Directed graphs, DFS, DAGs,
TopSort

Sides based on material by Kani, Erickson, Chekuri, et. al.

All mistakes are my own! - lvan Abraham (Fall 2024)

Image by ChatGPT (probably collaborated with DALL-E)

Directed acyclic graphs

Definition

A directed graph G is called a
directed acyclic graph (DAG) if
there is no directed cycle in G.

Tellg ugw%@ﬁ GL & &1&@}9@@’ () @
AL OR Tndwected

No &clr 'f’“w@

%{f oL A d);a’:,ee}e,zd, &G .- a{&mhﬂ\%

Directed acyclic graphs
Is this a DAG?

Directed acyclic graphs
Is this a DAG?

(1) (4

Directed acyclic graphs

Sources and sinks

e Avertex /IS a If It has no
iINn-coming edges.

e Avertex iz is a sink if it has no
out-going edges

/

Sink

Directed acyclic graphs

Properties

Proposition: Every finite DAG G has at least one source and at least one sink.

Proof:

Let P = v, Vv,,...,V, be the longest path in G. We claim that v, is a source
and v, Is a sink.

Directed acyclic graphs

Properties

Proposition: Every finite DAG G has at least one source and at least one sink.

Proof:

Le@ Vi, V5, ..., V. De the longest path in (. We claim that v, is a source
and v, Is a sink.

For contradiction, suppose it is not. Then v;;has an incoming edge which
either creates a cycle or a longer path both of which are contradictions.

Directed acyclic graphs

Properties

Proposition: Every finite DAG G has at least one source and at least one sink.

Proof:

Let P =Wy, v,, ...,V be the longest path in . We claim that v, is a source
and v, Is a sink.

For contradiction, suppose it is not. Thenw, has an incoming edge which
either creates a cycle or a longer path both of which are contradictions.

Similarly so if v, has an outgoing edge.

Directed acyclic graphs

Properties

« GisaDAG ifand only if G'*" is a DAG.

» Recall G'“" is the graph G with orientation of all edges reversed.

Directed acyclic graphs

Properties

« GisaDAG ifand only if G'*" is a DAG.

» Recall G'“" is the graph G with orientation of all edges reversed.

» (5 is a DAG if and only each node is its own strongly connected component.

* |n other words, a (directed) graph is acyclic, iff it has no strongly connected
subgraphs with more than one vertex.

Topological ordering
Order on a set . \prec .
A strict total order on a set X is a binary relation < on X such that:

¢ < is transitive. ol = & ~

Topological ordering
Order on a set

A strict total order on a set X is a binary relation < on X such that:
e < Is transitive.

e Forany x,y € X, exactly one of the following holds:

Topological ordering
Order on a set

A stricttotal order on a set X is a binary relation < on X such that:

e < IS transitive.

e Forany x,y € X, exactly one of the following holds:

’x<y)or{<§corx=y

Topological ordering
Order on a set

A strict total order on a set X is a binary relation < on X such that:
e < s transitive.
e Forany x,y € X, exactly one of the following holds:
x<yory<xorx =y

e Cannot have x;,...,x, € X,suchthatx; <x,,...,x, _; <x, A and

‘v 'm—1 m
X, < Xi. — = -)

Note about convention

 We will consider the following notations equivalent
* Undirected graph edges:
w ={u,v} =vu ek

* Directed graph edges:

u—->v = Wv) = (u-v)

s D\W el de Tl . ok
| wdl vie ew ol pecls-

Topological ordering/sorting
Definition Ergih L odgee 508
Hov

—

A topological ordering / topological sortingV w “\Q\/y\@(ﬂﬂejbv o U
of G = (V, E) is an ordering < on V such
that if (u — v) € Ethenu < v.

Topological ordering/sorting

Definition

A topological ordering / topological sorting
of G = (V, E) is an ordering < on V such
that if (u — v) € E thenu < v.

Graph G

Topological ordering/sorting

Definition

A topological ordering / topological sorting
of G = (V, E) is an ordering < on V such

that if (u — v) € E thenu < v. C
~_— L _—) @

Graph G
3—4

_—% Topological Ordering of G

Topological ordering/sorting

Definition

A topological ordering / topological sorting
of G = (V, E) is an ordering < on V such
that if (u — v) € E thenu < v.

@O—®

Graph G

Informal equivalent definition: /’\

One can order the vertices of the graph along a e

a line (say the x-axis) such that all edges are

from left to right. | |
Topological Ordering of G

Topological ordering In linear time

Exercise

Show algorithm can be implemented in O(m + n) time

Simple algorithm:

 Count the in-degree of each vertex

10

Topological ordering In linear time

Exercise

Show algorithm can be implemented in O(m + n) time

Simple algorithm:

 Count the in-degree of each vertex

» For each vertex that is source, i.e., deg; (v) = 0:

10

Topological ordering In linear time

Exercise

Show algorithm can be implemented in O(m + n) time

Simple algorithm:/ N OQ edesg cw% e

 Count the in-degree of each vertex

» For each vertex that is source, i.e., deg; (v)

 Add v to the topological sort

10

Topological ordering In linear time

Exercise

Show algorithm can be implemented in O(m + n) time

Simple algorithm:

 Count the in-degree of each vertex

» For each vertex that is source, i.e., deg; (v) = 0:

 Add v to the topological sort

 |Lower degree of vertices v Is connected to.

10

(h
Topological sort W
Example)m WACMAE o /

Adjacency List: Generate deg;,(v):
6 B) Node | Neighbors Degree Vertices For each vertex that is
\l A D E 0 A B E D source (deg, (v) = 0):
v B E
1 D F G Add v to the
D E C ogical
topological sort
2 E H
l l D F
* Lower degree of
F G E H G vertices v is
l F H connected to.
G
H H

Topological Ordering:

11

Topological sort

Example

N\
o/
|

Topological Ordering:

QO j—— mj«—— W

Adjacency List:

Node Neighbors

A D E

B E

C

D F

E H G

F H

G

H

Generate deg;, (v):

Degree Vertices
:
1 D F G
2 E H

11

For each vertex that is
source (deg;,(v) = 0):

« Add v to the
topological sort

* Lower degree of

vertices v Is
connected to.

