Proof:**
 - Let $P = v_1, v_2, \dots, v_k$ be the longest path in *G*. We claim that v_1 is a source and v_k is a sink.
 - For contradiction, suppose it is not. Then v_1 has an incoming edge which either creates a cycle **or** a longer path both of which are contradictions.
 - Similarly so if v_k has an outgoing edge.

- G is a DAG if and only if G^{rev} is a DAG.
 - Recall G^{rev} is the graph G with orientation of all edges reversed.

- G is a DAG if and only if G^{rev} is a DAG.
 - Recall G^{rev} is the graph G with orientation of all edges reversed.

- - subgraphs with more than one vertex.

• G is a DAG if and only each node is its own strongly connected component.

• In other words, a (directed) graph is acyclic, iff it has no strongly connected

A strict total order on a set X is a binary relation \prec on X such that:

<is transitive. んよりよく 当 なよく

A strict total order on a set X is a binary relation \prec on X such that:

- \prec is transitive.
- For any $x, y \in X$, exactly one of the following holds:

A <u>strict total</u> order on a set X is a binary relation \prec on X such that:

- \prec is transitive.
- For any $x, y \in X$, exactly one of the following holds:

 $x \prec y$ or

$$y \prec x \text{ or } x = y$$

A strict total order on a set X is a binary relation \prec on X such that:

• < is transitive.

• For any $x, y \in X$, exactly one of the following holds:

• Cannot have $x_1, \ldots, x_m \in X$, such that $x_1 \prec x_2, \ldots, x_{m-1} \prec x_m$ and $x_m \prec x_1$.

 $x \prec y \text{ or } y \prec x \text{ or } x = y$

Note about convention

- We will consider the following notations equivalent
 - Undirected graph edges:

 $uv = \{u,$

• Directed graph edges:

 $u \to v \equiv (\iota$

$$,v\} = vu \in E$$

$$u, v) \equiv (u \rightarrow v)$$

 \Rightarrow Different corces we then but
 i will use them all freely-

Topological ordering/sorting

of G = (V, E) is an ordering \prec on V such that if $(u \rightarrow v) \in E$ then $u \prec v$.

A topological ordering / topological sorting / V is an ordering / V.

Topological ordering/sorting Definition

A *topological ordering / topological sorting* of G = (V, E) is an ordering \prec on V such that if $(u \rightarrow v) \in E$ then $u \prec v$.

Topological ordering/sorting Definition

A topological ordering / topological sorting of G = (V, E) is an ordering \prec on V such that if $(u \rightarrow v) \in E$ then $u \prec v$.

Topological ordering/sorting Definition

A topological ordering / topological sorting of G = (V, E) is an ordering \prec on V such that if $(u \rightarrow v) \in E$ then $u \prec v$.

Informal equivalent definition:

One can order the vertices of the graph along a line (say the *x*-axis) such that all edges are from left to right.

Topological Ordering of G

Show algorithm can be implemented in O(m + n) time **Simple algorithm**:

Count the in-degree of each vertex

Show algorithm can be implemented in O(m + n) time Simple algorithm:

- Count the in-degree of each vertex
- For each vertex that is source, i.e., $deg_{In}(v) = 0$:

Show algorithm can be implemented in O(m + n) time Simple algorithm: runber of edges coming in

- Count the in-degree of each vertex
- For each vertex that is source, i.e., $deg_{In}(v) \neq 0$:
 - Add ν to the topological sort

Show algorithm can be implemented in O(m + n) time Simple algorithm:

- Count the in-degree of each vertex
- For each vertex that is source, i.e., $deg_{In}(v) = 0$:
 - Add γ to the topological sort
 - Lower degree of vertices v is connected to.

Topological Example	SOF My of Adjace	t Sency List:	Generat	$\int e \deg_{In}(v):$
(A) (B) (C)	Node	Neighbors	Degree	Vertices
	A	DE	0 (ABC
	В	E		D F G
	С			
	D	F		EH
F G	E	НG		
	F	Н		
	G			
	Η			

Topological Ordering:

Indulation

- Add *v* to the topological sort
- Lower degree of vertices v is connected to.

Adjacency List:

Node	Neighbors
Α	DE
В	E
С	
D	F
E	ΗG
F	Н
G	
Н	

Topological Ordering:

Generate $deg_{In}(v)$:

Degree	Vertices
0	ABC
1	DFG
2	ΕH

- Add *v* to the topological sort
- Lower degree of vertices v is connected to.

Adjacency List:

Node	Ν	eighbors
A	D	E
В	Е	
С		
D	F	
E	Н	G
F	Н	
G		
Н		

Topological Ordering:

Generate $deg_{In}(v)$:

Degree			Vertices
0	Α	В	С
1	D	F	G
2 (E	Η	

- Add *v* to the topological sort
- Lower degree of vertices v is connected to.

