
Shortest Paths [BFS, Djikstra]

All mistakes are my own! - Ivan Abraham (Fall 2024)

Sides based on material by Kani, Chekuri, Erickson et. al.

Breadth first search (BFS)
Overview

• Breadth-first search (BFS) is an algorithm for traversing or searching a Tree or
Graph data structure which returns the nodes of the graph level by level.

• BFS on a graph with ￼ vertices and ￼ edges takes ￼ time (obtained
from BasicSearch by processing edges using a queue data structure).

• It processes the vertices in the graph in the order of their shortest distance
from the vertex ￼ (the start vertex)

• DFS good for exploring graph structure | BFS good for exploring distances

n m O(n + m)

s

￼2

￼3

Breadth first search (BFS)

BFS traversal of a graph returns the
nodes of the graph level by level.

The Idea of the BFS:

Visit the vertices as follows:

• Visit all vertices at distance 1

• Visit all vertices at distance 2

• Visit all vertices at distance 3 etc.

A

B C D

E F

￼L0

￼L1

￼L2

A B C D E F

Queue data structure
Queues

A queue is a list of elements which supports the operations:

• Enqueue: Adds an element to the end of the list

• Dequeue: Removes an element from the front of the list

• Elements are extracted in first-in first-out (FIFO) order, i.e., elements are
picked in the order in which they were inserted.

• Contrast with LIFO (stacks)

￼4

BFS algorithm
Pseudocode

Given (undirected or directed) graph ￼ and node ￼G = (V, E) s ∈ V

￼5

BFS(s):
Mark all vertices as unvisited;
Initialize search tree ￼ to be empty
Mark vertex s as visited
set ￼ to be the empty queue
enqueue(Q,s)
while ￼ is non-empty do

u = dequeue(Q)
for each vertex ￼

if ￼ is not visited then
add edge ￼ to ￼
Mark ￼ as visited and enqueue(￼)

T

Q

Q

v ∈ Adj(u)
v

(u, v) T
v v

Proposition

BFS(s) runs in ￼ timeO(n + m)

BFS: An example in undirected graphs

 Mark and enqueue 1

￼6

1

32

54

6

7

8

1

1

Dequeue 1Mark and enqueue 2 and 3

2 3

2 3

Dequeue 2Mark and enqueue 4 and 5

4 5

4 5

Dequeue 3

7

8

Mark and enqueue 7 and 8

7 8

Dequeue 4Dequeue 5Mark and enqueue 6

6

6

Dequeue 7Dequeue 8Dequeue 6BFS tree is the set of purple edges

￼L0

￼L1

￼L2

￼L3

￼7

BFS: An example in directed graphs

A CB

E DF

G H

A Q1: AB C

F

Q2: B C F

E
Q3: C F E

D
Q4: F E D

G Q5: E D GH

Q6: D G H

Q7: G H

Q8: H

Q9:

￼L0￼L1

￼L2

￼L3

BFS with distances

￼8

BFS(s):
Mark all vertices as unvisited; for each ￼ set ￼
Initialize search tree ￼ to be empty
Mark vertex s as visited and set ￼
set ￼ to be the empty queue
enqueue(s)
while ￼ is non-empty do

u = dequeue(Q)
for each vertex ￼ do

if ￼ is not visited do
add edge ￼ to ￼
Mark ￼ as visited, enqueue(￼)
and set ￼

v dist(v) = ∞
T

dist(s) = 0
Q

Q

v ∈ Adj(u)
v

(u, v) T
v v

dist(v) = dist(u) + 1

Properties of BFS
Undirected graphs

Theorem: The following properties hold upon termination of BFS(s)

• Search tree is the set of vertices in the connected component of ￼ .

• If ￼ then ￼ is visited before ￼ .

• For every vertex ￼ , ￼ is the length of a shortest path (in terms of
number of edges) from ￼ to ￼ .

• If ￼ are in connected component of ￼ and ￼ is an edge of ￼ ,
then ￼ .

s

dist(u) < dist(v) u v

u dist(u)
s u

u, v s e = {u, v} G
|dist(u) − dist(v) | ≤ 1

￼9

Properties of BFS
Directed graphs

Theorem: The following properties hold upon termination of BFS(s)

• Search tree contains exactly the set of vertices reachable from ￼ .

