
Directed graphs, DFS, DAGs, 
TopSort

All mistakes are my own! - Ivan Abraham (Fall 2024)

Sides based on material by Kani, Erickson, Chekuri, et. al.



Definition

A directed graph   is called a 
directed acyclic graph (DAG) if 
there is no directed cycle in  .

G

G

Directed acyclic graphs
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Tells us that G is directed ,

indirected
No such thing as an

cycle, or a directed G.. yet anyway.
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Is this a DAG?
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Directed acyclic graphs
Is this a DAG?

easy peasy
Hmm... lemou is

saveezy



Sources and sinks

• A vertex  is a source if it has no 
in-coming edges. 

u

• A vertex  is a sink if it has no 
out-going edges

u

Directed acyclic graphs

 4
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SinkSource



Properties
Directed acyclic graphs

 5

Proposition: Every finite DAG  has at least one source and at least one sink.G
Proof: 

Let  be the longest path in . We claim that  is a source 
and  is a sink. 

P = v1, v2, . . . , vk G v1
vk
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Proposition: Every finite DAG  has at least one source and at least one sink.G
Proof: 

Let  be the longest path in . We claim that  is a source 
and  is a sink. 

P = v1, v2, . . . , vk G v1
vk

For contradiction, suppose it is not. Then  has an incoming edge which 
either creates a cycle or a longer path both of which are contradictions. 

v1

O



Properties
Directed acyclic graphs

 5

Proposition: Every finite DAG  has at least one source and at least one sink.G
Proof: 

Let  be the longest path in . We claim that  is a source 
and  is a sink. 

P = v1, v2, . . . , vk G v1
vk

For contradiction, suppose it is not. Then  has an incoming edge which 
either creates a cycle or a longer path both of which are contradictions. 

v1

Similarly so if  has an outgoing edge.vk



Properties
Directed acyclic graphs
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•  is a DAG if and only if  is a DAG. G Grev

• Recall  is the graph  with orientation of all edges reversed. Grev G



Properties
Directed acyclic graphs

 6

•  is a DAG if and only if  is a DAG. G Grev

• Recall  is the graph  with orientation of all edges reversed. Grev G

•  is a DAG if and only each node is its own strongly connected component.G

• In other words, a (directed) graph is acyclic, iff it has no strongly connected 
subgraphs with more than one vertex. 



Order on a set
Topological ordering

 7

A strict total order on a set  is a binary relation   on  such that:X ≺ X

•  is transitive.≺

prec .

↑

asbae = ac
2
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• For any , exactly one of the following holds:x, y ∈ X



Order on a set
Topological ordering

 7

A strict total order on a set  is a binary relation   on  such that:X ≺ X

•  is transitive.≺

• For any , exactly one of the following holds:x, y ∈ X

  or  or x ≺ y y ≺ x x = y

-

~ O



Order on a set
Topological ordering

 7

A strict total order on a set  is a binary relation   on  such that:X ≺ X

•  is transitive.≺

• For any , exactly one of the following holds:x, y ∈ X

  or  or x ≺ y y ≺ x x = y

• Cannot have , such that  and 
.

x1, . . . , xm ∈ X x1 ≺ x2, . . . , xm−1 ≺ xm
xm ≺ x1
--



Note about convention

• We will consider the following notations equivalent

• Undirected graph edges:

• Directed graph edges:

u → v ≡ (u, v) ≡ (u → v)

 8

uv = {u, v} = vu ∈ E

↳ Different sources use them.... but

I will use them all freely-



Topological ordering/sorting
Definition

A topological ordering / topological sorting 
of  is an ordering  on  such 
that if  then .

G = (V, E) ≺ V
(u → v) ∈ E u ≺ v

 9

English : If edges zoe
from a soo then

- u is "smaller" the V.



Topological ordering/sorting
Definition

A topological ordering / topological sorting 
of  is an ordering  on  such 
that if  then .

G = (V, E) ≺ V
(u → v) ∈ E u ≺ v
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1 3

2 4
Graph  G



Topological ordering/sorting
Definition

A topological ordering / topological sorting 
of  is an ordering  on  such 
that if  then .

G = (V, E) ≺ V
(u → v) ∈ E u ≺ v

 9

1 3

2 4
Graph  G

1 32 4

Topological Ordering of  G
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Topological ordering/sorting
Definition

A topological ordering / topological sorting 
of  is an ordering  on  such 
that if  then .

G = (V, E) ≺ V
(u → v) ∈ E u ≺ v

Informal equivalent definition:
One can order the vertices of the graph along 
a line (say the -axis) such that all edges are 
from left to right.

x

 9

1 3

2 4
Graph  G

1 32 4

Topological Ordering of  G



Exercise
Topological ordering in linear time
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Show algorithm can be implemented in  timeO(m + n)
Simple algorithm:
• Count the in-degree of each vertex 
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Exercise
Topological ordering in linear time

 10

Show algorithm can be implemented in  timeO(m + n)
Simple algorithm:
• Count the in-degree of each vertex 

• For each vertex that is source, i.e., :degIn(v) = 0

• Add  to the topological sortv

->
number of edges coming in

E



Exercise
Topological ordering in linear time

 10

Show algorithm can be implemented in  timeO(m + n)
Simple algorithm:
• Count the in-degree of each vertex 