Topological sort

Generate deg;, (v):

Example
Adjacency List:
A o C Node | Neighbors
A D E
B E
D E C
I
| 1 —D | F
. o E/| H G
F H
l ;
H H

Topological Ordering:

}

For each vertex that is
source (deg;,(v) = 0):

« Add v to the
topological sort

* Lower degree of

vertices v Is
connected to.

Topological sort

Example

N\
%
|

Topological Ordering:

QO jJ—— mj«—— W

Adjacency List:

Node Neighbors

A D E

B E

C

D F

E H G

F H

G

H

Generate deg;, (v):

Degree Vertices
1 | D F/@/
2 E H

11

For each vertex that is
source (deg;,(v) = 0):

« Add v to the
topological sort

* Lower degree of

vertices v IS
connected to.

Topological sort

Example
Adjacency List:
A o C Node | Neighbors
1\ l A D E
B E
*FD ‘/l-E/ C
T /] L
= G E H G
l F H
G
H H

Topological Ordering:

Generate deg;, (v):

Degree Vertices
0 B C|D
1 F G E
2 H

11

For each vertex that is
source (deg;,(v) = 0):

« Add v to the
topological sort

* Lower degree of

vertices v IS
connected to.

Topological sort

Example

ITI
-

Q)

I<—'n<—D<—:(>
—

Topological Ordering:

Adjacency List:

Node Neighbors

A D E

B E

C

D F

E H G

F H

G

H

A B

Generate deg;, (v):

Degree Vertices
1 F G'E
2 H

11

For each vertex that is

source (deg; (v) =

« Add v to the
topological sort

* Lower degree of

vertices v Is
connected to.

Repeat the steps
again.

0):

Topological sort

Example

N\
%
|

Topological Ordering:

QO jJ—— mj«—— W

Adjacency List:

Node Neighbors

A D E

B E

C

D F

E H G

F H

G

H

A B

Generate deg;, (v):

Degree Vertices
0 AC DcE
1 F G
2 H

11

For each vertex that is
source (deg;,(v) = 0):

« Add v to the
topological sort

* Lower degree of

vertices v Is
connected to.

Repeat the steps
again.

Topological sort

Example

N\
%
|

Topological Ordering:

QO j—— mj«—— W

Adjacency List:

Node Neighbors

A D E

B E

C

D F

E H G

F H

G

H

A B C

Generate deg;, (v):

Degree Vertices
0 A BD E
1 F G
2 H

11

For each vertex that is
source (deg;,(v) = 0):

« Add v to the
topological sort

* Lower degree of

vertices v Is
connected to.

Repeat the steps
again.

Topological sort

Example
Adjacency List: Generate deg;, (v):
A B C Node | Neighbors Degree Vertices
l \ l A |DE 0 |AB CEE
B | E
D E C 1 F e/
I l 5 | F 2 g
"D G E |HG
\1/ F | H
G
H H

Topological Ordering:

11

For each vertex that is
source (deg;,(v) = 0):

« Add v to the
topological sort

* Lower degree of

vertices v Is
connected to.

Repeat the steps
again.

Topological sort

Example

N\
%
|

Topological Ordering:

QO jJ—— mj«—— W

Adjacency List:

Node Neighbors

A D E

B E

C

D F

E H G

F H

G

H

A B C

Generate deg;, (v):

11

Degree Vertices
o [A 5 o]
1 G
2 H
D

For each vertex that is
source (deg;,(v) = 0):

« Add v to the
topological sort

* Lower degree of

vertices v Is
connected to.

Repeat the steps
again.

Topological sort

Example

Adjacency List: Generate deg;, (v):
A B C Node | Neighbors Degree Vertices
l l A | DE 0o |ABGC DF
5 = 1 G
D E c
[/] > | e | @
. G E | HG
l F | H
G
(W) v

Topological Ordering:

11

For each vertex that is
source (deg;,(v) = 0):

« Add v to the
topological sort

* Lower degree of

vertices v Is
connected to.

Repeat the steps
again.

Topological sort

Example

N\
%
|

Topological Ordering:

QO j—— mj«—— W

Adjacency List:

Node Neighbors

A D E

B E

C

D F

E H G

F H

G

H

A B C

Generate deg;, (v):

11

Degree Vertices
1 H
2
D E

For each vertex that is
source (deg;,(v) = 0):

« Add v to the
topological sort

* Lower degree of

vertices v Is
connected to.

Repeat the steps
again.

Topological sort

Example

N\

-’

QO jJ—— mj«—— W

T
|
1

Topological Ordering:

Adjacency List:

Node Neighbors

A D E

B E

C

D F

E H G

F H

G

H

A B C

Generate deg;, (v):

Degree Vertices
o |ABCDEHF
| &
2
D E F

11

For each vertex that is
source (deg;,(v) = 0):

« Add v to the
topological sort

* Lower degree of

vertices v Is
connected to.

Repeat the steps
again.

Topological sort

Example

N\
%
|

Topological Ordering:

QO j—— mj«—— W

Adjacency List:

Node Neighbors

A D E

B E

C

D F

E H G

F H

G

H

A B C

Generate deg;, (v):

11

Degree Vertices
3
2
D E F

For each vertex that is
source (deg;,(v) = 0):

« Add v to the
topological sort

* Lower degree of

vertices v Is
connected to.

Repeat the steps
again.

Topological sort

Example

N\
%
|

Topological Ordering:

QO j—— mj«—— W

Adjacency List:

Node Neighbors

A D E

B E

C

D F

E H G

F H

G

H

A B C

Generate deg;, (v):

11

Degree Vertices
o |ABCDEHGH
3
2
D E F

For each vertex that is
source (deg;,(v) = 0):

« Add v to the
topological sort

* Lower degree of

vertices v Is
connected to.

Repeat the steps
again.

Topological sort

Example

Adjacency List: Generate deg;,(v):

A B C Node = Neighbors | | Degree Vertices For each vertex that is
l\l A [DE 0 ABCODE F source (deg;, (v) = 0):

B E
D E 1 e Add v to the

C topological sort

2
l l D F
* Lower degree of

F G E H G vertices v Is
l F H connected to.