• If ￼ then ￼ is visited before ￼ .

• For every vertex ￼ , ￼ is indeed the length of shortest path from ￼ to ￼ .

• If ￼ is reachable from ￼ and ￼ is an edge of ￼ , then
￼ .

s

dist(u) < dist(v) u v

u dist(u) s u

u s e = (u, v) G
dist(v) ≤ 1 + dist(u)

￼10

BFS with layers

• BFS is a simple algorithm but proving its properties formally is not straight
forward

• Since BFS explores graph in increasing order of distance from source s, there
is a simpler variant that makes BFS exploration transparent and easier to
understand.

• Given ￼ and ￼ , define ￼ .

• Then ￼

• And ￼ can be found from ￼ for ￼ inductively.

G s ∈ V Li = {v ∣ dist(s, v) = i}

L0 = {s}

Lk Lk−1 k ≥ 1
￼11

BFS with layers

￼12

BFSLayers(s):
Mark all vertices as unvisited and initialize ￼ to be empty
Mark ￼ as visited and set ￼
￼
while ￼ is not empty do

initialize ￼ to be an empty list
for each ￼ in ￼ do

for each edge ￼ do
if ￼ is not visited
 mark ￼ as visited
 add ￼ to tree ￼
 add ￼ to ￼

￼

T
s L0 = {s}

i = 0
Li

Li+1
u Li

(u, v) ∈ Adj(u)
v

v
(u, v) T
v Li+1

i = i + 1

Running time: ￼O(n + m)

Example - undirected

• Layer 0: 1

• Layer 1: 2, 3

• Layer 2: 4, 5, 7, 8

• Layer 3: 6

￼13

1

32

54

6

7

8

￼L0

￼L1

￼L2

￼L3

BFS with layers

BFS with layers: undirected graph
Properties

• BFSLayers(s) outputs a BFS tree

• ￼ is the set of vertices at
distance exactly ￼ from ￼ .

• If ￼ is undirected, each edge
￼ is one of three types:

• tree edge between two
consecutive layers

• non-tree forward/backward
edge between two
consecutive layers

• non-tree cross-edge with
both ￼ in same layer

• Every edge in the graph is
either between two vertices
that are either (i) in the same
layer, or (ii) in two consecutive
layers!

Li
i s

G
e = {u, v}

u, v

￼14

Example - directed

• Layer 0: A

• Layer 1: B, F, C

• Layer 2: E, G, D

• Layer 3: H

￼15

BFS with layers

A CB

E DF

G H

￼L0￼L1

￼L2

￼L3

BFS with layers: directed graph
Properties

Proposition: The following properties hold on termination of BFS(s) if G is
directed.

• Each edge ￼ is one of four types:

• A tree edge between consecutive layers, ￼ ￼ for some
￼

• A non-tree forward edge between consecutive layers

• A non-tree backward edge

• A cross-edge with both ￼ in same layer

e = {u, v}

u ∈ Li, v ∈ Li+1
i ≥ 0

u, v
￼16

Shortest path problems
Description

Given graph ￼ with associated edge lengths (or costs), denote for an
edge ￼ the quantity ￼ as its length or cost.

• Given nodes ￼ find shortest path (in terms of summed lengths/costs) from
￼ to ￼ . (SSPP)

• Given node ￼ find shortest path from ￼ to all other nodes (SSSP)

• Find shortest paths between all pairs of nodes (APSP)

G = (V, E)
e = uv l(e) = l(uv)

s, t
s t

s s

￼17

Shortest walks vs. paths

• A path is a sequence of distinct vertices ￼ such that ￼
for ￼ .

• A path is a sequence of vertices ￼ such that ￼ for
￼ .

• Finding walks is often easier than finding paths (concatenating two walks
gives a walk, while concatenating two paths may not give a path).

