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Sides based on material by Kani, Chekuri, Erickson et. al.



Breadth first search (BFS)
Overview

• Breadth-first search (BFS) is an algorithm for traversing or searching a Tree or 
Graph data structure which returns the nodes of the graph level by level.


• BFS on a graph with ￼  vertices and ￼  edges takes ￼  time (obtained 
from BasicSearch by processing edges using a queue data structure). 


• It processes the vertices in the graph in the order of their shortest distance 
from the vertex ￼  (the start vertex)


• DFS good for exploring graph structure | BFS good for exploring distances

n m O(n + m)

s
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Breadth first search (BFS)

BFS traversal of a graph returns the 
nodes of the graph level by level.


The Idea of the BFS: 


Visit the vertices as follows: 


• Visit all vertices at distance 1 


• Visit all vertices at distance 2 


• Visit all vertices at distance 3 etc.

A
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￼L1

￼L2

A B C D E F



Queue data structure
Queues

A queue is a list of elements which supports the operations:


• Enqueue: Adds an element to the end of the list 


• Dequeue: Removes an element from the front of the list


• Elements are extracted in first-in first-out (FIFO) order, i.e., elements are 
picked in the order in which they were inserted.


• Contrast with LIFO (stacks)
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BFS algorithm
Pseudocode

Given (undirected or directed) graph ￼  and node ￼G = (V, E) s ∈ V

￼5

BFS(s): 
Mark all vertices as unvisited;
Initialize search tree ￼ to be empty 
Mark vertex s as visited 
set ￼ to be the empty queue 
enqueue(Q,s)  
while ￼ is non-empty do 

u = dequeue(Q) 
for each vertex ￼  

if ￼ is not visited then 
add edge ￼  to ￼ 
Mark ￼ as visited and enqueue(￼) 

T

Q

Q

v ∈ Adj(u)
v

(u, v) T
v v

Proposition 


BFS(s) runs in ￼  timeO(n + m)



BFS: An example in undirected graphs

 Mark and enqueue 1
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2 3
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Dequeue 2Mark and enqueue 4 and 5

4 5
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Dequeue 3
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8

Mark and enqueue 7 and 8

7 8

Dequeue 4Dequeue 5Mark and enqueue 6

6
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Dequeue 7Dequeue 8Dequeue 6BFS tree is the set of purple edges
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BFS: An example in directed graphs

A CB

E DF

G H

A Q1: AB C 
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BFS with distances
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BFS(s): 
Mark all vertices as unvisited; for each ￼ set ￼
Initialize search tree ￼ to be empty 
Mark vertex s as visited and set ￼
set ￼ to be the empty queue 
enqueue(s)  
while ￼ is non-empty do 

u = dequeue(Q) 
for each vertex ￼  do 

if ￼ is not visited do 
add edge ￼  to ￼ 
Mark ￼ as visited, enqueue(￼) 
and set ￼

v dist(v) = ∞
T

dist(s) = 0
Q

Q

v ∈ Adj(u)
v

(u, v) T
v v

dist(v) = dist(u) + 1



Properties of BFS
Undirected graphs

Theorem: The following properties hold upon termination of BFS(s)


• Search tree is the set of vertices in the connected component of ￼ .  


• If ￼  then ￼  is visited before ￼ . 


• For every vertex ￼ , ￼  is the length of a shortest path (in terms of 
number of edges) from ￼  to ￼ . 


• If ￼  are in connected component of ￼  and ￼  is an edge of ￼ , 
then ￼ .

s

dist(u) < dist(v) u v

u dist(u)
s u

u, v s e = {u, v} G
|dist(u) − dist(v) | ≤ 1
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Properties of BFS
Directed graphs

Theorem: The following properties hold upon termination of BFS(s)


• Search tree contains exactly the set of vertices reachable from ￼ .  


• If ￼  then ￼  is visited before ￼ . 


• For every vertex ￼ , ￼  is indeed the length of shortest path from ￼  to ￼ . 