G Repeat the steps
; H again.

Topological Ordering:

11

Topological sort

QO jJ—— mj«—— W

N\
o/
|

Topological Ordering:

Node Neighbors

A D E

B E

C

D F

E H G

F H

G

H

Degree Vertices
0 A B CDETFGH
:
2

12

For each vertex that is
source (deg;,(v) = 0):

« Add v to the
topological sort

* Lower degree of

vertices v Is
connected to.

Multiple possible topological orderings

QO j—— mj«—— W

T)«—— TN)e—— QO |J—— >

Multiple possible topological orderings

QO j—— mj«—— W

T)«—— TN)e—— QO |J—— >

Multiple possible topological orderings

.
SEWOWO Ill && 6) (W

© @& o r W W m &

c

DAGs and topological ordering

* Note: A DAG G may have many different topological sorts.

 Exercise: What is a DAG with the most number of distinct topological sorts

given 7 vertices? s emuos Gk
Lomghebely (s ﬁ%ﬁ

 Exercise: What is a DAG with the least number of distinct topological sorts

. S . -
for given 1 vertices" i «y(,@{b» ol & o ngk (ou, /u/@v\r>

14

Direct topological ordering

TopSort (G):
Sorted <« NULL
degin[l .. n] <« —1
Tdegin[l .. n] <« NULL

for each edge xy in G do
degin[y]++

for each vertex v in G do
Tdegin[degin[V]].append(v)

while (Tdegin[0] is non-empty) do
Remove node x from Tdegin[O0]
Sorted.append(x)
for each edge xy in Adj(x) do
—
€gin|lVY |—=
ove O Tdegin[degin[V]]
Output Sorted

15

DAGs and topological ordering

otk oS o gl

Lemma: A directed graph G can be topologically ordered =— G is a DAG.

Proof: Proof by contradiction. Suppose G is not a DAG and has a topological

ordering < . Since G is not a DAG, WLOG, take a cycle:
-

16

DAGs and topological ordering

Lemma: A directed graph G can be topologically ordered = G is a DAG.

Proof: Proof by contradiction. Suppose G is not a DAG and has a topological
ordering < . Since G is not a DAG, WLOG, take a cycle:

C=u —=>u—... > U — U

16

DAGs and topological ordering

Lemma: A directed graph G can be topologically ordered = G is a DAG.

Proof: Proof by contradiction. Suppose G is not a DAG and has a topological
ordering <. Since (- is not a DAG, WLOG, take a cycle:

Thenu1-<u2 < U < Uy ﬁ@% cwhalwas'

16

DAGs and topological ordering

Lemma: A directed graph G can be topologically ordered = G is a DAG.

Proof: Proof by contradiction. Suppose G is not a DAG and has a topological
ordering < . Since G is not a DAG, WLOG, take a cycle:

C=u —u— ... > U — U
Thenul<u2<...<l/tk<u1=>I/t1<u1 4S5 (,(1=LC—,

A contradiction (to < being an order). Not possible to topologically order the
vertices. —

16

DFS in undirected graphs

Deep Dive into Depth First Search (DDIDFS?)

 Recall DFS is a special case of BasicSearch.

DFS in undirected graphs

Deep Dive into Depth First Search (DDIDFS?)

 Recall DFS is a special case of BasicSearch.

 DFS is useful in understanding graph structure.

17

DFS in undirected graphs

Deep Dive into Depth First Search (DDIDFS?)

 Recall DFS is a special case of BasicSearch.

 DFS is useful in understanding graph structure.

» DFS also used to obtain linear time (O(m + n)) algorithms for

17

DFS in undirected graphs

Deep Dive into Depth First Search (DDIDFS?)

 Recall DFS is a special case of BasicSearch.

 DFS is useful in understanding graph structure.

» DFS also used to obtain linear time (O(m + n)) algorithms for

* Finding cycles, search trees, etc.
/__- e —————S

17

DFS in undirected graphs

Deep Dive into Depth First Search (DDIDFS?)

 Recall DFS is a special case of BasicSearch.

 DFS is useful in understanding graph structure.

» DFS also used to obtain linear time (O(m + n)) algorithms for
* Finding cycles, search trees, etc.

* Finding strong connected components of directed graphs

17

DFS in undirected graphs

Deep Dive into Depth First Search (DDIDFS?)

 Recall DFS is a special case of BasicSearch.

 DFS is useful in understanding graph structure.

» DFS also used to obtain linear time (O(m + n)) algorithms for
* Finding cycles, search trees, etc.
* Finding strong connected components of directed graphs

e ...many other applications as well.

17

Recursive DFS

Recursive version commonly implemented, has some desirable properties.

= G-
DFS(G) :
for all u e V(G) do
Mark u as unvisited
Set pred(u) to null
I is set to 9
while d unvisited u do

DEFS (u) W

Output 7

18

Recursive DFS

Recursive version commonly implemented, has some desirable properties.

DFS(G): DFS (u) :

for all u e V(G) do Mar@ visited &—

Mark 1 as unvisited for each v € Out(u) do

Set pred(u) to null if v is not visited then
I is set to @ add edge u —>v to T
while d unvisited u do set pred(v) to u

DFS (u) DFS (V)

Output 7

18

Recursive DFS

Recursive version commonly implemented, has some desirable properties.

DFS(G): DFS (u) :
for all u e V(G) do Mark u as visited
Mark 1 as unvisited for each v € Out(u) do
Set pred(u) to null if v is not visited then
I is set to @ add edge u —>v to T
while d unvisited u do set pred(v) to u
DFS (u) DFS (V)

Implemented using a global array Visited for all recursive calls@ the search
tree.

18

PO, Pk 7 ﬁ(mw
DFS with pre-post numbering

DFS with pre-post numbering

Time =0

Vertex

[Pre, Post]

DFS with pre-post numbering

Time =1

Vertex [Pre, Post] @

DFS with pre-post numbering

Time =1
Vertex [Pre, Post]
o T () OO
SR
(4 5 OO

O

DFS with pre-post numbering

Time =2

Vertex [Pre, Post]
1 1,]

DFS with pre-post numbering

Time =2

Vertex [Pre, Post]
1 1,
2 2, .