• For edges with non-negative weights/lengths, finding the shortest walk is the
same as finding the shortest ￼ path.

v1, v2, …, vk (vi, vi+1) ∈ E
1 ≤ i ≤ k − 1

v1, v2, …, vk (vi, vi+1) ∈ E
1 ≤ i ≤ k − 1

s → t

￼18

Single-source shortest paths
Assumption: non-negative edge lengths

Single-source shortest path problems (SSSPs)

• Input: A (undirected or directed) graph ￼ with non-negative edge
lengths. For edge ￼ , ￼ is its length.

• Given nodes ￼ find shortest path from ￼ to ￼.

• Given node ￼ find shortest path from ￼ to all other nodes.

• Restrict attention to directed graphs

G = (V, E)
e = (u, v) l(e) = l(u, v)

s, t s t

s s

￼19

• Undirected graph problem can be reduced to directed graph problem -
how?

• Given undirected graph ￼ , create a new directed graph ￼ by replacing
each edge ￼ in ￼ by ￼ and ￼ in ￼ .

• set ￼

• Exercise: show reduction works. Relies on non-negativity!

G G′￼

{u, v} G (u, v) (v, u) G′￼

l(u, v) = l(v, u) = l({u, v})

￼20

Single-source shortest paths
Assumption: non-negative edge lengths

￼21

Shortest path in the weighted
case using BFS

Single-source shortest paths via BFS

• Special case: All edge lengths are 1.

• Run BFS(s) to get shortest path distances from s to all other nodes.

• O(m + n) time algorithm.

• Special case: Suppose ￼ is an integer for all ￼ ? Can we use BFS? Reduce
to unit edge-length problem by placing ￼ dummy nodes on ￼ .

• Let ￼ . New graph has ￼ edges and ￼ nodes. BFS
takes ￼ time. Not efficient if ￼ is large.

l(e) e
l(e) − 1 e

L = maxel(e) O(mL) O(mL + n)
O(mL + n) L

￼22

￼23

Example of edge refinement

￼24

Example of edge refinement

￼25

Example of edge refinement

You can not shortcut a shortest path
Lemma (… also goes by Bellman’s principle of optimality)

Let ￼ be a directed graph with non-negative edge lengths. Suppose that

￼

is the shortest path from ￼ to ￼ .

Then for any ￼ we have that

￼

is the shortest path from ￼ to ￼ .

G

p = v0 → v1 → v2 → . . . → vk

v0 vk

0 ≤ i < j ≤ k

vi → vi+1 → . . . → vj

vi vj

￼26

A proof by picture

￼27

￼s = v0

￼v1

￼v2

￼v3

￼v5

￼v4
￼v6

￼v7

￼v8

￼v9

￼v10

Shortest path
from ￼ to ￼v0 v10

A proof by picture

￼28

￼s = v0

￼v1

￼v2

￼v3

￼v5

￼v4
￼v6

￼v7

￼v8

￼v9

￼v10

Shortest path
from ￼ to ￼v0 v10

Shorter path
from ￼ to ￼v2 v8

A proof by picture

￼29

￼s = v0

￼v1

￼v2

￼v3

￼v5

￼v4
￼v6

￼v7

￼v8

￼v9

￼v10

Shortest path
from ￼ to ￼v0 v10

A shorter path from ￼ to ￼ .
A contradiction

v0 v10

What we really need…
Stated in terms of distance

Let ￼ be a directed graph with non-negative edge lengths and let ￼
denote the length of the shortest path from ￼ to ￼ .

 If ￼

is the shortest path from ￼ to ￼ then for any ￼ we have that

￼ is shortest path from ￼ to ￼ and

￼

G dist(s, v)
s v

s = v0 → v1 → v2 → . . . → vk

s = v0 vk 0 ≤ i < j ≤ k

s = v0 → v1 → v2 . . . → vi s vi

dist(s, vi) ≤ dist(s, vk)

￼30

Find the ￼ closest vertexith

A basic strategy

Explore vertices in increasing order of distance from ￼ : (For simplicity, assume
that nodes are at different distances from ￼ and that no edge has zero length)

How can we implement the step in the for loop?

s
s

￼31

Initialize for each node ￼, ￼
Initialize ￼ ,

for ￼ to ￼ do
(* Invariant: X contains the ￼ closest nodes to s *)
Among nodes in ￼ , find the node ￼ that is the
￼ closest to ￼
Update ￼
￼

v dist(s, v) = ∞
X = {s}

i = 2 |V |
i − 1

V∖X v
ith s

dist(s, v)
X = X ∪ {v}

Finding the ￼ closest nodeith

• ￼ contains the ￼ closest nodes to ￼

• Want to find the ￼ closest node from ￼ .