• For each vertex that is source, i.e., :degIn(v) = 0

• Add  to the topological sortv

• Lower degree of vertices  is connected to.v



Example
Topological sort
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Node Neighbors
A   D   E
B   E
C
D   F
E   H  G
F   H
G
H

Adjacency List:

A B

D

C

F

E

H

G

Generate  :degIn(v)
Degree Vertices

0   A   B   C             
1   D   F   G
2   E   H

Topological Ordering:

For each vertex that is 
source (   ):


• Add   to the 
topological sort


• Lower degree of 
vertices   is 
connected to.

degin(v) = 0
v

v

instalization

incorry edges ↑
a
no

- -
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Node Neighbors
A   D   E
B   E
C
D   F
E   H  G
F   H
G
H

Adjacency List:

A B

D

C

F

E

H

G

Generate  :degIn(v)
Degree Vertices

0   A   B   C             
1   D   F   G
2   E   H

A

Topological Ordering:

For each vertex that is 
source (   ):


• Add   to the 
topological sort


• Lower degree of 
vertices   is 
connected to.

degin(v) = 0
v

v

co ⑧
8

S
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Example
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Node Neighbors
A   D   E
B   E
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D   F
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G
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F

E
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Generate  :degIn(v)
Degree Vertices
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A

Topological Ordering:

For each vertex that is 
source (   ):
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• Lower degree of 
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connected to.
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v

E
X

-



D

Example
Topological sort

 11

Node Neighbors
A   D   E
B   E
C
D   F
E   H  G
F   H
G
H

Adjacency List:

A B

D

C

F

E

H

G

Generate  :degIn(v)
Degree Vertices

0   A   B   C             
1   D   F   G
2   E   H

A

Topological Ordering:

For each vertex that is 
source (   ):


• Add   to the 
topological sort


• Lower degree of 
vertices   is 
connected to.

degin(v) = 0
v

v

E



D

Example
Topological sort

 11

Node Neighbors
A   D   E
B   E
C
D   F
E   H  G
F   H
G
H

Adjacency List:

A B

D

C

F

E

H

G

Generate  :degIn(v)
Degree Vertices

0   A   B   C             
1   D   F   G
2   E   H

A B

Topological Ordering:

For each vertex that is 
source (   ):


• Add   to the 
topological sort


• Lower degree of 
vertices   is 
connected to.

degin(v) = 0
v

v

Repeat the steps 
again.

E
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Node Neighbors
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B   E
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D   F
E   H  G
F   H
G
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Adjacency List:

A B

D

C

F

E

H

G

Generate  :degIn(v)
Degree Vertices

0   A   B   C             
1   D   F   G
2   E   H

A B C D E F G H

Topological Ordering:

For each vertex that is 
source (   ):


• Add   to the 
topological sort


• Lower degree of 
vertices   is 
connected to.

degin(v) = 0
v

v

Repeat the steps 
again.
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Topological sort
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A B

D

C

F

E

H

G

A B C D E F G H

Topological Ordering:

For each vertex that is 
source (   ):


• Add   to the 
topological sort


• Lower degree of 
vertices   is 
connected to.

degin(v) = 0
v

v

Node Neighbors
A   D   E
B   E
C
D   F
E   H  G
F   H
G
H

Degree Vertices
0   A   B   C   D   E   F  G  H            
1
2   
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A B

D
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F

E

H

G

Multiple possible topological orderings

A B C D E F G H
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Multiple possible topological orderings
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ABC DE F GH
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A B

D

C

F

E

H

G

Multiple possible topological orderings

A B C D E F G H

ABC DE F GH

A B CD EF G H
Arrowsso
left bright



DAGs and topological ordering
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• Note: A DAG  may have many different topological sorts.G

• Exercise: What is a DAG with the most number of distinct topological sorts 
given  vertices?n

• Exercise: What is a DAG with the least number of distinct topological sorts 
for given  vertices?n

completely disconnected (no edges
whatsore)

A greeph that is a path (ou "chain")



Direct topological ordering

 15

TopSort(G): 
  Sorted ← NULL 
degin[1 … n]  1 
Tdegin[1 … n]  NULL
Generate in-degree for each vertex
for each edge xy in G do 

 degin[y]++
for each vertex v in G do 

Tdegin[degin[v]].append(v)
Next we recursively add vertices with in-degree = 0 to 
the sort list
while (Tdegin[0] is non-empty) do 

Remove node x from Tdegin[0] 
Sorted.append(x)
for each edge xy in Adj(x) do
    degin[y]--
    move y to Tdegin[degin[y]]

Output Sorted

← −
←

G



DAGs and topological ordering

 16

Lemma: A directed graph  can be topologically ordered   is a DAG.G ⟹ G

Proof: Proof by contradiction. Suppose  is not a DAG and has a topological 
ordering  . Since  is not a DAG, WLOG, take a cycle:

G
≺ G

without loss ofgenerality

↑
--

-
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Proof: Proof by contradiction. Suppose  is not a DAG and has a topological 
ordering  . Since  is not a DAG, WLOG, take a cycle:

G
≺ G

C = u1 → u2 → . . . → uk → u1



DAGs and topological ordering

 16

Lemma: A directed graph  can be topologically ordered   is a DAG.G ⟹ G

Proof: Proof by contradiction. Suppose  is not a DAG and has a topological 
ordering  . Since  is not a DAG, WLOG, take a cycle:

G
≺ G

C = u1 → u2 → . . . → uk → u1

Then u1 ≺ u2 ≺ . . . ≺ uk ≺ u1 ⟹ u1 ≺ u1

-

-

->
-

[ -- contlets
~ un



DAGs and topological ordering

 16

Lemma: A directed graph  can be topologically ordered   is a DAG.G ⟹ G

Proof: Proof by contradiction. Suppose  is not a DAG and has a topological 
ordering  . Since  is not a DAG, WLOG, take a cycle:

G
≺ G

C = u1 → u2 → . . . → uk → u1

Then u1 ≺ u2 ≺ . . . ≺ uk ≺ u1 ⟹ u1 ≺ u1

A contradiction (to  being an order). Not possible to topologically order the 
vertices.