Adjacency List:

Node	Neighbors
A	DE
В	E
С	
D	F
E	ΗG
F	Н
G	
Н	

Topological Ordering:

Generate $deg_{In}(v)$:

Degree		Vertices
0	А	BC
1	D	F
2	Ε	H

- Add *v* to the topological sort
- Lower degree of vertices v is connected to.

Adjacency List:

Node	Neighbors
Α	DE
В	E
С	
D	F
E	ΗG
F	Н
G	
Н	

Topological Ordering:

Generate $deg_{In}(v)$:

	Degree	Vertices				
-	0	А	В	С	D	
-	1		F	G	E	
	2		Η			

- Add *v* to the topological sort
- Lower degree of vertices v is connected to.

Adjacency List:

Node	Neighbors
Α	DE
В	E
С	
D	F
E	ΗG
F	Н
G	
Н	

Topological Ordering:

Α

Generate $deg_{In}(v)$:

Degree	Vertices		
0	A B C D		
1	FGE		
2	Н		

For each vertex that is source ($deg_{in}(v) = 0$):

- Add *v* to the topological sort
- Lower degree of vertices v is connected to.

Adjacency List:

Node	Neighbors
A	DE
В	E
С	
D	F
E	ΗG
F	Н
G	
Н	

Topological Ordering:

Generate $deg_{In}(v)$:

Degree	Vertices				
0	ABCDE				
1	FG				
2	Н				

For each vertex that is source ($deg_{in}(v) = 0$):

- Add *v* to the topological sort
- Lower degree of vertices v is connected to.

Adjacency List:

Node	Neighbors
A	DE
В	E
С	
D	F
E	НG
F	Н
G	
Н	

Topological Ordering:

Generate $deg_{In}(v)$:

Degree	Vertices					
0	А	В	С	D	Е	
1		F	G			
2		Η				

For each vertex that is source ($deg_{in}(v) = 0$):

- Add *v* to the topological sort
- Lower degree of vertices v is connected to.

Adjacency List:

Node	Neighbors
A	DE
В	E
С	
D	F
E	НG
F	Н
G	
Н	

Topological Ordering:

Generate $deg_{In}(v)$:

Degree	Vertices				
0	A B C D E				
1	FG				
2	Η				

For each vertex that is source ($deg_{in}(v) = 0$):

- Add *v* to the topological sort
- Lower degree of vertices v is connected to.

Adjacency List:

Node	Neighbors
A	DE
В	E
С	
D	F
E	НG
F	Н
G	
Н	

Topological Ordering:

Generate $deg_{In}(v)$:

Degree	Vertices				
0	А	В	С	D	EF
1			G		
2		Н			

For each vertex that is source ($deg_{in}(v) = 0$):

- Add *v* to the topological sort
- Lower degree of vertices v is connected to.

Adjacency List:

Node	Neighbors
A	DE
В	E
С	
D	F
E	ΗG
F	Н
G	
Η	

Topological Ordering:

Generate $deg_{In}(v)$:

Degree	Vertices					
0	А	В	С	D	Е	F
1			G			
2		Ĥ		ノ		

For each vertex that is source ($deg_{in}(v) = 0$):

- Add *v* to the topological sort
- Lower degree of • vertices v is connected to.

Adjacency List:

Node	Neighbors
A	DE
В	E
С	
D	F
E	НG
F	Н
G	
Н	

Topological Ordering:

Generate $deg_{In}(v)$:

Degree	Vertices						
0	А	В	С	D	Е	FG	
1				Н			
2							

For each vertex that is source ($deg_{in}(v) = 0$):

- Add *v* to the topological sort
- Lower degree of • vertices v is connected to.

Adjacency List:

Node	Neighbors
A	DE
В	E
С	
D	F
E	НG
F	Н
G	
Н	

Topological Ordering:

Generate $deg_{In}(v)$:

Degree		Vertices					
0	А	В	С	D	Е	F	G
1				Ĥ			
2							

For each vertex that is source ($deg_{in}(v) = 0$):

- Add *v* to the topological sort
- Lower degree of • vertices v is connected to.

Repeat the steps again.

 B
 C
 D
 E
 F

Topological sort Example

Adjacency List:

Node	Neighbors
A	DE
В	E
С	
D	F
E	НG
F	Н
G	
Н	

Topological Ordering:

Generate $deg_{In}(v)$:

Degree	Vertices							
0	А	В	С	D	Е	F	G	Н
1								
2								

For each vertex that is source ($deg_{in}(v) = 0$):

- Add *v* to the topological sort
- Lower degree of • vertices v is connected to.

Repeat the steps again.