DFS with pre-post numbering

Time =3
Vertex [Pre, Post]
1 1,
2 2, .

DFS with pre-post numbering

Time =3

Vertex [Pre, Post]
1 1,]
2 2,
4 3,

DFS with pre-post numbering

Time =4
Vertex [Pre, Post]
1 1,
2 2, .
4 3, .

DFS with pre-post numbering

Time =4

Vertex [Pre, Post]
; .

T e |N|=

2
4
5

DFS with pre-post numbering

Time =5

Vertex [Pre, Post]
; .

T e |N|=

2
4
5

DFS with pre-post numbering

Time =5

Vertex [Pre, Post]
; .

o 6|~ DN
TE|B (S |=

DFS with pre-post numbering

Time =06

Vertex [Pre, Post]
; .

o 6|~ DN
TE|B (S |=

DFS with pre-post numbering

Time =06

Vertex [Pre, Post]
; .

o oA~
TE|B|S|=

DFS with pre-post numbering

Time =06

Vertex [Pre, Post]
1

o oA~
TE|B|S|=

DFS with pre-post numbering

Time=7

Vertex [Pre, Post]
1

o oA~
TE|B|S|=

DFS with pre-post numbering

Time =7
Vertex [Pre, Post]
T O O @
2 2,
. 7N
s | 0—0
6 5, 6] / \ /

O—0O ©

®

DFS with pre-post numbering

Time=7
Vertex [Pre, Post]
. OO
. /G\
s O —0
e | e /7N
st @—@ W e

®

DFS with pre-post numbering

Time =8
Vertex [Pre, Post]
. OO
. /G\
s O —0
o | be o/
L —0 e

®

DFS with pre-post numbering

Time =8

Vertex [Pre, Post]
; .

W o ;AP
N OB~ iINd =

DFS with pre-post numbering

Time =8

Vertex [Pre, Post]
1

N W o |0 AN
®|N|T| R | S|=

DFS with pre-post numbering

Time=9

Vertex [Pre, Post]
1

N W o |0 AN
®|N|T| R | S|=

DFS with pre-post numbering

Time=9

Vertex [Pre, Post]
1

N W o |0 AN
®|N|T| R | S|=

DFS with pre-post numbering

Vertex [Pre, Post]
1 1,]
2 2,
4 3,
5 4, .
6 5, 6]
3 7,]
7 8,

DFS with pre-post numbering

Vertex [Pre, Post]
1 1,]
2 2,

4 3,
5 4,
6 5, 6
3 7,
7 8,
8 9,

DFS with pre-post numbering

Vertex [Pre, Post]
1 1,]
2 2,

4 3,
5 4,
6 5, 6
3 7,
7 8,
8 9,

DFS with pre-post numbering

Time =10

Vertex [Pre, Post]
; .

O IN W O | G~ D
W oo N O~
o

DFS with pre-post numbering

Time =10

Vertex [Pre, Post]
; .

/® T

/ N /

®—®

8) (9

O IN W O | G~ D
W oo N O~
o

é
ga}n‘cwe o .

DFS with pre-post numbering

Time =10

Vertex [Pre, Post]
1

O IN W & 01 A~
W oo N O~
1

o (@))

DFS with pre-post numbering

Time =11

Vertex [Pre, Post]
I) ©
. A
e O—0
6 :5, 6 | / \ /
. O—0O 0

®

DFS with pre-post numbering

Time =11

Vertex [Pre, Post]
1 1,
2 2,
4 3,
5 4,
6 5, 6]
3 7
7 8,11
8 9,10

o1

7

O—0

®

O

O

DFS with pre-post numbering

Time =12

Vertex [Pre, Post]
1 1,
2 2,
4 3,
5 4, .
6 5, 6]
3 7
7 8,11]
8 9,10 |

DFS with pre-post numbering

Time =12

Vertex [Pre, Post]
1 1,]
2 2,
4 3,
5 4,
6 5, 6]
3 7,12
7 8,11]
8 9,10 |

DFS with pre-post numbering

Time =13
Vertex [Pre, Post]
1 1,
2 2,
4 3,
5 4,
6 5, 6]
3 7,12]
7 8,11
8 9,10

DFS with pre-post numbering

Time =13

Vertex [Pre, Post]

1 1,
2,
3,
4,13
S, 6
7,12
8,11]
9,10 |

O IN W & O |~ DN

DFS with pre-post numbering

Time = 14

Vertex [Pre, Post]

1 1,
2,
3,
4,13
S, 6
7,12
8,11]
9,10 |

O IN W & O |~ DN

DFS with pre-post numbering

Time =14
Vertex [Pre, Post|
1 1,
2 2,
4 3,14
5 4,13]
6 5, 6]
3 7,12]
7 8,11
8 9,10

DFS with pre-post numbering

Time =15
Vertex [Pre, Post|
1 1,
2 2,
4 3,14
5 4,13]
6 5, 6]
3 7,12]
7 8,11
8 9,10

O,
£
Aot

‘9

O

DFS with pre-post numbering

Time =15
Vertex [Pre, Post|
1 1,
2 2,15]
4 3,14
5 4,13]
6 5, 6]
3 7,12]
7 8,11
8 9,10

O,
£
Aot

‘9

O

DFS with pre-post numbering

Time =16

Vertex [Pre, Post]

1 1,
2,15]
3,14 |
4,13
S, 6
7,12
8,11]
9,10 |

O IN W & O |~ DN

DFS with pre-post numbering

Vertex [Pre, Post]

1 1,
2,15]
3,14 |
4,13
S, 6
7,12
8,11]
9,10 |

O IN W & O |~ DN

DFS with pre-post numbering

Vertex [Pre, Post]

1 1,16
2,15]
3,14 |
4,13
S, 6
7,12
8,11]
9,10 |

O IN W & O |~ DN

DFS with pre-post numbering

Time = 20 (skipped a few steps)