≺
↳ =U ,

-



DFS in undirected graphs
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• Recall DFS is a special case of BasicSearch. 
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DFS in undirected graphs
Deep Dive into Depth First Search (DDiDFS?)

• Recall DFS is a special case of BasicSearch. 

• DFS is useful in understanding graph structure. 

• DFS also used to obtain linear time ( ) algorithms for O(m + n)
• Finding cycles, search trees, etc.  

• Finding strong connected components of directed graphs 

• ...many other applications as well.

 17



Recursive DFS 

 18

Recursive version commonly implemented, has some desirable properties.

DFS(G): 
for all   do 

Mark   as unvisited 
Set   to null 

  is set to ∅ 
while   unvisited   do

DFS( )
Output  

u ∈ V(G)
u

pred(u)
T

∃ u
u

T

-> Expla

vertex



Recursive DFS 

 18

Recursive version commonly implemented, has some desirable properties.

DFS(G): 
for all   do 

Mark   as unvisited 
Set   to null 

  is set to ∅ 
while   unvisited   do

DFS( )
Output  

u ∈ V(G)
u

pred(u)
T

∃ u
u

T

DFS( ): 
Mark   as visited 
for each   do 

if   is not visited then 
add edge   to   
set   to   
DFS( )

u
u

v ∈ Out(u)
v

u → v T
pred(v) u
v

⑳ t

-



Recursive DFS 

 18

Recursive version commonly implemented, has some desirable properties.

DFS(G): 
for all   do 

Mark   as unvisited 
Set   to null 

  is set to ∅ 
while   unvisited   do

DFS( )
Output  

u ∈ V(G)
u

pred(u)
T

∃ u
u

T

DFS( ): 
Mark   as visited 
for each   do 

if   is not visited then 
add edge   to   
set   to   
DFS( )

u
u

v ∈ Out(u)
v

u → v T
pred(v) u
v

Implemented using a global array Visited for all recursive calls.   is the search 
tree.

T

-

O

- G



DFS with pre-post numbering

 19

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]

pre , post -> timestamps

first visit
Ame when we are↑ -

done or that vertex
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4 5
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Time = 0
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1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,      ]

Time = 1

↓
-



DFS with pre-post numbering

 19

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,      ]

Time = 2



DFS with pre-post numbering

 19

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,      ]
2 [2,      ]

Time = 2



DFS with pre-post numbering

 19

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,      ]
2 [2,      ]

Time = 3



DFS with pre-post numbering

 19

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,      ]
2 [2,      ]
4 [3,      ]

Time = 3



DFS with pre-post numbering

 19

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,      ]
2 [2,      ]
4 [3,      ]

Time = 4



DFS with pre-post numbering

 19

1

32

4 5
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DFS with pre-post numbering

 19

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
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Time = 5



DFS with pre-post numbering

 19

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,      ]
2 [2,      ]
4 [3,      ]
5 [4,      ]
6 [5,      ]

Time = 5

at this point
t

Ilabandon" mode 6
we
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 19

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,      ]
2 [2,      ]
4 [3,      ]
5 [4,      ]
6 [5,      ]

Time = 6



Time = 6

DFS with pre-post numbering

 20

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,      ]
2 [2,      ]
4 [3,      ]
5 [4,      ]
6 [5,      ]



Time = 6

DFS with pre-post numbering

 20

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,      ]
2 [2,      ]
4 [3,      ]
5 [4,      ]
6 [5,      ]6



DFS with pre-post numbering

 20

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,      ]
2 [2,      ]
4 [3,      ]
5 [4,      ]
6 [5,      ]

Time = 7

6



DFS with pre-post numbering

 20

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,      ]
2 [2,      ]
4 [3,      ]
5 [4,      ]
6 [5,      ]

Time = 7

6



DFS with pre-post numbering

 20

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,      ]
2 [2,      ]
4 [3,      ]
5 [4,      ]
6 [5,      ]
3 [7,      ]

Time = 7

6
->O



DFS with pre-post numbering

 20

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,      ]
2 [2,      ]
4 [3,      ]
5 [4,      ]
6 [5,      ]
3 [7,      ]

Time = 8

6



DFS with pre-post numbering

 20

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,      ]
2 [2,      ]
4 [3,      ]
5 [4,      ]
6 [5,      ]
3 [7,      ]

Time = 8

6



DFS with pre-post numbering

 20

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,      ]
2 [2,      ]
4 [3,      ]
5 [4,      ]
6 [5,      ]
3 [7,      ]
7 [8,      ]

Time = 8

6



DFS with pre-post numbering

 20

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,      ]
2 [2,      ]
4 [3,      ]
5 [4,      ]
6 [5,      ]
3 [7,      ]
7 [8,      ]