 B
 C
 D
 E
 F

Topological sort Example

Adjacency List:

Node	Neighbors
A	DE
В	E
С	
D	F
E	НG
F	Н
G	
Н	

Topological Ordering:

Generate $deg_{In}(v)$:

	Degree			Ve	ertic	es				F
	0	А	В	С	D	Е	F	G	Η	S
	1									
	2									
_										
-										
										1
	D		E				F		(G
	\checkmark									

For each vertex that is source ($deg_{in}(v) = 0$):

- Add *v* to the topological sort
- Lower degree of vertices v is connected to.

Repeat the steps again.

Topological sort Example

Adjacency List:

Node	Neighbors
A	DE
В	E
С	
D	F
E	НG
F	Н
G	
Н	

Topological Ordering:

Generate $deg_{In}(v)$:

Degree		Vertices								Fo
0	А	В	С	D	Е	F	G	Н		SO
1										
2										
										R
										a
					(F			(2
		C	ノ			ノ			C	

or each vertex that is ource ($deg_{in}(v) = 0$):

- Add *v* to the topological sort
- Lower degree of vertices v is connected to.

epeat the steps gain.

Η

Topological sort

Topological Ordering:

Degree	Vertices							
0	A	В	С	D	Е	F	G	Н
 1								
2								

For each vertex that is source ($deg_{in}(v) = 0$):

- Add *v* to the topological sort
- Lower degree of vertices v is connected to.

Multiple possible topological orderings

Multiple possible topological orderings

Multiple possible topological orderings

- Note: A DAG G may have many different topological sorts.
- **Exercise:** What is a DAG with the most number of distinct topological sorts Longtebely disconnected (no edges whetherea) given *n* vertices?
- Exercise: What is a DAG with the least number of distinct topological sorts A grigh that is a path (on "chain") for given *n* vertices?

Direct topological ordering

TopSort(G): Sorted ← NULL $deg_{in}[1 \dots n] \leftarrow -1$ $Tdeg_{in}[1 ... n] \leftarrow NULL$ Generate in-degree for each vertex for each edge xy in G do degin[y]++ for each vertex v in G do Tdeg_{in}[deg_{in}[v]].append(v) Next we recursively add vertices with in-degree = 0 to the sort list while (Tdeg_{in}[0] is non-empty) do **Remove node** x from Tdeg_{in}[0] Sorted.append(x) for each edge xy in Adj(x) do degin[Y]-move y to Tdegin[degin[y]] Output Sorted

DAGS and topological ordering without loss of generality Lemma: A directed graph G can be topologically ordered \implies G is a DAG.

Proof: Proof by contradiction. Suppose G is not a DAG and has a topological ordering \prec . Since G is not a DAG, WLOG, take a cycle:

Lemma: A directed graph G can be topologically ordered \implies G is a DAG.

Proof: Proof by contradiction. Suppose G is not a DAG and has a topological ordering \prec . Since G is not a DAG, WLOG, take a cycle:

 $C = u_1 \rightarrow u_2 \rightarrow \ldots \rightarrow u_k \rightarrow u_1$

Lemma: A directed graph G can be topologically ordered \implies G is a DAG.

Proof: Proof by contradiction. Suppose G is not a DAG and **has** a topological ordering \prec . Since G is not a DAG, WLOG, take a cycle:

ordering \prec . Since G is not a DAG, WLOG, take a cycle:

$$C = u_1 \to u$$

Then $u_1 \prec u_2 \prec \ldots \prec u_k \prec u_1 \implies u_1 \prec u_1 \implies u_2 \prec \ldots \prec u_k = \omega_1$

vertices.

- **Lemma:** A directed graph G can be topologically ordered \implies G is a DAG.
- **Proof:** Proof by contradiction. Suppose G is not a DAG and has a topological
 - $u_2 \rightarrow \ldots \rightarrow u_k \rightarrow u_1$
- A contradiction (to \prec being an order). Not possible to topologically order the

• Recall DFS is a special case of **BasicSearch**.

- Recall DFS is a special case of **BasicSearch**.
- DFS is useful in understanding graph structure.

- Recall DFS is a special case of **BasicSearch**.
- DFS is useful in understanding graph structure.
- DFS also used to obtain linear time (O(m + n)) algorithms for

- Recall DFS is a special case of **BasicSearch**.
- DFS is useful in understanding graph structure.
- DFS also used to obtain linear time (O(m + n)) algorithms for
 - Finding cycles, search trees, etc.

- Recall DFS is a special case of **BasicSearch**.
- DFS is useful in understanding graph structure.
- DFS also used to obtain linear time (O(m + n)) algorithms for
 - Finding cycles, search trees, etc.
 - Finding strong connected components of directed graphs

- Recall DFS is a special case of **BasicSearch**.
- DFS is useful in understanding graph structure.
- DFS also used to obtain linear time (O(m + n)) algorithms for
 - Finding cycles, search trees, etc.
 - Finding strong connected components of directed graphs
- ...many other applications as well.

Recursive DFS

Recursive version commonly implemented, has some desirable properties.

