All mistakes are my own! - Ivan Abraham (Fall 2024)

Image by ChatGPT (probably collaborated with DALL-E)

Shortest Paths [BFS, Djikstra] Sides based on material by Kani, Chekuri, Erickson et. al.

Breadth first search (BFS) Overview

- Breadth-first search (BFS) is an algorithm for traversing or searching a Tree or Graph data structure which returns the nodes of the graph level by level.
- BFS on a graph with *n* vertices and *m* edges takes $O(n + m)$ time (obtained from BasicSearch by processing edges using a queue data structure).
- It processes the vertices in the graph in the order of their shortest distance from the vertex s (the start vertex)
- **DFS** good for exploring graph structure | **BFS** good for exploring distances

Breadth first search (BFS)

BFS traversal of a graph returns the nodes of the graph level by level.

The Idea of the BFS:

Visit the vertices as follows:

- Visit all vertices at distance 1
- Visit all vertices at distance 2
- Visit all vertices at distance 3 etc.

A B C D E F

Queue data structure Queues

A queue is a list of elements which supports the operations:

- **Enqueue**: Adds an element to the end of the list
- **Dequeue**: Removes an element from the front of the list
- Elements are extracted in first-in first-out (FIFO) order, i.e., elements are picked in the order in which they were inserted.
	- Contrast with LIFO (stacks)

BFS algorithm Pseudocode

Given (undirected or directed) graph $G = (V, E)$ and node $s \in V$

```
BFS(s): 
   Mark all vertices as unvisited;
    Initialize search tree T to be empty
    Mark vertex s as visited 
    set Q to be the empty queue
    enqueue(Q,s) 
    while Q is non-empty do
         u = degueue(Q)for each vertex v \in \text{Adj}(u)if v is not visited then
                add edge (u, v) to TMark v as visited and enqueue(v)
```
5

Proposition

BFS(s) runs in $O(n + m)$ time

BFS: An example in directed graphs

BFS with distances

BFS(s):

Initialize search tree T to be empty Mark vertex s as visited and set dist(*s*) = 0 set Q to be the empty queue enqueue(s) while Q is non-empty do $u = degueue(Q)$ for each vertex $v \in \text{Adj}(u)$ do

if v is not visited do

add edge (u, v) to T

and set $dist(v) = dist(u) + 1$

```
Mark all vertices as unvisited; for each v set dist(v) = \inftyMark v as visited, enqueue(v)
```
Properties of BFS Undirected graphs

Theorem: *The following properties hold upon termination of BFS(s)*

- Search tree is the set of vertices in the connected component of s.
- If $dist(u) < dist(v)$ then u is visited before v .
- For every vertex u , $dist(u)$ is the length of a shortest path (in terms of number of edges) from s to u .
- then $|\text{dist}(u) \text{dist}(v)| \leq 1$.

• If u, v are in connected component of s and $e = \{u, v\}$ is an edge of G ,

Properties of BFS Directed graphs

Theorem: *The following properties hold upon termination of BFS(s)*

- Search tree contains exactly the set of vertices reachable from s.
- If $dist(u) < dist(v)$ then u is visited before v .
- For every vertex u , $dist(u)$ is indeed the length of shortest path from s to u .
- If *u* is reachable from *s* and $e = (u, v)$ is an edge of *G*, then $dist(v) \leq 1 + dist(u).$

BFS with layers

- forward
- understand.
	- Given G and $s \in V$, define $L_i = \{v \mid dist(s, v) = i\}$.
	- Then $L_0 = \{s\}$
	- And L_k can be found from L_{k-1} for $k \geq 1$ inductively.