Time = 9

6



DFS with pre-post numbering

 20

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,      ]
2 [2,      ]
4 [3,      ]
5 [4,      ]
6 [5,      ]
3 [7,      ]
7 [8,      ]

Time = 9

6



DFS with pre-post numbering

 20

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,      ]
2 [2,      ]
4 [3,      ]
5 [4,      ]
6 [5,      ]
3 [7,      ]
7 [8,      ]

6



DFS with pre-post numbering

 20

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,      ]
2 [2,      ]
4 [3,      ]
5 [4,      ]
6 [5,      ]
3 [7,      ]
7 [8,      ]
8 [9,      ]

6



DFS with pre-post numbering
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1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,      ]
2 [2,      ]
4 [3,      ]
5 [4,      ]
6 [5,  6  ]
3 [7,      ]
7 [8,      ]
8 [9,      ]



Time = 10

DFS with pre-post numbering

 21

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,      ]
2 [2,      ]
4 [3,      ]
5 [4,      ]
6 [5,  6  ]
3 [7,      ]
7 [8,      ]
8 [9,      ]



Time = 10

DFS with pre-post numbering

 21

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,      ]
2 [2,      ]
4 [3,      ]
5 [4,      ]
6 [5,  6  ]
3 [7,      ]
7 [8,      ]
8 [9,      ] b

we abandoned

8 at time 10.



Time = 10

DFS with pre-post numbering

 21

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,      ]
2 [2,      ]
4 [3,      ]
5 [4,      ]
6 [5,  6  ]
3 [7,      ]
7 [8,      ]
8 [9,      ]10



DFS with pre-post numbering

 21

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,      ]
2 [2,      ]
4 [3,      ]
5 [4,      ]
6 [5,  6  ]
3 [7,      ]
7 [8,      ]
8 [9,      ]10

Time = 11



DFS with pre-post numbering

 21

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,      ]
2 [2,      ]
4 [3,      ]
5 [4,      ]
6 [5,  6  ]
3 [7,      ]
7 [8,      ]
8 [9,      ]10

Time = 11

11



DFS with pre-post numbering

 21

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,      ]
2 [2,      ]
4 [3,      ]
5 [4,      ]
6 [5,  6  ]
3 [7,      ]
7 [8,      ]
8 [9,      ]10

Time = 12

11



DFS with pre-post numbering

 21

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,      ]
2 [2,      ]
4 [3,      ]
5 [4,      ]
6 [5,  6  ]
3 [7,      ]
7 [8,      ]
8 [9,      ]10

Time = 12

11
12



DFS with pre-post numbering

 21

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,      ]
2 [2,      ]
4 [3,      ]
5 [4,      ]
6 [5,  6  ]
3 [7,      ]
7 [8,      ]
8 [9,      ]10

Time = 13

11
12



DFS with pre-post numbering

 21

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,      ]
2 [2,      ]
4 [3,      ]
5 [4,      ]
6 [5,  6  ]
3 [7,      ]
7 [8,      ]
8 [9,      ]10

Time = 13

11
12

13



DFS with pre-post numbering

 21

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,      ]
2 [2,      ]
4 [3,      ]
5 [4,      ]
6 [5,  6  ]
3 [7,      ]
7 [8,      ]
8 [9,      ]10

Time = 14

11
12

13



DFS with pre-post numbering
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1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,      ]
2 [2,      ]
4 [3,      ]
5 [4,      ]
6 [5,  6  ]
3 [7,      ]
7 [8,      ]
8 [9,      ]10

Time = 14

11
12

13
14



DFS with pre-post numbering

 21

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,      ]
2 [2,      ]
4 [3,      ]
5 [4,      ]
6 [5,  6  ]
3 [7,      ]
7 [8,      ]
8 [9,      ]10

Time = 15

11
12

13
14



DFS with pre-post numbering

 21

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,      ]
2 [2,      ]
4 [3,      ]
5 [4,      ]
6 [5,  6  ]
3 [7,      ]
7 [8,      ]
8 [9,      ]10

Time = 15

11
12

13
14
15



DFS with pre-post numbering

 21

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,      ]
2 [2,      ]
4 [3,      ]
5 [4,      ]
6 [5,  6  ]
3 [7,      ]
7 [8,      ]
8 [9,      ]10

11
12

13
14
15

Time = 16



DFS with pre-post numbering

 21

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,      ]
2 [2,      ]
4 [3,      ]
5 [4,      ]
6 [5,  6  ]
3 [7,      ]
7 [8,      ]
8 [9,      ]10

11
12

13
14
15



DFS with pre-post numbering

 21

1

32

4 5

6

7

8

9

10

Vertex [Pre, Post]
1 [1,      ]
2 [2,      ]
4 [3,      ]
5 [4,      ]
6 [5,  6  ]
3 [7,      ]
7 [8,      ]
8 [9,      ]10

11
12

13
14
15
16

↓

⑧



Time = 20 (skipped a few steps)

DFS with pre-post numbering

 22

Vertex [Pre, Post]
1 [1, 16]
2 [2, 15]
4 [3, 14]
5 [4, 13]
6 [ 5, 6 ]
3 [7, 12]
7 [8, 11]
8 [9, 10]
9 [17, 20]

10 [18, 19]

1

32

4 5

6

7

8

9

10



DFS with pre-post numbering

 22

Vertex [Pre, Post]
1 [1, 16]
2 [2, 15]
4 [3, 14]
5 [4, 13]
6 [ 5, 6 ]
3 [7, 12]
7 [8, 11]
8 [9, 10]
9 [17, 20]

10 [18, 19]

1

32

4 5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

V

These timestamps can also

& be thought of as the
time interal at which

the cull DFS(V) was on

the antime stack (ECE 220)
↓
-

-
one way 8
to visualize
the time

starps



DFS in directed graphs
Exercise - do DFS on this graph and verify search tree

 23

AB

D

C

FE

HG

-

↳ oo at home

↓
start here.