2 Ciscol DF<mark>S(G)</mark> for all $u \in V(G)$ do Mark *u* as unvisited Set pred(u) to null T is set to \varnothing while \exists unvisited u do DFS(U) verless Output T

Recursive DFS

Recursive version commonly implemented, has some desirable properties.

```
DFS(G):

for all u \in V(G) do

Mark u as unvisited

Set pred(u) to null

T is set to \emptyset

while \exists unvisited u do

DFS(u)

Output T
```

DFS(\mathcal{U}): Mark *u* as visited **C** for each $v \in Out(u)$ do if v is not visited then add edge $u \rightarrow v$ to T set pred(v) to uDFS(v)

Recursive DFS

Recursive version commonly implemented, has some desirable properties.

Implemented using a global array $\frac{Visited}{Visited}$ for all recursive calls. T is the search tree.

DFS(u): Mark u as visited for each $v \in Out(u)$ do if v is not visited then add edge $u \rightarrow v$ to Tset pred(v) to uDFS(v)

DFS with pre-post numbering first visit doue vertex [Pre, Post] Vertex

pro, post -> timestaups

Time = 0

Vertex [Pre, Post]

Time = 1

Vertex [Pre, Post]

Vertex	[Pre, Post]
1	[1,]

Vertex	[Pre, Post]
1	[1,]

Vertex	[Pre, Post]				
1	[1,]				
2	[2,]				

Vertex	[Pre, Post]				
1	[1,]				
2	[2,]				

Vertex	[Pre, Post]	
1	[1,]	
2	[2,]	
4	[3,]	

Vertex	[Pre, Post]
1	[1,]
2	[2,]
4	[3,]

Vertex	[Pre, Po	st]
1	[1,]
2	[2,]
4	[3,]
5	[4,]

Vertex	[Pre, Po	ost]
1	[1,]
2	[2,]
4	[3,]
5	[4,]

Vertex	[Pre, Post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5,]

Vertex	[Pre, Post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5,]

Vertex	[Pre, Post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5,]

Vertex	[Pre, Post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5, 6]

Vertex	[Pre, Post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5, 6]

Vertex	[Pre, Post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5, 6]

Vertex	[Pre, Post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5, 6]
→ 3	

Vertex	[Pre, Post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5, 6]
3	[7,]

Vertex	[Pre, Post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5, 6]
3	[7,]

Vertex	[Pre, Post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5, 6]
3	[7,]
7	[8,]

Vertex	[Pre, Post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5, 6]
3	[7,]
7	[8,]

Vertex	[Pre, Post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5, 6]
3	[7,]
7	[8,]

Vertex	[Pre, Post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5, 6]
3	[7,]
7	[8,]

Vertex	[Pre, Post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5, 6]
3	[7,]
7	[8,]
8	[9,]

Vertex	[Pre, Post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5, 6]
3	[7,]
7	[8,]
8	[9,]

Vertex	[Pre, Post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5, 6]
3	[7,]
7	[8,]
8	[9,]

Vertex	[Pre, Post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5, 6]
3	[7,]
7	[8,]
8	[9,]

Vertex	[Pre, Post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5, 6]
3	[7,]
7	[8,]
8	[9, 10]

Vertex	[Pre, Post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5, 6]
3	[7,]
7	[8,]
8	[9, 10]

Vertex	[Pre, Post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5, 6]
3	[7,]
7	[8, 11]
8	[9, 10]

Vertex	[Pre, Post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5, 6]
3	[7,]
7	[8, 11]
8	[9, 10]

Vertex	[Pre, Post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5, 6]
3	[7, 12]
7	[8, 11]
8	[9, 10]

Vertex	[Pre, Post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5, 6]
3	[7, 12]
7	[8, 11]
8	[9, 10]

Vertex	[Pre, Post]
1	[1,]
2	[2,]
4	[3,]
5	[4, 13]
6	[5, 6]
3	[7, 12]
7	[8, 11]
8	[9, 10]

Vertex	[Pre, Post]
1	[1,]
2	[2,]
4	[3,]
5	[4, 13]
6	[5, 6]
3	[7, 12]
7	[8, 11]
8	[9, 10]

Vertex	[Pre, Post]
1	[1,]
2	[2,]
4	[3, 14]
5	[4, 13]
6	[5, 6]
3	[7, 12]
7	[8, 11]
8	[9, 10]

Vertex	[Pre, Post]
1	[1,]
2	[2,]
4	[3, 14]
5	[4, 13]
6	[5, 6]
3	[7, 12]
7	[8, 11]
8	[9, 10]

Vertex	[Pre, Post]
1	[1,]
2	[2, 15]
4	[3, 14]
5	[4, 13]
6	[5, 6]
3	[7, 12]
7	[8, 11]
8	[9, 10]