• If ￼  is reachable from ￼  and ￼  is an edge of ￼ , then 
￼ .

s

dist(u) < dist(v) u v

u dist(u) s u

u s e = (u, v) G
dist(v) ≤ 1 + dist(u)
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BFS with layers

• BFS is a simple algorithm but proving its properties formally is not straight 
forward


• Since BFS explores graph in increasing order of distance from source s, there 
is a simpler variant that makes BFS exploration transparent and easier to 
understand.


• Given ￼  and ￼ , define ￼ . 


• Then ￼ 


• And ￼  can be found from ￼  for ￼  inductively. 

G s ∈ V Li = {v ∣ dist(s, v) = i}

L0 = {s}

Lk Lk−1 k ≥ 1
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BFS with layers
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BFSLayers(s): 
Mark all vertices as unvisited and initialize ￼ to be empty 
Mark ￼ as visited and set ￼
￼
while ￼ is not empty do

initialize ￼  to be an empty list 
for each ￼ in ￼ do 

for each edge ￼  do 
if ￼ is not visited 
 mark ￼ as visited 
 add ￼  to tree ￼ 
 add ￼ to ￼

￼

T
s L0 = {s}

i = 0
Li

Li+1
u Li

(u, v) ∈ Adj(u)
v

v
(u, v) T
v Li+1

i = i + 1

Running time: ￼O(n + m)



Example - undirected

• Layer 0: 1


• Layer 1: 2, 3


• Layer 2: 4, 5, 7, 8


• Layer 3: 6
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BFS with layers: undirected graph
Properties

• BFSLayers(s) outputs a BFS tree


• ￼  is the set of vertices at 
distance exactly ￼ from ￼ .


• If ￼  is undirected, each edge 
￼  is one of three types:


• tree edge between two 
consecutive layers 


• non-tree forward/backward 
edge between two 
consecutive layers 


• non-tree cross-edge with 
both ￼  in same layer


• Every edge in the graph is 
either between two vertices 
that are either (i) in the same 
layer, or (ii) in two consecutive 
layers!

Li
i s

G
e = {u, v}

u, v
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Example - directed

• Layer 0: A


• Layer 1: B, F, C


• Layer 2: E, G, D


• Layer 3: H
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BFS with layers

A CB

E DF

G H
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BFS with layers: directed graph
Properties

Proposition: The following properties hold on termination of BFS(s) if G is 
directed.                                                                                                                              


• Each edge ￼  is one of four types:


• A tree edge between consecutive layers, ￼  ￼  for some 
￼ 


• A non-tree forward edge between consecutive layers 


• A non-tree backward edge 


• A cross-edge with both ￼  in same layer

e = {u, v}

u ∈ Li, v ∈ Li+1
i ≥ 0

u, v
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Shortest path problems
Description

Given graph ￼  with associated edge lengths (or costs), denote for an 
edge ￼  the quantity ￼  as its length or cost. 


• Given nodes ￼  find shortest path (in terms of summed lengths/costs) from 
￼  to ￼ . (SSPP)


• Given node ￼  find shortest path from ￼  to all other nodes (SSSP)


• Find shortest paths between all pairs of nodes (APSP)

G = (V, E)
e = uv l(e) = l(uv)

s, t
s t

s s
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Shortest walks vs. paths

• A path is a sequence of distinct vertices ￼  such that ￼  
for ￼ .


• A path is a sequence of vertices ￼  such that ￼  for 
￼ .


• Finding walks is often easier than finding paths (concatenating two walks 
gives a walk, while concatenating two paths may not give a path).


•  For edges with non-negative weights/lengths, finding the shortest walk is the 
same as finding the shortest ￼  path.  

v1, v2, …, vk (vi, vi+1) ∈ E
1 ≤ i ≤ k − 1

v1, v2, …, vk (vi, vi+1) ∈ E
1 ≤ i ≤ k − 1

s → t

￼18



Single-source shortest paths
Assumption: non-negative edge lengths

Single-source shortest path problems (SSSPs)


• Input: A (undirected or directed) graph ￼  with non-negative edge 
lengths. For edge ￼ , ￼  is its length. 


