Shortest Paths [BFS, Djikstra]

Sides based on material by Kani, Chekuri, Erickson et. al.

All mistakes are my own! - lvan Abraham (Fall 2024)

Image by ChatGPT (probably collaborated with DALL-E)

Breadth first search (BFS)

Overview

* Breadth-first search (BFS) is an algorithm for traversing or searching a Tree or
Graph data structure which returns the nodes of the graph level by level.

« BFS on a graph with n vertices and m edges takes O(n + m) time (obtained
from BasicSearch by processing edges using a queue data structure).

* |t processes the vertices in the graph in the order of their shortest distance
from the vertex s (the start vertex)

* DFS good for exploring graph structure | BFS good for exploring distances

Breadth first search (BFS)

BFS traversal of a graph returns the
nodes of the graph level by level.

The Idea of the BFS:
Visit the vertices as follows:

 Visit all vertices at distance 1

 Visit all vertices at distance 2

 Visit all vertices at distance 3 etc.

Ly

: ONRO.
/N7
SICENG

ABCDEF

Queue data structure

Queues

A queue is a list of elements which supports the operations:
 Enqueue: Adds an element to the end of the list
e Dequeue: Removes an element from the front of the list

 Elements are extracted in first-in first-out (FIFO) order, I.e., elements are
picked in the order in which they were inserted.

e Contrast with LIFO (stacks)

BFS algorithm

Pseudocode

Given (undirected or directed) graph G = (V, E) and node s € V

BFS(s):
Mark all vertices as unvisited;
Initialize search tree T to be empty
Mark vertex s as visited
set 0 to be the empty queue
enqueue(Q, s)
while () is non-empty do
u = dequeue(Q)
for each vertex v € Adj(u)
if v 1s not visited then
add edge (u,v) to T
Mark v as visited and enqueue (V)

Proposition

BFS(s) runs in O(n + m) time

BFS: An example in undirected graphs

BFS tree is the set of purple edges

BFS: '
FS: An example in directed graphs

Q1:

Q2:

Q3:

Q4:
Q5:

mi| |7 (O] (W (B
Of |mj |mp O

W (T (M} [T

Q6:

Q7: |G

Q8:
Q9:

BFS with distances

BFS(s):
Mark all vertices as unvisited;
Initialize search tree I to be empty
Mark vertex s as visited
set 0 to be the empty queue
enqueue(s)
while () is non-empty do
u = dequeue(Q)
for each vertex v € Adj(u) do
if v 1s not visited do
add edge (u,v) to T
Mark v as visited, enqueue(V)

Properties of BFS

Undirected graphs

Theorem: The following properties hold upon termination of BFS(s)
o Search tree is the set of vertices in the connected component of s.
o If dist(u) < dist(v) then u is visited before v.

» For every vertex u, dist(u) is the length of a shortest path (in terms of
number of edges) from s to u.

e If u, v are in connected component of s and ¢ = {u, v} is an edge of G,
then |dist(u) — dist(v) | < 1.

Properties of BFS

Directed graphs

Theorem: The following properties hold upon termination of BFS(s)
o Search tree contains exactly the set of vertices reachable from s.
o If dist(u) < dist(v) then u is visited before v.
» For every vertex u, dist(u«) is indeed the length of shortest path from s to u.

o If u is reachable from s and ¢ = (u, v) is an edge of G, then
dist(v) < 1 + dist(u).

10

BFS with layers

 BFS is a simple algorithm but proving its properties formally is not straight
forward

* Since BFS explores graph in increasing order of distance from source s, there

Is a simpler variant that makes BFS exploration transparent and easier to
understand.

» Given G and s € V, define L. = {v | dist(s,v) = i}.
° Then LO — {S}

» And L, can be found from L, | for k > 1 inductively.

11

BFS with layers

BFSLayers(s):
Mark all vertices as unvisited and initialize T to be empty
Mark s as visited and set L= {s}
1 =0
while L, is not empty do
initialize L, ; to be an empty list
for each u in L, do
for each edge (u,v) € Adj(u) do
1f v 1is not visited
mark v as visited
add (#,v) to tree T
add v to L,
=1+ 1

Running time: O(n + m)

12

BFS with layers

Example - undirected

 Layer O: 1

e Layer1:2,3
e Layer?2:4,5, 7,8

o Layer 3: 0

13

BFS with layers: undirected graph

Properties
« BFSLayers(s) outputs a BFS tree * non-tree forward/backward
edge between two
o L. is the set of vertices at consecutive layers

distance exactly 1 from s. .
y * non-tree cross-edge with

« If G is undirected, each edge both u, v in same layer
e = {u, v} is one of three types:

 Every edge in the graph is
either between two vertices
that are either (i) in the same
layer, or (il) in two consecutive
layers!

* tree edge between two
consecutive layers

14

BFS with layers

Example - directed

 Layer O0: A

 Layer?2:E, G, D
 |Layer 3. H

BFS with layers: directed graph

Properties

Proposition: The following properties hold on termination of BFS(s) if G is
directed.

e Each edge ¢ = {u, v} is one of four types:

« A tree edge between consecutive layers, u € L;, v € L, , for some
1 >0

* A non-tree forward edge between consecutive layers

* A non-tree backward edge

e A cross-edge with both u, v in same layer

16

Shortest path problems

Description

Given graph G = (V, E) with associated edge lengths (or costs), denote for an
edge ¢ = uv the quantity /(e) = [(uv) as its length or cost.

e Given nodes s, 1 find shortest path (in terms of summed lengths/costs) from
stor.(SSPP)

e Given node s find shortest path from s to all other nodes (SSSP)

* Find shortest paths between all pairs of nodes (APSP)

17

Shortest walks vs. paths

» A path is a sequence of distinct vertices v, v,, ..., v, such that (v,,v,.) € E
forl <i<k-—1.