DFS in directed graphs
Exercise - do DFS on this graph and verify search tree

 23

AB

D

C

FE

HG

AB

D

C

FE

HG

[1,16]

[2,11] [12,15]

[6,7]

[4,5]
[8,9]

[13,14][3,10]

O



Directed DFS with pre/post numbering

• DFS(G) takes  time. O(m + n)

 24



Directed DFS with pre/post numbering

• DFS(G) takes  time. O(m + n)
• Edges added form a branching: a forest of out-trees.

 24



Directed DFS with pre/post numbering

• DFS(G) takes  time. O(m + n)
• Edges added form a branching: a forest of out-trees.

• Output of DFS(G) depends on the order in which vertices are considered.

 24

-

-



Directed DFS with pre/post numbering

• DFS(G) takes  time. O(m + n)
• Edges added form a branching: a forest of out-trees.

• Output of DFS(G) depends on the order in which vertices are considered.

• If  is the first vertex considered by DFS(G) then DFS(u) outputs a directed 
out-tree  rooted at  and a vertex  is in  if and only if  

u
T u v T v ≺ rch(u)

 24

- undiretod
case, DFS CelMonneted"will

nodes
to c

②



Directed DFS with pre/post numbering

• DFS(G) takes  time. O(m + n)
• Edges added form a branching: a forest of out-trees.

• Output of DFS(G) depends on the order in which vertices are considered.

• If  is the first vertex considered by DFS(G) then DFS(u) outputs a directed 
out-tree  rooted at  and a vertex  is in  if and only if  

u
T u v T v ≺ rch(u)

• For any two vertices  the intervals and  
are either disjoint or one is contained in the other.

x, y [pre(x), post(x)] [pre(y), post(y)]

 24

--
↳ think of the rontine stack !



DFS trees and edge types
Edge classisifcations 

Edges of  can be classified with respect to the DFS tree  as:G T

 25

A

C D

B

Backward

Cross

Forward
-T



DFS trees and edge types
Edge classisifcations 

Edges of  can be classified with respect to the DFS tree  as:G T

• Tree edges that belong to  T

 25

A

C D

B

Backward

Cross

Forward
=

-
-

-



DFS trees and edge types
Edge classisifcations 

Edges of  can be classified with respect to the DFS tree  as:G T

• Tree edges that belong to  T

• A forward edge is a non-tree edges  such that 
. 

(x, y)
pre(x) < pre(y) < post(y) < post(x)

 25

A

C D

B

Backward

Cross

Forward

②

②⑨ &

8



DFS trees and edge types
Edge classisifcations 

Edges of  can be classified with respect to the DFS tree  as:G T

• Tree edges that belong to  T

• A forward edge is a non-tree edges  such that 
. 

(x, y)
pre(x) < pre(y) < post(y) < post(x)

• A backward edge is a non-tree edge  such that  
. 
(y, x)

pre(x) < pre(y) < post(y) < post(x)

 25

A

C D

B

Backward

Cross

Forward

↑

O
&



DFS trees and edge types
Edge classisifcations 

Edges of  can be classified with respect to the DFS tree  as:G T

• Tree edges that belong to  T

• A forward edge is a non-tree edges  such that 
. 

(x, y)
pre(x) < pre(y) < post(y) < post(x)

• A backward edge is a non-tree edge  such that  
. 
(y, x)

pre(x) < pre(y) < post(y) < post(x)

• A cross edge is a non-tree edges  such that the 
intervals  and  are disjoint.

(x, y)
[pre(x), post(x)] [pre(y), post(y)]

 25

A

C D

B

Backward

Cross

Forward

--



Types of edges

 26

AB

D

C

FE

HG

[1,16]

[2,11] [12,15]

[6,7]

[4,5]
[8,9]

[13,14][3,10]



Types of edges

 26

AB

D

C

FE

HG

[1,16]

[2,11] [12,15]

[6,7]

[4,5]
[8,9]

[13,14][3,10]

Back edges



Types of edges

 26

AB

D

C

FE

HG

[1,16]

[2,11] [12,15]

[6,7]

[4,5]
[8,9]

[13,14][3,10]

Back edges

Forward edges



Types of edges

 26

AB

D

C

FE

HG

[1,16]

[2,11] [12,15]

[6,7]

[4,5]
[8,9]

[13,14][3,10]

Back edges

Forward edges

Cross edges

Excuse :

↑Tonfirm shele

#25's defintie
hold for

It
were

edges



DFS and cycle detection
Cycles in graphs

• Question: Given an undirected graph how do we check whether it has a cycle 
and output one if it has one?


• Question: Given an directed graph how do we check whether it has a cycle 
and output one if it has one?