• Given nodes ￼  find shortest path from ￼  to ￼. 


• Given node ￼  find shortest path from ￼  to all other nodes.


• Restrict attention to directed graphs 

G = (V, E)
e = (u, v) l(e) = l(u, v)

s, t s t

s s
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• Undirected graph problem can be reduced to directed graph problem - 
how?


• Given undirected graph ￼ , create a new directed graph ￼  by replacing 
each edge ￼  in ￼  by ￼  and ￼  in ￼  . 


• set ￼  


• Exercise: show reduction works. Relies on non-negativity!

G G′￼

{u, v} G (u, v) (v, u) G′￼

l(u, v) = l(v, u) = l({u, v})

￼20

Single-source shortest paths
Assumption: non-negative edge lengths
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Shortest path in the weighted 
case using BFS



Single-source shortest paths via BFS

• Special case: All edge lengths are 1. 


• Run BFS(s) to get shortest path distances from s to all other nodes. 


•  O(m + n) time algorithm. 


• Special case: Suppose ￼  is an integer for all ￼ ? Can we use BFS? Reduce 
to unit edge-length problem by placing ￼  dummy nodes on ￼ .


• Let ￼ . New graph has ￼  edges and ￼  nodes. BFS 
takes ￼  time. Not efficient if ￼  is large.

l(e) e
l(e) − 1 e

L = maxel(e) O(mL) O(mL + n)
O(mL + n) L
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Example of edge refinement
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Example of edge refinement
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Example of edge refinement



You can not shortcut a shortest path
Lemma (… also goes by Bellman’s principle of optimality)

Let ￼  be a directed graph with non-negative edge lengths. Suppose that 


￼  


is the shortest path from ￼  to ￼ . 


Then for any ￼   we have that 


￼  


is the shortest path from ￼  to ￼ .

G

p = v0 → v1 → v2 → . . . → vk

v0 vk

0 ≤ i < j ≤ k

vi → vi+1 → . . . → vj

vi vj

￼26



A proof by picture
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￼s = v0

￼v1

￼v2

￼v3

￼v5

￼v4
￼v6

￼v7

￼v8

￼v9

￼v10

Shortest path 
from ￼  to ￼v0 v10



A proof by picture
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￼s = v0

￼v1

￼v2

￼v3

￼v5

￼v4
￼v6

￼v7

￼v8

￼v9

￼v10

Shortest path 
from ￼  to ￼v0 v10

Shorter path 
from ￼  to ￼v2 v8



A proof by picture
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￼s = v0

￼v1

￼v2

￼v3

￼v5

￼v4
￼v6

￼v7

￼v8

￼v9

￼v10

Shortest path 
from ￼  to ￼v0 v10

A shorter path from ￼  to ￼ .               
A contradiction

v0 v10



What we really need…
Stated in terms of distance 

Let ￼  be a directed graph with non-negative edge lengths and let ￼  
denote the length of the shortest path from ￼  to ￼ .


 If ￼   


is the shortest path from ￼  to ￼  then for any ￼  we have that 


￼  is shortest path from ￼  to ￼  and 


￼

G dist(s, v)
s v

s = v0 → v1 → v2 → . . . → vk

s = v0 vk 0 ≤ i < j ≤ k

s = v0 → v1 → v2 . . . → vi s vi

dist(s, vi) ≤ dist(s, vk)
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Find the ￼  closest vertexith

A basic strategy

Explore vertices in increasing order of distance from ￼ : (For simplicity, assume 
that nodes are at different distances from ￼  and that no edge has zero length)


How can we implement the step in the for loop?

s
s

￼31

Initialize for each node ￼, ￼  
Initialize ￼ ,

for ￼  to ￼  do
(* Invariant: X contains the ￼  closest nodes to s *)
Among nodes in ￼ , find the node ￼ that is the
￼  closest to ￼
Update ￼
￼

v dist(s, v) = ∞
X = {s}

i = 2 |V |
i − 1

V∖X v
ith s

dist(s, v)
X = X ∪ {v}



Finding the ￼  closest nodeith

• ￼  contains the ￼  closest nodes to ￼  


• Want to find the ￼  closest node from ￼ .