Vertex	[Pre, Post]
1	[1,]
2	[2, 15]
4	[3, 14]
5	[4, 13]
6	[5, 6]
3	[7, 12]
7	[8, 11]
8	[9, 10]

Vertex	[Pre, Post]
1	[1,]
2	[2, 15]
4	[3, 14]
5	[4, 13]
6	[5, 6]
3	[7, 12]
7	[8, 11]
8	[9, 10]

Vertex	[Pre, Post]
1	[1, 16]
2	[2, 15]
4	[3, 14]
5	[4, 13]
6	[5, 6]
3	[7, 12]
7	[8, 11]
8	[9, 10]

Time = 20 (skipped a few steps)

Vertex	[Pre, Post]
1	[1, 16]
2	[2, 15]
4	[3, 14]
5	[4, 13]
6	[5,6]
3	[7, 12]
7	[8, 11]
8	[9, 10]
9	[17, 20]
10	[18, 19]

N

Vertex	[Pre, Post]	
1	[1, 16]	
2	[2, 15]	
4	[3, 14]	
5	[4, 13]	
6	[5,6]	
3	[7, 12]	
7	[8, 11]	
8	[9, 10]	
9	[17, 20]	
10	[18, 19]	

DFS in directed graphs Exercise - do DFS on this graph and verify search tree

DFS in directed graphs Exercise - do DFS on this graph and verify search tree

• **DFS(G)** takes O(m + n) time.

- DFS(G) takes O(m + n) time.
- Edges added form a *branching*: a forest of **out**-trees.

- DFS(G) takes O(m + n) time.
- Edges added form a branching: a forest of out-trees.

• Output of DFS(G) depends on the order in which vertices are considered.

- **DFS(G)** takes O(m + n) time.
- Edges added form a *branching*: a forest of **out**-trees.
 - Output of DFS(G) depends on the order in which vertices are considered.
- If u is the first vertex considered by DFS(G) then DFS(u) outputs a directed out-tree T rooted at u and a vertex v is in T if and only if $v \in rch(u)$

Directed DFS with pre/post numbering

- DFS(G) takes O(m + n) time.
- Edges added form a branching: a forest of out-trees.
 - Output of DFS(G) depends on the order in which vertices are considered.
- If u is the first vertex considered by DFS(G) then DFS(u) outputs a directed out-tree T rooted at u and a vertex v is in T if and only if $v \in rch(u)$
- For any two vertices x, y the intervals [pre(x), post(x)] and [pre(y), post(y)]are either disjoint or one is contained in the other.

Edges of G can be classified with respect to the DFS tree T as:

Edges of G can be classified with respect to the DFS tree T as:

Tree edges that belong to T

Edges of G can be classified with respect to the DFS tree T as:

- Tree edges that belong to T
- A forward edge is a non-tree edge (x, y) such that \triangleleft pre(y) < post(y) < post(x). pre(x)

Edges of G can be classified with respect to the DFS tree T as:

- Tree edges that belong to T
- A forward edge is a non-tree edges (x, y) such that pre(x) < pre(y) < post(y) < post(x).

• A backward edge is a non-tree edge (y, x) such that pre(x) < pre(y) < post(y) < post(x).

Edges of G can be classified with respect to the DFS tree T as:

- Tree edges that belong to T
- A forward edge is a non-tree edges (x, y) such that pre(x) < pre(y) < post(y) < post(x).
- A backward edge is a non-tree edge (y, x) such that pre(x) < pre(y) < post(y) < post(x).
- A cross edge is a non-tree edges (x, y) such that the intervals [pre(x), post(x)] and [pre(y), post(y)] are disjoint.

26

26

DFS and cycle detection Cycles in graphs

- Question: Given an undirected graph how do we check whether it has a cycle and output one if it has one? Reall T, spons V Coot of vertices) => of an edge is not m T, thon there is a cycle
- and output one if it has one?

• Question: Given an directed graph how do we check whether it has a cycle

Question: Given G, is it a DAG?

• If it is, compute a topological sort. If it fails, then output the cycle C.

Question: Given G, is it a DAG?

- If it is, compute a topological sort. If it fails, then output the cycle C.
 - Compute DFS(G).

Question: Given G, is it a DAG?

- - Compute DFS(G).
 - formed by path from u to v in T plus edge (v, u).

• If it is, compute a topological sort. If it fails, then output the cycle C.

• If there is a back edge e = (v, u) then G is not a DAG. Output cycle C

Question: Given G, is it a DAG?

- - Compute DFS(G).
 - formed by path from u to v in T plus edge (v, u).
 - Otherwise output nodes in decreasing post-visit order.

• If it is, compute a topological sort. If it fails, then output the cycle C.

• If there is a back edge e = (v, u) then G is not a DAG. Output cycle C

Question: Given G, is it a DAG?