 27

o

Reall T
, Spons V (Set of retice) => If an edge is

not m T Then there is a cycle
S



Cycle detection in directed graphs

Question: Given , is it a DAG?G

• If it is, compute a topological sort. If it fails, then output the cycle .C

 28

Use topological sorts



Cycle detection in directed graphs

Question: Given , is it a DAG?G

• If it is, compute a topological sort. If it fails, then output the cycle .C
• Compute . DFS(G)

 28

Use topological sorts



Cycle detection in directed graphs

Question: Given , is it a DAG?G

• If it is, compute a topological sort. If it fails, then output the cycle .C
• Compute . DFS(G)
• If there is a back edge  then  is not a DAG. Output cycle  

formed by path from  to  in  plus edge . 
e = (v, u) G C

u v T (v, u)

 28

Use topological sorts



Cycle detection in directed graphs

Question: Given , is it a DAG?G

• If it is, compute a topological sort. If it fails, then output the cycle .C
• Compute . DFS(G)
• If there is a back edge  then  is not a DAG. Output cycle  

formed by path from  to  in  plus edge . 
e = (v, u) G C

u v T (v, u)
• Otherwise output nodes in decreasing post-visit order. 

 28

Use topological sorts



Cycle detection in directed graphs

Question: Given , is it a DAG?G

• If it is, compute a topological sort. If it fails, then output the cycle .C
• Compute . DFS(G)
• If there is a back edge  then  is not a DAG. Output cycle  

formed by path from  to  in  plus edge . 
e = (v, u) G C

u v T (v, u)
• Otherwise output nodes in decreasing post-visit order. 
• Note: no need to sort,  can output nodes in this order!DFS(G)

 28

Use topological sorts



Topological sort a graph using DFS

 29

Example

A B

D

C

F

E

H

G

Listing out the vertices in descending order of 
post-visit numbers gives:



Topological sort a graph using DFS

 29

Example

A B

D

C

F

E

H

G

[13,14]

[15,16][1,12]

[2, 7] [8,11]

[3, 6] [9,10]

[4, 5]

Listing out the vertices in descending order of 
post-visit numbers gives:



Topological sort a graph using DFS

 29

Example

A B

D

C

F

E

H

G

[13,14]

[15,16][1,12]

[2, 7] [8,11]

[3, 6] [9,10]

[4, 5]

Listing out the vertices in descending order of 
post-visit numbers gives:

C, B, A, E, G, D, F, H



Topological sort a graph using DFS

 29

Example

A B

D

C

F

E

H

G

[13,14]

[15,16][1,12]

[2, 7] [8,11]

[3, 6] [9,10]

[4, 5]

Listing out the vertices in descending order of 
post-visit numbers gives:

C, B, A, E, G, D, F, H

ABC DE FG H



Topological sort a graph using DFS

 29

Example

A B

D

C

F

E

H

G

[13,14]

[15,16][1,12]

[2, 7] [8,11]

[3, 6] [9,10]

[4, 5]

Listing out the vertices in descending order of 
post-visit numbers gives:

C, B, A, E, G, D, F, H

[1, 8]

[9,10][11, 16]

[12, 15] [2, 7]

[13, 14] [3, 4]

[5,6]

ABC DE FG H

O
z

Z O -

=
-

- z

2



Topological sort a graph using DFS

 29

Example

A B

D

C

F

E

H

G

[13,14]

[15,16][1,12]

[2, 7] [8,11]

[3, 6] [9,10]

[4, 5]

Listing out the vertices in descending order of 
post-visit numbers gives:

C, B, A, E, G, D, F, H

[1, 8]

[9,10][11, 16]

[12, 15] [2, 7]

[13, 14] [3, 4]

[5,6]

ABC DE FG H

A BCD EF GH



Back edge and cycles
Proposition:  has a cycle  there is a back-edge in DFS(G).G ∈

 30



Back edge and cycles
Proposition:  has a cycle  there is a back-edge in DFS(G).G ∈
Proof: That  is a back edge implies there is a cycle  consisting of the 
path from  to  in DFS search tree and the edge . 

(u, v) C
v u (u, v)

 30



Back edge and cycles
Proposition:  has a cycle  there is a back-edge in DFS(G).G ∈
Proof: That  is a back edge implies there is a cycle  consisting of the 
path from  to  in DFS search tree and the edge . 

(u, v) C
v u (u, v)

Only if: Suppose there is a cycle . C = v1 − v2 − . . . − vk − v1

 30

I

of ve

-
"If and onlynecessary

alofferent"
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Back edge and cycles
Proposition:  has a cycle  there is a back-edge in DFS(G).G ∈
Proof: That  is a back edge implies there is a cycle  consisting of the 
path from  to  in DFS search tree and the edge . 

(u, v) C
v u (u, v)

Only if: Suppose there is a cycle . C = v1 − v2 − . . . − vk − v1

Let  be first node in  visited in DFS. All other nodes in  are descendants 
of  since they are reachable from .

vi C C
vi vi

 30



Back edge and cycles
Proposition:  has a cycle  there is a back-edge in DFS(G).G ∈
Proof: That  is a back edge implies there is a cycle  consisting of the 
path from  to  in DFS search tree and the edge . 