• BFS is a simple algorithm but proving its properties formally is not straight

• Since BFS explores graph in increasing order of distance from source s, there is a simpler variant that makes BFS exploration transparent and easier to

BFS with layers

BFSLayers(s):

Mark s as visited and set $L_0 = \{s\}$ w**hile** L_i is not empty \textbf{do} initialize L_{i+1} to be an empty list for each u in L_i do for each edge $(u, v) \in Adj(u)$ do if v is not visited mark v as visited \mathbf{add} (u, v) to tree T add v to L_{i+1} $i = 0$ $i = i + 1$

Running time: O(*n* + *m*)

```
Mark all vertices as unvisited and initialize T to be empty
```
- Layer 0: 1
- Layer 1: 2, 3
- Layer 2: 4, 5, 7, 8
- Layer 3: 6

Example - undirected BFS with layers

BFS with layers: undirected graph Properties

- BFSLayers(s) outputs a BFS tree
- L_i is the set of vertices at distance exactly *i* from *s*.
- If G is undirected, each edge $e = \{u, v\}$ is one of three types:
	- *tree* edge between two *consecutive* layers
- non-tree *forward/backward* edge between two consecutive layers
- non-tree *cross-edge* with both u, v in same layer
- Every edge in the graph is either between two vertices that are either (i) in the same layer, or (ii) in two consecutive layers!

- Layer 0: A
- Layer 1: B, F, C
- Layer 2: E, G, D
- Layer 3: H

Example - directed BFS with layers

BFS with layers: directed graph Properties

Proposition: *The following properties hold on termination of BFS(s) if G is directed.*

- Each edge $e = \{u, v\}$ is one of four types:
	- A <u>tree</u> edge between consecutive layers, $u \in L_i$, $v \in L_{i+1}$ for some *i* ≥ 0
	- A non-tree *forward* edge between consecutive layers
	- A non-tree *backward* edge
	- A *cross-edge* with both u, v in same layer

Shortest path problems Description

edge $e = uv$ the quantity $l(e) = l(uv)$ as its length or cost.

- Given nodes s , t find shortest path (in terms of summed lengths/costs) from *s* to t . (SSPP)
- Given node *s* find shortest path from *s* to all other nodes (SSSP)
- Find shortest paths between all pairs of nodes (APSP)

Given graph $G = (V, E)$ with associated edge lengths (or costs), denote for an

Shortest walks vs. paths

- A path is a sequence of *distinct* vertices $v_1, v_2, ..., v_k$ such that $(v_i, v_{i+1}) \in E$ for $1 \leq i \leq k-1$.
- A path is a sequence of vertices $v_1, v_2, ..., v_k$ such that $(v_i, v_{i+1}) \in E$ for $1 \leq i \leq k-1$.
- gives a walk, while concatenating two paths may not give a path).
- same as finding the shortest $s \to t$ path.

• Finding walks is often easier than finding paths (concatenating two walks

• For edges with non-negative weights/lengths, finding the shortest walk is the

Single-source shortest paths Assumption: non-negative edge lengths

Single-source shortest path problems (SSSPs)

- Input: A (undirected or directed) graph $G = (V, E)$ with *non-negative edge lengths.* For edge $e = (u, v)$, $l(e) = l(u, v)$ is its length.
- Given nodes s , t find shortest path from s to t .
- Given node *s* find shortest path from *s* to all other nodes.
- Restrict attention to directed graphs

Single-source shortest paths Assumption: non-negative edge lengths

- Undirected graph problem can be reduced to directed graph problem how?
	- Given undirected graph G , create a new directed graph G' by replacing each edge $\{u, v\}$ in G by (u, v) and (v, u) in G' .
	- set $l(u, v) = l(v, u) = l({u, v})$
	- Exercise: show reduction works. Relies on non-negativity!

Single-source shortest paths via BFS

- **Special case:** All edge lengths are 1.
	- Run BFS(s) to get shortest path distances from s to all other nodes.
	- $O(m + n)$ time algorithm.
- **Special case:** Suppose $l(e)$ is an integer for all e ? Can we use BFS? Reduce to unit edge-length problem by placing $l(e) - 1$ dummy nodes on $e.$
- Let $L = \max_e l(e)$. New graph has $O(mL)$ edges and $O(mL + n)$ nodes. BFS $O(mL + n)$ time. Not efficient if L is large.