- - Compute DFS(G).
 - formed by path from u to v in T plus edge (v, u).
 - Otherwise output nodes in decreasing post-visit order.
 - Note: no need to sort, DFS(G) can output nodes in this order!

• If it is, compute a topological sort. If it fails, then output the cycle C.

• If there is a back edge e = (v, u) then G is not a DAG. Output cycle C

С

Listing out the vertices in descending order of post-visit numbers gives:

Listing out the vertices in descending order of post-visit numbers gives:

Listing out the vertices in descending order of post-visit numbers gives:

C, B, A, E, G, D, F, H

Listing out the vertices in descending order of

Back edge and cycles

Proposition: G has a cycle \iff there is a back-edge in DFS(G).

Back edge and cycles

Proposition: G has a cycle \iff there is a back-edge in DFS(G).

path from v to u in DFS search tree and the edge (u, v).

- **Proof:** That (u, v) is a back edge implies there is a cycle C consisting of the

Proposition: G has a cycle \iff there is a back-edge in DFS(G).

Proof: That (u, v) is a back edge implies there is a cycle C consisting of the path from v to u in DFS search tree and the edge (u, v).

Only if: Suppose there is a cycle $C = v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k \rightarrow v_1$.

Back edge and cycles

Proposition: G has a cycle \iff there is a back-edge in DFS(G).

path from v to u in DFS search tree and the edge (u, v).

Only if: Suppose there is a cycle $C = v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k \rightarrow v_1$.

of v_i since they are reachable from v_i .

- **Proof:** That (u, v) is a back edge implies there is a cycle C consisting of the

 - Let v_i be first node in C visited in DFS. All other nodes in C are descendants

Back edge and cycles

- **Proposition:** G has a cycle \iff there is a back-edge in DFS(G).
- **Proof:** That (u, v) is a back edge implies there is a cycle C consisting of the path from v to u in DFS search tree and the edge (u, v).
- **Only if:** Suppose there is a cycle $C = v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k \rightarrow v_1$.
 - Let v_i be first node in C visited in DFS. All other nodes in C are descendants of v_i since they are reachable from v_i .
 - Therefore, (v_{i-1}, v_i) (or (v_k, v_1) if i = 1) is a back edge

Decreasing post-visit order is a TS Proposition: If G is a DAG and post(v) > post(u), then $(u \to v)$ is not in G.

Decreasing post-visit order is a TS

holds:

- **Proposition:** If G is a DAG and post(v) > post(u), then $(u \rightarrow v)$ is not in G.
- **Proof:** Assume post(u) < post(v) and $(u \rightarrow v)$ is an edge in G. One of two

Decreasing post-visit order is a TS

holds:

implies a cycle in G but G is assumed to be DAG.

Proposition: If G is a DAG and post(v) > post(u), then $(u \rightarrow v)$ is not in G.

Proof: Assume post(u) < post(v) and $(u \rightarrow v)$ is an edge in G. One of two

• Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)]. Implies that u is explored during DFS(v) and hence is a descendent of v. Edge (u, v)

Decreasing post-visit order is a TS for the graphe on the previous slieles **Proposition:** If G is a DAG and post(v) > post(u), then $(u \rightarrow v)$ is not in G.

holds:

- Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)]. Implies that u is explored during DFS(v) and hence is a descendent of v. Edge (u, v)implies a cycle in G but G is assumed to be DAG.
- Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)]. This cannot happen since v would have been explored from u.

Proof: Assume post(u) < post(v) and $(u \rightarrow v)$ is an edge in G. One of two

Strongly connected components (SCCs)

Algorithmic problem

Find all SCCs of a given directed graph.

of vertices B A Ε g # of edges G

Strongly connected components (SCCs) **Algorithmic problem** Find all SCCs of a given directed graph. **Previous lecture:** Saw an $O(n \cdot (n + m))$ time algorithm.

Strongly connected components (SCCs)

Algorithmic problem

Find all SCCs of a given directed graph.

Previous lecture: Saw an $O(n \cdot (n + m))$ time algorithm.

This lecture: Sketch of a O(n + m) time algorithm.

Linear time algorithm for finding all SCCs Finding all SCCs of a Directed Graph

Problem: Given a directed graph G = (V, E), output all its strong connected components. Straightforward algorithm:

Linear time algorithm for finding all SCCs Finding all SCCs of a Directed Graph

Problem: Given a directed graph G = (V, E), output all its strong connected components. Straightforward algorithm:

```
Mark all vertices in V as not visited.
for each vertex u \in V not visited yet do
```

> Discossed lad time find SCC(G, u) the strong component of u: Compute rch(G, u) using DFS(G, u)Compute rch(G^{rev} , u) using $DFS(G^{rev})$ SCC(G, u) \leftarrow rch(G, u) \cap rch(G^{rev} , u) ∀u ∈ SCC(G, u): Mark u as visited.