Vertex [Pre, Post]
1 1, 16]
2 2, 15]
4 3, 14]
5 4, 13]
6 5,0
3 7, 12]
7 8, 11]
8 9, 10]
9 17, 20]
10 18, 19

DFS with pre-post numbering

N
Vertex | [Pre, Post] TIIQXSQ 'f[WQ, SX'&N‘PS’ LI O—be

1 1, 16 \O 73 ~&ﬁQ

2 2,15 — ‘0@ ¢ LLC}L)

+ | B e (Weal of ©W

5 4,13 e

5 . 6 Ao Lodl DFS(‘\Q oL O

3 7,12 e amhwe Skl (ECEZ?A‘D

7 8, 11]

8 9, 10 .’-—%

- -

9 [17, 20]

10 [18, 19]

“I 2 3 4 |5 16 |7 8 |9 10 |11 112 113 (14 (15 |16 |17 (18 119 |20

M\,aﬂcewg &
b Vs ipe
‘/,nB ,kv\s W

DFS in directed graphs

Exercise - do DFS on this graph and verify search tree
—

DFS in directed graphs

Exercise - do DFS on this graph and verify search tree

B\Av’\c\ 2,11] (B)e—{ A)—»(c) [12,15
/E — A\F D [3,10]/5 —p(F) [6,7] D) [13,14]
\ \(13 > H/ \l 14,5] '/

ij G</, H) [8,9]

Directed DFS with pre/post numbering

e DFS(G) takes O(m + n) time.

Directed DFS with pre/post numbering

e DFS(G) takes O(m + n) time.

 Edges added form a branching: a forest of out-trees.

Directed DFS with pre/post numbering

e DFS(G) takes O(m + n) time.

 Edges added form a branching: a forest of out-trees.

%

 Qutput of DFS(G) depends on the order in which vertices are considered.

“

24

Directed DFS with pre/post numbering
—_— \;\,JMQ)('OOQ

eV , £ @L
\m}l e ue}‘&}
e DFS(G) takes O(m + n) time. " LOV'

 Edges added form a branching: a forest of out-trees.

 Qutput of DFS(G) depends on the order in which vertices are considered.

* If i is the first vertex considered by DFS(G) then DFS(u) odte

i=iw ohkected
out-tree / rooted at i and a vertex v is in /' if and onlyA

24

Directed DFS with pre/post numbering

e DFS(G) takes O(m + n) time.
 Edges added form a branching: a forest of out-trees.

 Qutput of DFS(G) depends on the order in which vertices are considered.

o |If 1 is the first vertex considered by DFS(G) then DFS(u) outputs a directed
out-tree 7 rooted at 1 and a vertex visin T if and only if v € rch(u)

« For any two vertices x, y the intervals [pre(x), post(x)]and [pre(y), post(y)]

are either disjoint or one is contained in the other.
-_——m

(5 Ak ol e Sewime Sloek W\

DFS trees and edge types

Edge classisifcations

Edges of G can be classified with respect to the DFS tree 7" as:

25

DFS trees and edge types

Edge classisifcations

Edges of G can be classified with respect to the DFS tree 7" as:

* Tree edges that belong to 1

—— ’) }

Backward . v Forward
LKW AT

25

DFS trees and edge types

Edge classisifcations

Edges of G can be classified with respect to the DFS tree 7" as:

* Tree edges that belong to 1

) such that

25

DFS trees and edge types

Edge classisifcations

Edges of G can be classified with respect to the DFS tree 7" as:

* Tree edges that belong to 1 |
r; \ !

» A forward edge is a non-tree edges (x, y) such that sackward ¢ ', Forward

pre(x) < pre(y) < post(y) < post(x).

* A backward edge is a non-tree edgeuch that

—p pre(x) < pre(y) < post(y) < post(x).

25

DFS trees and edge types

Edge classisifcations

Edges of G can be classified with respect to the DFS tree 7" as:

* Tree edges that belong to 1 |
r; \ !

» A forward edge is a non-tree edges (x, y) such that sackward ¢ ', Forward

pre(x) < pre(y) < post(y) < post(x).

« A backward edge is a non-tree edge (y, x) such that
pre(x) < pre(y) < post(y) < post(x).

A cross edge is a non-tree edges (x, y) such that the

intervals [pre(x), post(x)] and | pre(y), post(y)] are disjoint.
. | g D

25

Types of edges

[1,10]

[13,14]

3,10] ﬁ@ﬁ)
v [4,5]

O=NoF

Types of edges

[3,10]

[1,10]

i e ' () . Qﬂw] Back edges
[13,14]

@W
v [4,5]

O=NoF

Types of edges

[1,10]

[2,11] 12,15]
e ¢ () . Back edges

[
\ Forward edges
<:::)[6J] [13,14]
[4,9]

@>4/, [8,9]

[3,10]

<

26

Types of edges

Back edges

Forward edges / (9%&

Cross edges

26

R S
DFS and cycle detection

Cycles in graphs @>g>>

* Question: Given an undirected graph how do we check whether it has a cycle
and output one if it has one?

Ree T'f;(xwg MCMU(W@):‘; c@om @%Q,XQ
et w1 Now Trae & a wele

* Question: Given an directed graph how do we check whether it has a cycle
and output one if it has one?

27

Cycle detection in directed graphs

Use topological sorts

Question: Given G, is it a DAG?

e If it is, compute a topological sort. If it fails, then output the cycle C.

28

Cycle detection in directed graphs

Use topological sorts

Question: Given G, is it a DAG?

o Ifitis, compute a topological sort. If it fails, then output the cycle C.
« Compute DFS(G).

28

Cycle detection in directed graphs

Use topological sorts

Question: Given G, is it a DAG?

o Ifitis, compute a topological sort. If it fails, then output the cycle C.
« Compute DFS(G).

o If there is a back edge ¢ = (v, 1) then G is not a DAG. Output cycle C
formed by path from 1 to v in 7 plus edge (v, u).

28

Cycle detection in directed graphs

Use topological sorts

Question: Given G, is it a DAG?

e If it is, compute a topological sort. If it fails, then output the cycle C.
« Compute DFS(G).