You can not shortcut a shortest path Lemma (… also goes by Bellman's principle of optimality)

 $v_i \rightarrow v_{i+1} \rightarrow \ldots \rightarrow v_j$

- Let G be a directed graph with *non-negative* edge lengths. Suppose that
	- $p = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$
	- is the shortest path from v_0 to v_k .
	- Then for any $0 \leq i < j \leq k$ we have that

is the shortest path from v_i to v_j .

A proof by picture

A proof by picture

 $s = v_0$

Shorter path from v_2 to v_8

 \mathcal{V}_{2}

 $v₅$

*v*1

*v*3

A proof by picture

A shorter path from v_0 to v_{10} . A contradiction

What we really need… Stated in terms of distance

- Let G be a directed graph with non-negative edge lengths and let $dist(s, v)$ denote the length of the shortest path from s to v .
	- If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$
- is the shortest path from $s = v_0$ to v_k then for any $0 \le i < j \le k$ we have that
	- $s = v_0 \rightarrow v_1 \rightarrow v_2 \ldots \rightarrow v_i$ is shortest path from s to v_i and
		- $dist(s, v_i) \leq dist(s, v_k)$

Find the i^{th} closest vertex **A basic strategy**

```
Initialize for each node v, dist(s, v) = \inftyInitialize X = \{s\},
    for i = 2 to |V| do
         i^{th} closest to sUpdate 
dist(s, v)
        X = X \cup \{v\}
```
How can we implement the step in the for loop?

- Explore vertices in increasing order of distance from s : (For simplicity, assume that nodes are at different distances from s and that no edge has zero length)
	-

(* Invariant: X contains the *i*-1 closest nodes to s *) Among nodes in $V\backslash X$, find the node v that is the

Implies v is **not** the i^{th} closest node to s - recall that X already has the $i-1$ closest nodes!

- What do we know about the ith closest node? *th*
	- *th*
- **Proof:** If P had an intermediate node u not in X then u will be closer to s than v.

Finding the i^{th} closest node **What we have …**

- X contains the $i 1$ closest nodes to s
- Want to find the i^{th} closest node from $V\setminus X$.

Claim: Let P be a shortest path from s to v where v is the ith closest node. Then, all intermediate nodes in P belong to X .

Finding the i^{th} closest node

Algorithm

Initialize for each node $v: dist(s, v) = \infty$ Initialize $X = \emptyset$, $d'(s, s) = 0$ for $i = 1$ to $|V|$ do (* Invariant: X contains the $i-1$ closest nodes to s *) (* Invariant: $d'(s, u)$ is shortest path distance from u to s using only X as intermediate nodes*) Let v be such that $d'(s, v) = min_{u \in V - X} d'(s, u)$ **for** each node u in $V-X$ do $dist(s, v) = d'(s, v)$ $X = X \cup \{v\}$ $d'(s, u) = min_{t \in X}(dist(s, t) + l(t, u))$

Running time: $O(n \cdot (n + m))$ time

There are n outer iterations. In each iteration, $d'(s, u)$ for each u by scanning all edges out of nodes in X , $O(m+n)$ time/iteration

Dijkstra algorithm Example

• Choose a starting vertex

Repeat the steps

Improved algorithm

- Main work is to compute the $d'(s, u)$ values in each iteration
- $d'(s, u)$ changes from iteration *i* to $i + 1$ only because of the node v that is added to X in iteration *i* (previous step)

Initialize for each node $v: dist(s, v) = d'(s, v) = \infty$ Initialize $X = \emptyset$, $d'(s, s) = 0$ for $i = 1$ to $|V|$ do // X contains the $i-1$ closest nodes to s , // and the values of $d'(s, u)$ are current Let v be node realizing $d'(s, v) = \min_{s \in S} d'(s, u)$ Update $d'(s, u)$ for each u in $V-X$ as follows: *u*∈*V*∖*X* $dist(s, v) = d'(s, v)$ $X = X \cup \{v\}$ $d'(s, u) = \min(d'(s, u), \text{dist}(s, v) + l(v, u))$