Linear time algorithm for finding all SCCs Finding all SCCs of a Directed Graph

Problem: Given a directed graph G = (V, E), output all its strong connected components. Straightforward algorithm:

> Mark all vertices in V as not visited. for each vertex $u \in V$ not visited yet do


```
find SCC(G, u) the strong component of u:
Compute rch(G, u) using DFS(G, u)
Compute rch(G^{rev}, u) using DFS(G^{rev}, u)
SCC(G, u) \leftarrow rch(G, u) \cap rch(G^{rev}, u)
\forall u \in SCC(G, u): Mark u as visited.
```

Linear time algorithm for finding all SCCs Finding all SCCs of a Directed Graph

Problem: Given a directed graph G = (V, E), output all its strong connected components. Straightforward algorithm:

> Mark all vertices in V as not visited. for each vertex $u \in V$ not visited yet do

Running time: O(n(n + m))

Question: Is there an O(n + m) time algorithm?

```
find SCC(G, u) the strong component of u:
Compute rch(G, u) using DFS(G, u)
Compute rch(G^{rev}, u) using DFS(G^{rev}, u)
SCC(G, u) \leftarrow rch(G, u) \cap rch(G^{rev}, u)
\forall u \in SCC(G, u): Mark u as visited.
```

Let $S_1, S_2, \ldots S_k$ be the strongly connected components (i.e., SCCs) of G. Denote graph of SCCs as G^{SCC} :

Let S_1, S_2, \ldots, S_k be the strongly connected components (i.e., SCCs) of G. Denote graph of SCCs as $G^{SCC'}$:

• Vertices of G^{SCC} are $S_1, S_2, \ldots S_k$

Let S_1, S_2, \ldots, S_k be the strongly connected components (i.e., SCCs) of G. Denote graph of SCCs as G^{SCC} :

- Vertices of G^{SCC} are $S_1, S_2, \ldots S_k$
- There is an edge (S_i, S_j) if there is some $u \in S_i$ and $v \in S_j$ such that (u, v) is an edge in G.

Let $S_1, S_2, \ldots S_k$ be the strongly connected components (i.e., SCCs) of G. Denote graph of SCCs as G^{SCC} :

- Vertices of G^{SCC} are $S_1, S_2, \ldots S_k$
- There is an edge (S_i, S_j) if there is some $u \in S_i$ and $v \in S_i$ such that (u, v) is an edge in G.

For any graph G, the graph

Reminder G^{SCC} is created by collapsing every strong connected component to a single vertex.

Proposition: For a directed graph G, its meta-graph G^{SCC} is a DAG.

is created by collapsing every strong connected component to a single vertex.

Wishful thinking algorithm

• Let u be a vertex in a sink SCC of G^{SCC} .

Wishful thinking algorithm

- Let u be a vertex in a sink SCC of G^{SCC} .
- Do DFS(u) to compute SCC(u).

Wishful thinking algorithm

- Let \underline{u} be a vertex in a sink SCC of G^{SCC} .
- Do DFS(u) to compute SCC(u).
- Remove SCC(u) and repeat.

Wishful thinking algorithm

- Let \underline{u} be a vertex in a sink SCC of G^{SCC} .
- Do DFS(u) to compute SCC(u).
- Remove SCC(u) and repeat.

Wishful thinking algorithm

- Let \underline{u} be a vertex in a sink SCC of G^{SCC} .
- Do DFS(u) to compute SCC(u).
- Remove SCC(u) and repeat.

Justification

DFS(u) only visits vertices (and edges) in SCC(u) since there are no edges coming out of a sink!

Wishful thinking algorithm

- Let \underline{u} be a vertex in a sink SCC of G^{SCC} .
- Do DFS(u) to compute SCC(u).
- Remove SCC(u) and repeat.

Justification

- DFS(u) only visits vertices (and edges) in SCC(u) since there are no edges coming out of a sink!
- DFS(u) takes time proportional to size of SCC(u).

- Let *u* be a vertex in a sink SCC of GSCC
- Do DFS(u) to compute SCC(u).
- Remove SCC(u) and repeat.

Wishful thinking algorithm 7 find ?? Justification

- DFS(u) only visits vertices (and edges) in SCC(u) since there are no edges coming out of a sink!
- DFS(u) takes time proportional to size of SCC(u).
- Therefore, total time O(n + m)!

Reminder G^{SCC} is created by collapsing every strong connected component to a single vertex.

Reminder G^{SCC} is created by collapsing every strong connected component to a single vertex.

On the right the SCC $\{G\}$ is a sink and the SCC $\{A, C, D\}$ is a source.

encoded in defails.

Think: a chieken ou egg problem. Questions Okay but ... **Question:** How do we find a vertex in a sink SCC of G^{SCC} ? Can we obtain an *implicit* topological sort of G^{SCC} without computing G^{SCC} ?