» If there is a back edge ¢ = (v, 1) then G is not a DAG. Output cycle C
formed by path from 1 to v in 7 plus edge (v, u).

* Otherwise output nodes in decreasing post-visit order.

28

Cycle detection in directed graphs

Use topological sorts

Question: Given G, is it a DAG?

o Ifitis, compute a topological sort. If it fails, then output the cycle C.
« Compute DFS(G).

o If there is a back edge ¢ = (v, 1) then G is not a DAG. Output cycle C
formed by path from 1 to v in 7 plus edge (v, u).

* Otherwise output nodes in decreasing post-visit order.

* Note: no need to sort, DFS(() can output nodes in this order!

28

Topological sort a graph using DFS

Example

AN

Listing out the vertices in descending order of
post-visit numbers gives:

|
|

T)—{n)—{ 0O)—>

Topological sort a graph using DFS

Example
wir Listing out the vertices in descending order of
Y, A B’- | 2 115 1‘é] post-visit numbers gives:
\ L/
2,7 T E} [8,11]
3, (6] 9,10]

4, 5] H

29

Topological sort a graph using DFS

Example
13,14] Listing out the vertices in descending order of
1.12] (A n > [15.16] post-visit numbers gives:
1\1 C,B,AE G,D,F H
2,71 \ P E) [8,11]
[3,6] | F G [9,10]
4, 5] H

29

Topological sort a graph using DFS

Example
13,14] Listing out the vertices in descending order of
1.12] (A n > [15.16] post-visit numbers gives:
1\1 C,B,AE G,D,F H
2,71 \ P E [8,11] @ @{\GD/_\
3,6] | F G [9,10]
4, 5] H

29

Topological sort a graph using DFS

Example

Listing out the vertices in descending order of
[11, 16] 19,10]

w2 (A /' .] post-visit numbers gives:
C,B,AJE, G, D,FH
[12, 15] \ [2 7]

4=z \ P
[13, 14] 3, 4] @ e ° G e @{\G)/_\

Lok F G) It

5,6 l

B (H

29

Topological sort a graph using DFS

Example
, 8]

11,98 ::14] 910 Listing out the vertices in descending order of
12 . n D | 5.4 post-visit numbers gives:

[\ C.B,AE G,D,FH
[12, 15] 2, 7]
2,71 \ P E) [8,11]
13, 14] l l 3, 4] @ e e G e @{\G)/_\
3,6] (F G) [9,10]
5,6] 1
oSO GENOINCINGENOING

29

Back edge and cycles

Proposition: G has a cycle < there is a back-edge in

Back edge and cycles

Proposition: G has a cycle < there is a back-edge in

Proof: That (1, v) is a back edge implies there is a cycle C consisting of the
path from v to u in search tree and the edge (u, V).

30

(e /
Back edge and cycﬁ w%newﬁf “”‘3 . Weﬁs

Proposition: G has a cycle < there is a back-edge in

Proof: That (1, v) is a back edge implies there is a cycle C consisting of the
path from v to u in search tree and the edge (u, V).

Only if: Suppose thereisacycle C = v, = v, = ... = Vv, = V.

30

Back edge and cycles

Proposition: G has a cycle < there is a back-edge in

Proof: That (1, v) is a back edge implies there is a cycle C consisting of the
path from v to u in search tree and the edge (u, V).

Only if: Suppose thereisacycle C =v, = v, = ... = v, = V.

Let v; be first node in C visited in . All other nodes in C are descendants
of v; since they are reachable from v..

30

Back edge and cycles

Proposition: G has a cycle < there is a back-edge in

Proof: That (1, v) is a back edge implies there is a cycle C consisting of the

path from v to u in search tree and the edge (u, V).
Only if: Suppose there is =V >V, > ... >V, > V.
Let v; be first node in C visited in . All other nodes in C are descendants

of v; since they are reachable from v..

Therefore, (v;_;,Vv;) (or (v, v,) if 1 = 1) is a back edge
AN— o——»

30

Decreasing post-visit orderis a TS
HS>—

Proposition: If G is a DAG and post(v) > post(u«), then (v — v) is not i@
p post(v) > post(u), then ()

Decreasing post-visit orderis a TS

Proposition: If G is a DAG and post(v) > post(u), then (. — Vv) is not in G.

Proof: Assume post(#) < post(v) and (# — Vv) is an edge in G. One of two
holds:

Decreasing post-visit orderis a TS

Proposition: If G is a DAG and post(v) > post(u), then (. — Vv) is not in G.

———
Proof: Assume post(#) < post(v) and (1 — V) is an edge in G. One of two
holds: -]

. > L |pre(u), post(u)] is contained in [pre(v), post(v)]. Implies tha@s
explored during DF5(v) and hence is a descendent of v. Edge (u, V)
implies a cycle in G but G is assumed to be DAG.

31

Vardfy e Lo led

-visitorderisa TS & T §<

2
owve Pt Stiadec

Proposition: If G is a DAG and post(v) > post(u), then (. — Vv) is not in G.

Decreasing post

Proof: Assume post(#) < post(v) and (# — Vv) is an edge in G. One of two
holds:

o |pre(u), post(u)] is contained in [pre(v), post(v)]. Implies that u is
explored during DFS(v) and hence is a descendent of v. Edge (u, v)
implies a cycle in G but G is assumed to be DAG.

. |pre(u), post(u)] is disjoint from [pre(v), post(v)]. This cannot
happen since v would have been explored from .

31

Strongly connected components (

Algorithmic problem

Find all s of a given directed graph.

Strongly connected components (s)
Algorithmic problem #)Oé) vestiees

B A
Find all s of a given direct?d graph.
Previous lecture: Saw an O(n. (n + m)) time

algorithm. &3 : :
off edkes

Strongly connected components (

Algorithmic problem

Find all s of a given directed graph.

Previous lecture: Saw an O(n. (n + m)) time
algorithm.

This lecture: Sketch of a O(n + m) time algorithm.

/7

Linear time algorithm for finding all
Finding all SCCs of a Directed Graph

Problem: Given a directed graph G = (V, E), output all its strong connected components.

Straightforward algorithm:

33

Linear time algorithm for finding all
Finding all SCCs of a Directed Graph

Problem: Given a directed graph G = (V, E), output all its strong connected components.