(u, v) C
v u (u, v)

Only if: Suppose there is a cycle . C = v1 − v2 − . . . − vk − v1

Let  be first node in  visited in DFS. All other nodes in  are descendants 
of  since they are reachable from .

vi C C
vi vi

Therefore,  (or  if ) is a back edge(vi→1, vi) (vk, v1) i = 1

 30

&

--



Decreasing post-visit order is a TS
Proposition: If  is a DAG and , then  is not in .G post(v) > post(u) (u − v) G

 31

=
- 0



Decreasing post-visit order is a TS
Proposition: If  is a DAG and , then  is not in .G post(v) > post(u) (u − v) G

Proof: Assume  and  is an edge in . One of two 
holds:

post(u) < post(v) (u − v) G

 31



Decreasing post-visit order is a TS
Proposition: If  is a DAG and , then  is not in .G post(v) > post(u) (u − v) G

Proof: Assume  and  is an edge in . One of two 
holds:

post(u) < post(v) (u − v) G

• Case 1:  is contained in . Implies that  is 
explored during  and hence is a descendent of . Edge  
implies a cycle in  but  is assumed to be DAG.

[pre(u), post(u)] [pre(v), post(v)] u
DFS(v) v (u, v)

G G

 31

-

-
-
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- -



Decreasing post-visit order is a TS
Proposition: If  is a DAG and , then  is not in .G post(v) > post(u) (u − v) G

Proof: Assume  and  is an edge in . One of two 
holds:

post(u) < post(v) (u − v) G

• Case 1:  is contained in . Implies that  is 
explored during  and hence is a descendent of . Edge  
implies a cycle in  but  is assumed to be DAG.

[pre(u), post(u)] [pre(v), post(v)] u
DFS(v) v (u, v)

G G

• Case 2:  is disjoint from . This cannot 
happen since  would have been explored from .

[pre(u), post(u)] [pre(v), post(v)]
v u

 31

Verify this hold
for the graphs
onthe previoustates

-



Strongly connected components (SCCs)

Algorithmic problem 
Find all SCCs of a given directed graph.

 32

A CB

E DF

G H



Strongly connected components (SCCs)

Algorithmic problem 
Find all SCCs of a given directed graph.

Previous lecture: Saw an  time 
algorithm. 

O(n . (n + m))

 32

A CB

E DF

G H

# of vertices

↑

↑

Y
# of edges



Strongly connected components (SCCs)

Algorithmic problem 
Find all SCCs of a given directed graph.

Previous lecture: Saw an  time 
algorithm. 

O(n . (n + m))

This lecture: Sketch of a  time algorithm.O(n + m)

 32

A CB

E DF

G H-



Linear time algorithm for finding all SCCs
Finding all SCCs of a Directed Graph

Problem: Given a directed graph  , output all its strong connected components.


Straightforward algorithm:

G = (V, E)
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 33

Mark all vertices in   as not visited. 
for each vertex   not visited yet do 

find SCC(G, u) the strong component of u:   
Compute rch(G,  ) using   
Compute rch(  ,  ) using  
SCC(G, u)   rch(G,  ) ∩ rch(  ,  ) 
∀u ∈ SCC(G, u): Mark u as visited.

V
u ≺ V

u DFS(G, u)
Grev u DFS(Grev, u)

≡ u Grev u

-> Discussed
⑧ last time
E
-
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Linear time algorithm for finding all SCCs
Finding all SCCs of a Directed Graph

Problem: Given a directed graph  , output all its strong connected components.


Straightforward algorithm:

G = (V, E)

 33

Mark all vertices in   as not visited. 
for each vertex   not visited yet do 

find SCC(G, u) the strong component of u:   
Compute rch(G,  ) using   
Compute rch(  ,  ) using  
SCC(G, u)   rch(G,  ) ∩ rch(  ,  ) 
∀u ∈ SCC(G, u): Mark u as visited.

V
u ≺ V

u DFS(G, u)
Grev u DFS(Grev, u)

≡ u Grev u

Running time: O(n(n + m))
Question: Is there an  time algorithm?O(n + m)



Graph of SCCs
                                                                                              
Let  be the strongly connected 
components (i.e., SCCs) of . Denote 
graph of SCCs as :

S1, S2, . . . Sk
G

GSCC
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graph of SCCs as :
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Graph of SCCs
                                                                                              
Let  be the strongly connected 
components (i.e., SCCs) of . Denote 
graph of SCCs as :

S1, S2, . . . Sk
G

GSCC

• Vertices of  are GSCC S1, S2, . . . Sk

• There is an edge  if there is some 
 and  such that  is an 

edge in .

(Si, Sj)
u ≺ Si v ≺ Sj (u, v)

G
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Meta-graph of SCCs

For any graph  , the graph 
  has no directed cycle!

G
GSCC - Fact 1 Proof? Exercise
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Reminder  is created by collapsing every strong connected component to 
a single vertex. 

GSCC
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Reminder  is created by collapsing every strong connected component to 
a single vertex. 

GSCC

Proposition: For a directed graph , its meta-graph  is a DAG.G GSCC

 35
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Connected structure of a directed graph
DAG⑨II TaSort
O
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Linear-time Algorithm for SCCs
Idea

Wishful thinking algorithm 

• Let  be a vertex in a sink SCC of 
 .

u
GSCC

 36
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Linear-time Algorithm for SCCs
Idea

Wishful thinking algorithm 

• Let  be a vertex in a sink SCC of 
 .

u
GSCC

• Do  to compute .DFS(u) SCC(u)

• Remove  and repeat.SCC(u)

Justification 

•  only visits vertices (and 
edges) in  since there are 
no edges coming out of a sink!

DFS(u)
SCC(u)
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• Remove  and repeat.SCC(u)
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Linear-time Algorithm for SCCs
Idea

Wishful thinking algorithm 

• Let  be a vertex in a sink SCC of 
 .

u
GSCC

• Do  to compute .DFS(u) SCC(u)

• Remove  and repeat.SCC(u)

Justification 

•  only visits vertices (and 
edges) in  since there are 
no edges coming out of a sink!