Improved algorithm

Running time: $O(m+n^2)$ time. $O(m+n^2)$

- *n* outer iterations and in each iteration following steps take place:
	- updating $d'(s, u)$ after v is added takes $O(\deg(v))$ time so *total* work is $O(m)$ since a node enters X at most once
	- Finding v from $d'(s, u)$ values takes $O(n)$ time

Dijkstra's Algorithm

- Eliminate $d'(s, u)$ and let $dist(s, u)$ maintain it
- Update dist values after adding ν by scanning edges out of ν

Initialize for each node $v: dist(s, v) = \infty$ Initialize $X = \emptyset$, $d(s, s) = 0$ for $i = 1$ to $|V|$ do Let v be such that $dist(s, v) = min dist(s, u)$ for each u in $Adj(v)$ do *u*∈*V*∖*X* $X = X \cup \{v\}$

Can use Priority Queues to maintain dist values for even faster running time

- Using heaps and standard priority queues: *O*((*m* + *n*) log *n*)
- Using Fibonacci heaps: *O*(*m* + *n* log *n*)

```
dist(s, u) = min(dist(s, u), dist(s, v) + l(v, u))
```
Dijkstra using Priority Queues Priority Queues

Data structure to store a set S of *n* elements where each element $v \in S$ has an associated real/integer key $k(v)$ alongwith that the following operations:

- makePQ: create an empty queue.
- findMin: find the minimum key in S.
- extractMin: Remove $v \in S$ with smallest key and return it.
- $\mathsf{insert}(v, k(v))$: Add new element v with key $k(v)$ to S .

All operations can be performed in $O(\log n)$ time - decreaseKey is implemented via delete and insert.

- delete(v): Remove element v from S .
- decreaseKey $(v, k'(v))$: decrease key of ν from $k(\nu)$ (current key) to $k'(\nu)$ (new key). Assumption: $k'(v) \leq k(v)$.
- meld: merge two separate priority queues into one.

PQ operations:

• $O(n)$ insert operations

decreaseKey $(Q, (u, min (dist(s, u), dist(s, v) + l(v, u)))$

- $O(n)$ extractMin operations
- $O(m)$ decreaseKey operations

Dijkstra's algorithm using priority queues

 $Q \leftarrow \text{makePQ}()$ $insert(Q, (s, 0))$ for each node $u \neq s$ do $insert(Q, (u, \infty))$ for $i = 1$ to $|V|$ do for each u in $Adj(v)$ do $X \leftarrow \varnothing$ $(v, dist(s, v)) =$ **extractMin** (Q) $X = X \cup \{v\}$

Shortest Path Tree

Dijkstra's alg. finds the shortest path distances from s to V . **Question:** How do we find the paths themselves?

```
Q \leftarrow \text{makePQ}()insert(Q, (s, 0))prev(u) \leftarrow nullfor each node u \neq s do
     insert(Q, (u, \infty))prev(u) \leftarrow nullfor i = 1 to |V| do
for each u in \text{Adj}(v) do
          if (dist(s, v) + l(v, u) < dist(s, u)) then
               prev(u) = v
X \leftarrow \varnothing(v, dist(s, v)) = extractMin(Q)X = X \cup \{v\}decreaseKey (Q, (u, dist(s, u) + l(v, u)))
```

$$
(u)) then\n(s, u) + l(v, u)\big)\bigg)
$$

Shortest Path Tree

- *s*. For each u , the reverse of the path from u to s in the tree is a shortest path from *s* to *u*.
- **Proof Sketch:**
- The edge set $\{(u, \text{prev}(u)) | u \in V\}$ induces a directed in-tree rooted at s (Why?)
- nodes in V.

Lemma: The edge set $(u, \text{prev}(u))$ is the reverse of a shortest path tree rooted at

• Use induction on $|X|$ to argue that the obtained tree is a shortest path tree for

Shortest paths *to* **s?**

Dijkstra's alg. gives shortest paths from *s* to all nodes in V. How do we find shortest paths from all of V to s ?

- In undirected graphs shortest path from s to u is a shortest path from u to s so there is no need to distinguish.
- In directed graphs, use Dijkstra's algorithm in G^{rev} !
-
-