Straightforward algorithm:

Mark all vertices in V as not visited.

for each vertex u €V not visited yet do / DL&CDGQQCQ

find (G, u) the strong component of u: -
Compute rch(G, u) using DFYG, ‘QC"QF W
Compute rch(G'™ , u) using DFS)

(G, u) < rch(G, u) N rch(G™ , u)
Yu € (G, u): Mark u as visited.

33

Linear time algorithm for finding all
Finding all SCCs of a Directed Graph

Problem: Given a directed graph G = (V, E), output all its strong connected components.

Straightforward algorithm:

Mark all vertices in V as not visited.
for each vertex u €V not visited yet do
find (G, u) the strong component of u:
Compute rch(G, u) using DFS(G,u)
Compute rch(G'™ , u) using DFS(G'®, u)
(G, u) <€ rch(G, u) N rch(G™ , u)
Yu € (G, u): Mark u as visited.

Running time: O(n(n + m))

33

Linear time algorithm for finding all
Finding all SCCs of a Directed Graph

Problem: Given a directed graph G = (V, E), output all its strong connected components.

Straightforward algorithm:

Mark all vertices in V as not visited.
for each vertex u €V not visited yet do
find (G, u) the strong component of u:
Compute rch(G, u) using DFS(G,u)
Compute rch(G'™ , u) using DFS(G'®, u)
(G, u) <€ rch(G, u) N rch(G™ , u)
Yu € (G, u): Mark u as visited.

Running time: O(n(n + m))

Question: Is there an O(n + m) time algorithm?

33

S

Graph of

Meta-graph of S T T
Let 5, 9,, .. .9, be the strongly connected

components (i.e., SCCs) of . Denote

graph of sas G ¢

34

S

Graph of

Meta-graph of S

Let 5, 9,, .. .9, be the strongly connected
components (i.e., SCCs) of G. Denote

graph of sas G ¢

. Vertices of G°“C are S, 5,, ..

S,

34

B,E, F

A C,D

Graph of

Meta-graph of S

Let 5, 9,, .. .9, be the strongly connected

components (i.e., SCCs) of G. Denote
graph of sas G ¢

. Vertices of G°C are S, 5,,...S,

» There is an edge (.5, Sj) if there is some

u e 5;and v € 5 such that (1, v) is an l \ l

edge in G.

34

S

Graph of

Meta-graph of S

Let 5, 9,, .. .9, be the strongly connected

components (i.e., SCCs) of . Denote
graph of sas G ¢

. Vertices of G°C are S, 5,,...S,

» There is an edge (5, Sj) if there is some
u € S;and v € 5; such that (i, v) is an
edge in G.

For any graph G, the graph

T\T‘ N

A C,D

B,E, F —
G [

|

H

G>“C has no directed cycle! Z. %\ ?%(7?7 Cxencse
34 /- | '

Connected structure of a directed graph

-

Reminder G°“C is created by collapsing every strong connected component to
a single vertex.

B,E, F — AC,D

N

G — H

onnected structure of a directed graph

B,E, F — A C,D

N

G [«——— H

Reminder G is created by collapsing every strong connected component to
a single vertex.

Proposition: For a directed graph G, its meta-graph G°‘Cisa

Linear-time Algorithm for S

Idea

Wishful thinking algorithm

e Let 1 be a vertex In a sink of

GSCC '

~7

Linear-time Algorithm for S

Idea

Wishful thinking algorithm

e Let 1 be a vertex In a sink of
GSCC

e Do DFS(u) to compute SCC(u).

Linear-time Algorithm for S

Idea

Wishful thinking algorithm

e Let 1 be a vertex In a sink of
GSCC

e Do DFS(u) to compute SCC(u).

e Remove SCC(u) and repeat.

36

Linear-time Algorithm for S

Idea

Wishful thinking algorithm

e Let 1 be a vertex In a sink of
GSCC

e Do DFS(u) to compute SCC(u).

e Remove SCC(u) and repeat.

36

Linear-time Algorithm for S
Idea
Wishful thinking algorithm Justification
et u be avertex in a sink of o DFS(u) only visits vertices (and
G ¢ edges) in SCC(u) since there are

no edges coming out of a sink!
e Do DFS(u) to compute SCC(u).

e Remove SCC(u) and repeat.

36

Linear-time Algorithm for S
Idea
Wishful thinking algorithm Justification
et u be avertex in a sink of o DFS(u) only visits vertices (and
G ¢ edges) in SCC(u) since there are

no edges coming out of a sink!

e Do DFS(u) to compute SCC(u).
« DFS(u) takes time proportional

« Remove SCC(u) and repeat. to size of SCC(u).

36

Linear-time Algorithm for S

Idea

lop ‘o
Wishful thinking algorithm / £d 22 gustification

 |Let u be avertex in a sink of o DFS(u) only visits vertices (and

G ¢ edges) in SCC(u) since there are

no edges coming out of a sink!
e Do DFS(u) to compute SCC(u).
o DFS(u) takes time proportional

« Remove SCC(u) and repeat. to size of SCC(u).

» Therefore, total time O(n + m)!

36

Connected structure of a directed graph

-

Reminder G°“C is created by collapsing every strong connected component to
a single vertex.

B,E, F — AC,D

N

G — H

Connected structure of a directed graph

Source

B,E, F — A C,D
0 H
Reminder G°“C is created by collapsing every strong connected component to
a single vertex.

On the right the SCC { G} is a sink and the SCC {A, C, D} is a source.

37

Questions Thues @ chalion o

Okay but ... / e Wt%..

Question: How do we find a vertex in a sink of G°¢¢? Can we obtain an
implicit topological sort of G°¢¢ without computing G>¢¢?

enie dg?é \~l/‘ Mk

38

Questions
Okay but ...

Question: How do we find a vertex in a sink of G°¢¢? Can we obtain an
implicit topological sort of G°¢¢ without computing G>¢¢?

Answer: DFS((G) gives some information!

38

Questions
Okay but ...