What do we know about the ￼ closest node?

Claim: Let ￼ be a shortest path from ￼ to ￼ where ￼ is the ￼ closest node.
Then, all intermediate nodes in ￼ belong to ￼ .

Proof: If ￼ had an intermediate node ￼ not in ￼ then ￼ will be closer to ￼ than ￼ .
Implies ￼ is not the ￼ closest node to ￼ - recall that ￼ already has the ￼
closest nodes!

X i − 1 s

ith V∖X

ith

P s v v ith

P X

P u X u s v
v ith s X i − 1

￼32

What we have …

￼33

Finding the ￼ closest nodeith

9

6

13

10

18

30

208

25

16

19 6

6

6

11

A

B

C

E

D

F

G

H

0
6

9

13

19

25

38

Algorithm

￼34

Initialize for each node ￼: ￼
Initialize ￼ , ￼
for ￼ to ￼ do

(* Invariant: X contains the ￼ closest nodes to s *)
(* Invariant: ￼ is shortest path distance from ￼ to ￼
using only X as intermediate nodes*)

Let ￼ be such that ￼
￼
￼
for each node ￼ in ￼ do

￼

v dist(s, v) = ∞
X = ∅ d′￼(s, s) = 0

i = 1 |V |
i − 1

d′￼(s, u) u s

v d′￼(s, v) = minu∈V−Xd′￼(s, u)
dist(s, v) = d′￼(s, v)
X = X ∪ {v}

u V − X
d′￼(s, u) = mint∈X(dist(s, t) + l(t, u))

Running time: ￼ time

There are ￼ outer iterations. In each iteration, ￼ for each ￼ by scanning all
edges out of nodes in ￼ ; ￼ time/iteration

O(n . (n + m))

n d′￼(s, u) u
X O(m + n)

Dijkstra algorithm
Example

• Choose a starting vertex

￼35

9

6

13

10

18

30

208

25

16

19 6

6

6

11

A

B

C

E

D

F

G

H

0
6

9

13

6

0+9

0+6

0+13

6+18

6+30

6+8 > 13
Do not update value

36

249
9+10

19

13

Repeat the steps

33

38

19

2525

3636

36

Improved algorithm

• Main work is to compute the ￼ values in each iteration

• ￼ changes from iteration ￼ to ￼ only because of the node ￼ that is added to ￼ in
iteration ￼ (previous step)

d′￼(s, u)

d′￼(s, u) i i + 1 v X
i

￼36

Initialize for each node ￼: ￼
Initialize ￼ , ￼
for ￼ to ￼ do

// X contains the ￼ closest nodes to ￼,
// and the values of ￼ are current

Let ￼ be node realizing ￼

￼
￼
Update ￼ for each ￼ in ￼ as follows:

￼

v dist(s, v) = d′￼(s, v) = ∞
X = ∅ d′￼(s, s) = 0

i = 1 |V |
i − 1 s

d′￼(s, u)
v d′￼(s, v) = min

u∈V∖X
d′￼(s, u)

dist(s, v) = d′￼(s, v)
X = X ∪ {v}

d′￼(s, u) u V − X
d′￼(s, u) = min(d′￼(s, u), dist(s, v) + l(v, u))

Running time: ￼ time.