DFS(u)
SCC(u)

•  takes time proportional 
to size of .
DFS(u)

SCC(u)

• Therefore, total time !O(n + m)

 36
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Reminder  is created by collapsing every strong connected component to 
a single vertex. 

GSCC
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Reminder  is created by collapsing every strong connected component to 
a single vertex. 

GSCC

On the right the SCC  is a sink and the SCC  is a source.{G} {A, C, D}
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B, E, F A, C, D
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Source

Sink

Connected structure of a directed graph

E



Questions 

Question: How do we find a vertex in a sink SCC of ?  Can we obtain an 
implicit topological sort of  without computing ? 

GSCC

GSCC GSCC

 38

Okay but … 
Think : a chicken or

egg problem-

↑

*
encoded in details



Questions 

Question: How do we find a vertex in a sink SCC of ?  Can we obtain an 
implicit topological sort of  without computing ? 

GSCC

GSCC GSCC

Answer:  gives some information!DFS(G)

 38
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Questions 

Question: How do we find a vertex in a sink SCC of ?  Can we obtain an 
implicit topological sort of  without computing ? 

GSCC

GSCC GSCC

Answer:  gives some information!DFS(G)
Claim: Let  be the vertex with maximum post-visit numbering in . 
Then  is in a SCC , such that  is a source of .

v DFS(G)
v S S GSCC

Claim: Let  be the vertex with maximum post-visit numbering in . 
Then  is in a SCC , such that  is a sink of .

v DFS(Grev)
v S S GSCC

 38

Okay but … 

②
↳See plazza about why ver is

necessary
-



Reminder  is created by collapsing every strong connected component to 
a single vertex. 

GSCC
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Reminder  is created by collapsing every strong connected component to 
a single vertex. 

GSCC

On the right the SCC  is a sink and the SCC  is a source.{G} {A, C, D}
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Linear Time SCC Algorithm

 40

do DFS( ) and output vertices in decreasing postvisit order. 
Mark all nodes as unvisited.
for each   in the computed order do 

if   is not visited then 
DFS( ) 
Let   be the nodes reached by   
Output   as a strong connected component 
Remove   from  

Grev

u
u

u
Su u

Su
Su G



Linear Time SCC Algorithm

Theorem: Algorithm runs in time   and correctly outputs all the SCCs of  .O(m + n) G

 40

do DFS( ) and output vertices in decreasing postvisit order. 
Mark all nodes as unvisited.
for each   in the computed order do 

if   is not visited then 
DFS( ) 
Let   be the nodes reached by   
Output   as a strong connected component 
Remove   from  

Grev

u
u

u
Su u

Su
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Linear Time Algorithm - An Example
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Linear Time Algorithm - An Example
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Linear Time Algorithm - An Example
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Linear Time Algorithm - An Example

 42

  annotated with  ’s post numbersG Grev

A CB

E DF

G H

12 6 4

5

15
16

11
10

Do DFS from vertex   and remove itG

 ←

A CB

E DF

H

12 6 4

5

15

1110



Linear Time Algorithm - An Example
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Linear Time Algorithm - An Example
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Linear Time Algorithm - An Example
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Do DFS from vertex   and remove itH
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Do DFS from vertex   and remove “it”B

SCC computed:

{G}, {H}

Linear Time Algorithm - An Example
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Do DFS from vertex   and remove “it”B

SCC computed:

{G}, {H}

Linear Time Algorithm - An Example
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SCC computed:

{G}, {H}, {F, B, E}

Remove visited vertices: {F, B, E}.
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SCC computed:

{G}, {H}, {F, B, E}

Do DFS from vertex   and remove “it”.A

Linear Time Algorithm - An Example
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SCC computed:

{G}, {H}, {F, B, E}

Do DFS from vertex   and remove “it”.A

Linear Time Algorithm - An Example
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SCC computed:

{G}, {H}, {F, B, E}

Do DFS from vertex   and remove “it”.A

Linear Time Algorithm - An Example
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SCC computed:

{G}, {H}, {F, B, E}

Do DFS from vertex   and remove “it”.A

Linear Time Algorithm - An Example
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SCC computed:

{G}, {H}, {F, B, E}

Do DFS from vertex   and remove “it”.A

Linear Time Algorithm - An Example
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 ≺

Remove visited vertices: {A, C, D}.

A CB

E DF

G H

SCC computed:

{G}, {H}, {F, B, E}, {A,C,D}

A C

D

6 4

5

Robert Tarjan's Kosaraja .

(see Jef's book)
↓
Ineverte

today
Cessentially)
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• DFS with pre/post numbering. 

• Given a directed graph , its SCCs and the associated acyclic meta-graph 
 give a structural decomposition of . 

G
GSCC G

• There is a DFS based linear time algorithm to compute all the SCCs and the 
meta-graph. 
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Summary
Take away points

• DAGs and topological orderings. 

• DFS with pre/post numbering. 

• Given a directed graph , its SCCs and the associated acyclic meta-graph 
 give a structural decomposition of . 

G
GSCC G

• There is a DFS based linear time algorithm to compute all the SCCs and the 
meta-graph. 

• DAGs arise in many application and topological sort is a key property in 
algorithm design. Linear time algorithms!
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