Question: How do we find a vertex in a sink of G°¢¢? Can we obtain an
implicit topological sort of G°¢¢ without computing G>¢¢?

Answer: DFS((G) gives some information!

Claim: Let v be the vertex with maximum post-visit numbering in DFS(G).
Then visin a S. such that S is a source of G°¢¢.

38

Questions
Okay but ...

Question: How do we find a vertex in a sink of G°¢¢? Can we obtain an
implicit topological sort of G°¢¢ without computing G>¢¢?

Answer: DFS((G) gives some information!

Claim: Let v be the vertex with maximum post-visit numbering in DFS(G).
Thenvisina S, such that S is a source of G°*C.

Claim: Let v be the vertex with maximum post-visit numbering i’ DFS(G'“").
Then visin a SCC S, such that S is a sink of G°¢¢.

Connected structure of a directed graph

-

Reminder G°“C is created by collapsing every strong connected component to
a single vertex.

B,E, F — AC,D

N

G — H

Connected structure of a directed graph

[7,8] [12,15] [13,14]

C

B,E, F — AC,D

311,16 | \ |

G — H

9 [4,9]

GSCC
a single vertex.

Reminder IS created by collapsing every strong connected component to

39

Connected structure of a directed graph

[7,8] [12,15] [13,14]
Source

B,E, F — AC,D

SR NG

G — H

[1,10]

[4,9]

Sink

Reminder G°¢*
a single vertex.

IS created by collapsing every strong connected component to

On the right the SCC { G} is a sink and the SCC {A, C, D} is a source.

39

Linear Time Algorithm

do DFS(G’™) and output vertices in decreasing postvisit order.
Mark all nodes as unvisited.
for each u in the computed order do
if u is not visited then

DES (u)

Let §, be the nodes reached by u

Output S, as a strong connected component

Remove 5, from G

40

Linear Time Algorithm

do DFS(G’™) and output vertices in decreasing postvisit order.
Mark all nodes as unvisited.
for each u in the computed order do
if u is not visited then

DES (u)

Let §, be the nodes reached by u

Output S, as a strong connected component

Remove 5, from G

Theorem: Algorithm runs in time O(m + n) and correctly outputs all the s of G.

40

Linear Time Algorithm - An Example

Graph G

(2
B (A
) 4) 4
x

©
©O——®

Linear Time Algorithm - An Example

Reverse Graph G'¢"
@\@‘\@
N} ?

0

Linear Time Algorithm - An Example

Reverse Graph G’ DFS of reverse graph

Linear Time Algorithm - An Example

Graph G Reverse Graph G™" DFS of reverse graph

~ -
~~~~~
______

Pre/Post DFS numbering @2;

of reverse graph [9,10]

o .
-~ -
O BN IR



Linear Time Algorithm - An Example

G annotated with G'“"’s post numbers

4




Linear Time Algorithm - An Example

(G annotated with G'“"’s post numbers Do DFS from vertex G and remove it

4




Linear Time Algorithm - An Example

(G annotated with G'“"’s post numbers Do DFS from vertex G and remove it

4 4

12 6
D\
- B G @
v : v v
S 10 (E 11

) 4
5
/®15 /@ 15




Linear Time Algorithm - An Example

(G annotated with G'“"’s post numbers Do DFS from vertex G and remove it

computed:
{G}

42



Linear Time Algorithm - An Example

Do DFS from vertex H and remove it

6
y
computed:

G}

©-




Linear Time Algorithm - An Example

Do DFS from vertex H and remove it

o
) <

\ 4 \ 4

CK X

computed: computed:

G} G}, (H}

o-
I
j//))




Linear Time Algorithm - An Example

Do DFS from vertex B and remove “it”

12 6 4
D@
) 4 ) 4 ) 4

computed:

G}, {(H}

10



Linear Time Algorithm - An Example

Do DFS from vertex B and remove “it” Remove visited vertices: {F, B, E}.
12 6 4 6 4
OO : °

computed: computed:
{G}, {H} {G}, {H}, {F, B, E}

44



Linear Time Algorithm - An Example

Do DFS from vertex A and remove “it”.

6 4
; ©
5
computed:

G}, (HL {F B, Ej



Linear Time Algorithm - An Example

Do DFS from vertex A and remove “it”. Remove visited vertices: {A, C, D}.
6 4
; ©
5
computed:

G}, (HL {F B, Ej

45



Linear Time Algorithm - An Example

Do DFS from vertex A and remove “it”. Remove visited vertices: {A, C, D}.
6 4
; ©
v —
5
computed:

G}, (HL {F B, Ej

45



Linear Time Algorithm - An Example

Do DFS from vertex A and remove “it”. Remove visited vertices: {A, C, D}.
6 4
; ©
Y . — ﬂ@h.e.
—
computed:

G}, {H}, {F B, E} computed:

G, {H} {F B, E}, (AG,Dj

45



e ‘4"5"“%8“
Linear Time Algorithm - An Exar

Do DFS from vertex A and remove “it”. Remove visited vertices: {A, C, D}. 6@

6 4 .s ------
D@ :
i
§
- > B
5
i
§
computed:

G}, {H}, {F B, E} computed:

G, {H} {F B, E}, (AG,Dj

45



Summary

Take away points

. s and topological orderings.

46



Summary

Take away points

. s and topological orderings.

 DFS with pre/post numbering.

46



Summary

Take away points

. s and topological orderings.

 DFS with pre/post numbering.

» Given a directed graph G, its s and the associated acyclic meta-graph
G°C¢ give a structural decomposition of G.

46



Summary

Take away points

. s and topological orderings.

 DFS with pre/post numbering.

» Given a directed graph G, its s and the associated acyclic meta-graph
G°C¢ give a structural decomposition of G.

 There is a DFS based linear time algorithm to compute all the s and the
meta-grapnh.

46



Summary

Take away points

. s and topological orderings.

 DFS with pre/post numbering.

» Given a directed graph G, its s and the associated acyclic meta-graph
G°C¢ give a structural decomposition of G.

 There is a DFS based linear time algorithm to compute all the s and the
meta-grapnh.

. s arise In many application and topological sort is a key property in
algorithm design. Linear time algorithms!

46