• ￼ outer iterations and in each iteration following steps take place:

• updating ￼ after ￼ is added takes ￼ time so total work is
￼ since a node enters ￼ at most once

• Finding ￼ from ￼ values takes ￼ time

O(m+n2)

n

d′￼(s, u) v O(deg(v))
O(m) X

v d′￼(s, u) O(n)

￼37

Improved algorithm

Dijkstra’s Algorithm

• Eliminate ￼ and let ￼ maintain it

• Update ￼ values after adding ￼ by scanning edges out of ￼

d′￼(s, u) dist(s, u)

dist v v

￼38

Initialize for each node ￼: ￼
Initialize ￼ , ￼
for ￼ to ￼ do

Let v be such that ￼

￼
for each ￼ in ￼ do

￼

v dist(s, v) = ∞
X = ∅ d(s, s) = 0

i = 1 |V |
dist(s, v) = min

u∈V∖X
dist(s, u)

X = X ∪ {v}
u Adj(v)

dist(s, u) = min(dist(s, u), dist(s, v) + l(v, u))

Can use Priority Queues to maintain ￼ values for even faster running time

• Using heaps and standard priority queues: ￼

• Using Fibonacci heaps: ￼

dist
O((m + n) log n)

O(m + n log n)

Dijkstra using Priority Queues
Priority Queues

Data structure to store a set ￼ of ￼ elements where each element ￼ has an
associated real/integer key ￼ alongwith that the following operations:

All operations can be performed in ￼ time - decreaseKey is implemented
via delete and insert.

S n v ∈ S
k(v)

O(log n)

￼39

• makePQ: create an empty queue.

• findMin: find the minimum key in ￼ .

• extractMin: Remove ￼ with
smallest key and return it.

• insert(￼): Add new element v
with key ￼ to ￼ .

• delete(￼): Remove element ￼ from ￼ .

• decreaseKey(￼): decrease key
of ￼ from ￼ (current key) to ￼
(new key). Assumption:
￼

• meld: merge two separate priority
queues into one.

S
v ∈ S

v, k(v)
k(v) S

v v S
v, k′￼(v)

v k(v) k′￼(v)
k′￼(v) ≤ k(v) .

PQ operations:

• ￼ insert operations

• ￼ extractMin operations

• ￼ decreaseKey operations
O(n)

O(n)

O(m)
￼40

Dijkstra’s algorithm using priority queues
Q ￼ makePQ()
insert(Q, (s, 0))
for each node ￼ do

insert(Q, (u, ￼))
￼
for ￼ to ￼ do
 ￼
￼
for each ￼ in ￼ do

￼

←

u ≠ s
∞

X ← ∅
i = 1 |V |

(v, dist(s, v)) = extractMin(Q)
X = X ∪ {v}

u Adj(v)

decreaseKey (Q, (u, min (dist(s, u), dist(s, v) + l(v, u))))

Shortest Path Tree
Dijkstra’s alg. finds the shortest path distances from ￼ to ￼ .
Question: How do we find the paths themselves?

s V

￼41

Q ￼ makePQ()
insert(Q, (s, 0))
prev(u) ￼ null
for each node ￼ do

insert(Q, (u, ￼))
 prev(u) ￼ null
￼
for ￼ to ￼ do
 ￼
 ￼
 for each ￼ in ￼ do

if ￼ then

￼

prev(u) = v

←

←
u ≠ s

∞
←

X ← ∅
i = 1 |V |
(v, dist(s, v)) = extractMin(Q)
X = X ∪ {v}

u Adj(v)
(dist(s, v) + l(v, u) < dist(s, u))
decreaseKey (Q, (u, dist(s, u) + l(v, u)))

Lemma: The edge set ￼ is the reverse of a shortest path tree rooted at
￼ . For each ￼ , the reverse of the path from ￼ to ￼ in the tree is a shortest path from
￼ to ￼ .

Proof Sketch:

• The edge set ￼ induces a directed in-tree rooted at ￼
(Why?)

• Use induction on ￼ to argue that the obtained tree is a shortest path tree for
nodes in ￼ .

(u, prev(u))
s u u s
s u

{(u, prev(u)) |u ∈ V} s

|X |
V

￼42

Shortest Path Tree

Shortest paths to s?

Dijkstra’s alg. gives shortest paths from ￼ to all nodes in ￼ .

How do we find shortest paths from all of ￼ to ￼ ?

• In undirected graphs shortest path from ￼ to ￼ is a shortest path from ￼ to ￼
so there is no need to distinguish.

• In directed graphs, use Dijkstra’s algorithm in ￼ !

s V

V s

s u u s

Grev

￼43