Questions Okay but ...

implicit topological sort of G^{SCC} without computing G^{SCC} ?

Answer: DFS(G) gives some information!

Question: How do we find a vertex in a sink SCC of G^{SCC} ? Can we obtain an

Questions Okay but ...

implicit topological sort of G^{SCC} without computing G^{SCC} ?

Answer: DFS(G) gives some information!

Claim: Let γ be the vertex with **maximum** post-visit numbering in DFS(G). Then v is in a SCC S, such that S is a source of G^{SCC} .

Question: How do we find a vertex in a sink SCC of G^{SCC} ? Can we obtain an

Questions Okay but ...

implicit topological sort of G^{SCC} without computing G^{SCC} ?

Answer: DFS(G) gives some information!

Then v is in a SCC S, such that S is a source of G^{SCC} .

Then v is in a SCC *S*, such that *S* is a **sink** of G^{SCC} .

- **Question:** How do we find a vertex in a sink SCC of G^{SCC} ? Can we obtain an
- **Claim:** Let v be the vertex with **maximum** post-visit numbering in DFS(G).
- **Claim:** Let v be the vertex with maximum post-visit numbering in $DFS(G^{rev})$. Les See plazza about why Grev 19 38

Reminder G^{SCC} is created by collapsing every strong connected component to a single vertex.

Reminder G^{SCC} is created by collapsing every strong connected component to a single vertex.

Reminder G^{SCC} is created by collapsing every strong connected component to a single vertex.

Source

Sink

On the right the SCC $\{G\}$ is a sink and the SCC $\{A, C, D\}$ is a source.

Linear Time SCC Algorithm

do DFS(G^{rev}) and output vertices in decreasing postvisit order. Mark all nodes as unvisited. for each u in the computed order do if u is not visited then DFS(u) Let S_u be the nodes reached by uOutput S_u as a strong connected component Remove S_u from G

Linear Time SCC Algorithm

do DFS(G^{rev}) and output vertices in decreasing postvisit order. Mark all nodes as unvisited. for each u in the computed order do if u is not visited then DFS(u) Let S_u be the nodes reached by uOutput S_u as a strong connected component Remove S_u from G

Theorem: Algorithm runs in time O(m + n) and correctly outputs all the SCCs of G.

DFS of reverse graph

[9,10]

Pre/Post **DFS** numbering of reverse graph

DFS of reverse graph

G annotated with G^{rev} 's post numbers

G annotated with G^{rev} 's post numbers

Do **DFS** from vertex G and remove it

G annotated with G^{rev} 's post numbers

Do **DFS** from vertex G and remove it

G annotated with G^{rev} 's post numbers

Do **DFS** from vertex G and remove it

Do **DFS** from vertex H and remove it

Do **DFS** from vertex H and remove it

SCC computed: {G}, {H}
Do **DFS** from vertex B and remove "it"

SCC computed: {G}, {H}

Do **DFS** from vertex *B* and remove "it"

SCC computed: {G}, {H} Remove visited vertices: {F, B, E}.

SCC computed: {G}, {H}, {F, B, E}

Do **DFS** from vertex A and remove "it".

SCC computed: {G}, {H}, {F, B, E}

Do **DFS** from vertex A and remove "it".

SCC computed: {G}, {H}, {F, B, E} Remove visited vertices: {A, C, D}.

Do **DFS** from vertex A and remove "it".

SCC computed: {G}, {H}, {F, B, E} Remove visited vertices: {A, C, D}.

Do **DFS** from vertex A and remove "it".

SCC computed: {G}, {H}, {F, B, E} Remove visited vertices: {A, C, D}.

SCC computed: {G}, {H}, {F, B, E}, {A,C,D}

Do **DFS** from vertex A and remove "it".

SCC computed: $\{G\}, \{H\}, \{F, B, E\}$

SCC computed: {G}, {H}, {F, B, E}, {A,C,D}

• DAGs and topological orderings.

- DAGs and topological orderings.
- **DFS** with pre/post numbering.

- DAGs and topological orderings.
- **DFS** with pre/post numbering.
- Given a directed graph G, its SCCs and the associated acyclic meta-graph G^{SCC} give a structural decomposition of G.

- DAGs and topological orderings.
- **DFS** with pre/post numbering.
- Given a directed graph G, its SCCs and the associated acyclic meta-graph G^{SCC} give a structural decomposition of G.
- There is a DFS based linear time algorithm to compute all the SCCs and the meta-graph.

- DAGs and topological orderings.
- **DFS** with pre/post numbering.
- Given a directed graph G, its SCCs and the associated acyclic meta-graph G^{SCC} give a structural decomposition of G.
- There is a DFS based linear time algorithm to compute all the SCCs and the meta-graph.
- DAGs arise in many application and topological sort is a key property in algorithm design. Linear time algorithms!