What do we know about the ￼  closest node? 


Claim: Let ￼  be a shortest path from ￼  to ￼  where ￼  is the ￼  closest node. 
Then, all intermediate nodes in ￼  belong to ￼ . 


Proof:  If ￼  had an intermediate node ￼  not in ￼  then ￼  will be closer to ￼  than ￼ . 
Implies ￼  is not the ￼ closest node to ￼  - recall that ￼  already has the ￼  
closest nodes!

X i − 1 s

ith V∖X

ith

P s v v ith

P X

P u X u s v
v ith s X i − 1

￼32

What we have …
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Finding the ￼  closest nodeith
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Algorithm
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Initialize for each node ￼: ￼  
Initialize ￼ , ￼  
for ￼  to ￼  do

(* Invariant: X contains the ￼  closest nodes to s *) 
(* Invariant: ￼  is shortest path distance from ￼ to ￼ 
using only X as intermediate nodes*)

Let ￼ be such that ￼
￼
￼
for each node ￼ in ￼  do

￼

v dist(s, v) = ∞
X = ∅ d′￼(s, s) = 0

i = 1 |V |
i − 1

d′￼(s, u) u s

v d′￼(s, v) = minu∈V−Xd′￼(s, u)
dist(s, v) = d′￼(s, v)
X = X ∪ {v}

u V − X
d′￼(s, u) = mint∈X(dist(s, t) + l(t, u))

Running time: ￼  time


There are ￼  outer iterations. In each iteration, ￼  for each ￼  by scanning all 
edges out of nodes in ￼ ; ￼  time/iteration

O(n . (n + m))

n d′￼(s, u) u
X O(m + n)



Dijkstra algorithm
Example

• Choose a starting vertex
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Improved algorithm

• Main work is to compute the ￼  values in each iteration  


• ￼  changes from iteration ￼ to ￼  only because of the node ￼  that is added to ￼  in 
iteration ￼ (previous step)

d′￼(s, u)

d′￼(s, u) i i + 1 v X
i
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Initialize for each node ￼: ￼  
Initialize ￼ , ￼  
for ￼  to ￼  do

// X contains the ￼  closest nodes to ￼, 
// and the values of ￼  are current

Let ￼ be node realizing ￼

￼
￼
Update ￼  for each ￼ in ￼  as follows:

￼

v dist(s, v) = d′￼(s, v) = ∞
X = ∅ d′￼(s, s) = 0

i = 1 |V |
i − 1 s

d′￼(s, u)
v d′￼(s, v) = min

u∈V∖X
d′￼(s, u)

dist(s, v) = d′￼(s, v)
X = X ∪ {v}

d′￼(s, u) u V − X
d′￼(s, u) = min(d′￼(s, u), dist(s, v) + l(v, u))



Running time: ￼  time.


• ￼  outer iterations and in each iteration following steps take place:


• updating ￼  after ￼  is added takes ￼  time so total work is 
￼  since a node enters ￼  at most once


• Finding ￼  from ￼  values takes ￼  time

O(m+n2)

n

d′￼(s, u) v O(deg(v))
O(m) X

v d′￼(s, u) O(n)

￼37

Improved algorithm



Dijkstra’s Algorithm

• Eliminate ￼  and let ￼  maintain it 


• Update ￼  values after adding ￼  by scanning edges out of ￼

d′￼(s, u) dist(s, u)

dist v v
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Initialize for each node ￼: ￼  
Initialize ￼ , ￼  
for ￼  to ￼  do

Let v be such that ￼  

￼
for each ￼ in ￼  do

￼

v dist(s, v) = ∞
X = ∅ d(s, s) = 0

i = 1 |V |
dist(s, v) = min

u∈V∖X
dist(s, u)

X = X ∪ {v}
u Adj(v)

dist(s, u) = min(dist(s, u), dist(s, v) + l(v, u))

Can use Priority Queues to maintain ￼  values for even faster running time 

• Using heaps and standard priority queues: ￼  

• Using Fibonacci heaps: ￼

dist
O((m + n) log n)

O(m + n log n)



Dijkstra using Priority Queues 
Priority Queues

Data structure to store a set ￼  of ￼  elements where each element ￼  has an 
associated real/integer key ￼  alongwith that the following operations: 


All operations can be performed in ￼  time - decreaseKey is implemented 
via delete and insert.

S n v ∈ S
k(v)

O(log n)
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• makePQ: create an empty queue. 

• findMin: find the minimum key in ￼ . 


• extractMin: Remove ￼  with 
smallest key and return it. 


• insert(￼ ): Add new element v 
with key ￼  to ￼ . 


• delete(￼ ): Remove element ￼  from ￼ . 


• decreaseKey(￼ ): decrease key 
of ￼  from ￼  (current key) to ￼  
(new key). Assumption: 
￼  


• meld: merge two separate priority 
queues into one. 

S
v ∈ S

v, k(v)
k(v) S

v v S
v, k′￼(v)

v k(v) k′￼(v)
k′￼(v) ≤ k(v) .



PQ operations: 

• ￼  insert operations 


• ￼  extractMin operations 


• ￼  decreaseKey operations
O(n)

O(n)

O(m)
￼40

Dijkstra’s algorithm using priority queues 
Q ￼  makePQ() 
insert(Q, (s, 0))
for each node ￼  do

insert(Q, (u, ￼ ))
￼
for ￼  to ￼  do
 ￼
￼
for each ￼ in ￼  do

￼

←

u ≠ s
∞

X ← ∅
i = 1 |V |

(v, dist(s, v)) = extractMin(Q)
X = X ∪ {v}

u Adj(v)

decreaseKey (Q, (u, min (dist(s, u), dist(s, v) + l(v, u))))



Shortest Path Tree
Dijkstra’s alg. finds the shortest path distances from ￼  to ￼ .                                       
Question: How do we find the paths themselves?

s V
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Q ￼  makePQ() 
insert(Q, (s, 0))
prev(u) ￼  null
for each node ￼  do

insert(Q, (u, ￼ ))
    prev(u) ￼  null
￼
for ￼  to ￼  do
    ￼
    ￼
    for each ￼ in ￼  do

if ￼  then

￼

prev(u) = v

←

←
u ≠ s

∞
←

X ← ∅
i = 1 |V |
(v, dist(s, v)) = extractMin(Q)
X = X ∪ {v}

u Adj(v)
(dist(s, v) + l(v, u) < dist(s, u))
decreaseKey (Q, (u, dist(s, u) + l(v, u)))



Lemma: The edge set ￼  is the reverse of a shortest path tree rooted at 
￼ . For each ￼ , the reverse of the path from ￼  to ￼  in the tree is a shortest path from 
￼  to ￼ .


Proof Sketch:


• The edge set ￼  induces a directed in-tree rooted at ￼  
(Why?)


• Use induction on ￼  to argue that the obtained tree is a shortest path tree for 
nodes in ￼ .

(u, prev(u))
s u u s
s u

{(u, prev(u)) |u ∈ V} s

|X |
V

￼42

Shortest Path Tree



Shortest paths to s?

Dijkstra’s alg. gives shortest paths from ￼  to all nodes in ￼ . 


How do we find shortest paths from all of ￼  to ￼ ? 


• In undirected graphs shortest path from ￼  to ￼  is a shortest path from ￼  to ￼  
so there is no need to distinguish. 


• In directed graphs, use Dijkstra’s algorithm in ￼ !

s V

V s

s u u s

Grev
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