« A path is a sequence of vertices vy, v,, ..., v, such that (vl-, V; +1) e E for
1 <i<k-1.

* Finding walks is often easier than finding paths (concatenating two walks
gives a walk, while concatenating two paths may not give a path).

* For edges with non-negative weights/lengths, finding the shortest walk is the
same as finding the shortest s — 7 path.

18

Single-source shortest paths

Assumption: hon-negative edge lengths

Single-source shortest path problems (SSSPs)

. A (undirected or directed) graph G = (V, E) with non-negative edge
lengths. For edge ¢ = (u, v), [(e) = [(u, v) is its length.

 Given nodes s, f find shortest path from s to 7.

* Given node s find shortest path from s to all other nodes.

* Restrict attention to directed graphs

19

Single-source shortest paths

Assumption: hon-negative edge lengths

* Undirected graph problem can be reduced to directed graph problem -
how?

« Given undirected graph G, create a new directed graph G’ by replacing
each edge {u,v} in Gby (u,v)and (v,u) in G".

e setl(u,v) = l(v,u) = I({u,v})

e Exercise: show reduction works.

20

WA

&

AN

> e’ 7
;(/i Shortest path in the weighted 5
" case using BFS

-
ST TS e TN\

Single-source shortest paths via BFS

* Special case: All edge lengths are 1.

 Run BFS(s) to get shortest path distances from s to all other nodes.
 O(m + n) time algorithm.
» Special case: Suppose [(¢) is an integer for all ¢? Can we use BFS? Reduce

to unit edge-length problem by placing /(¢) — 1 dummy nodes on e.

e Let L = max,l(e). New graph has O(mL) edges and O(mL + n) nodes. BFS
takes O(mL + n) time. Not efficient if L is large.

22

Example of edge refinement

Example of edge refinement

Example of edge refinement

You can not shortcut a shortest path

Lemma (... also goes by Bellman’s principle of optimality)

Let G be a directed graph with non-negative edge lengths. Suppose that
pZVO_:'Vl_)Vz_)...—)Vk
s the shortest path from v, to v;.

Then forany 0 <1 < j < k we have that

Vi > Vi = e Y

s the shortest path from v; to v;.

26

e
ictur
1IC
fbyp

00

pr

A

V7

th
a
rtest p

0

Sh

Vs \

V3

V10
O

Vo {

m

fro

27

V10

A proof by picture

Shorter path
from v, to vy

S:VO

Vg

V7

\ Shortest path

from VO {o Vlo

28

V10

A proof by picture

A shorter path from vy, to vy.
A contradiction

@
Vv
O 10

Vg

V7

N
> \ Shortest path
V3

from VO {o Vlo

29

What we really need...

Stated in terms of distance

Let G be a directed graph with non-negative edge lengths and let dist(s, v)
denote the length of the shortest path from s to V.

IfS:VO_>V1_)V2_>..._)Vk
is the shortest path from s = v, to v, then forany 0 < i < j < k we have that
S =Vy— VvV, = V... — V.is shortest path from s to v: and

dist(s, v;) < dist(s, v}

30

Find the ;" closest vertex
A basic strategy

Explore vertices in increasing order of distance from s: (For simplicity, assume
that nodes are at different distances from s and that no edge has zero length)

Initialize for each node v, dist(s,v) = o0
Initialize X = {s},
for i=2 to |V| do

Among nodes in V\X, find the node v that is the
i closest to s
Update dist(s,Vv)

X=XU{v}
How can we implement the step in the for loop?

31

Finding the i"* closest node

What we have ...

« X containsthe i — 1| closest nodes to s
. Want to find the i closest node from V\ X.
What do we know about the """ closest node?

Claim: Let P be a shortest path from s to v where v is the i closest node.
Then, all intermediate nodes in /° belong to X.

Proof: If /° had an intermediate node 1z not in X then u will be closer to s than v.

Implies v is not the i""closest node to s - recall that X already hasthe i — 1
closest nodes!

32

Finding the i"* closest node

Algorithm

Initialize for each node v: dist(s,v) = o©
Initialize X=@, d(s,s)=0
for i=1 to |V| do

Let v be such that d'(s,v) = min,.y_yd'(s, u)
dist(s,v) = d'(s, V)
X=XU{v}
for each node u in V—X do
d'(s,u) = min,_(dist(s, t) + I(t, u))

Running time: O(n . (n + m)) time

There are n outer iterations. In each iteration, d'(s, i) for each 1 by scanning all
edges out of nodes in X; O(m + n) time/iteration

34

Dijkstra algorithm

Example

* Choose a starting vertex

6+8 > 13
Do not update value

35

Repeat the steps

Improved algorithm

» Main work is to compute the d’(s, 1) values in each iteration

» d'(s, u) changes from iteration i to i + | only because of the node v that is added to X in
iteration 1 (previous step)

Initialize for each node v: dist(s,v) =d'(s,v) = o©
Initialize X=@, d(s,s)=0
for i=1 to |V| do

Let v be node realizing d'(s,v) = min d'(s, u)
ueV\X

dist(s, v) = d'(s, v)

X=XU{v}

Update d'(s,u) for each u in V—X as follows:
d'(s,u) = mn(d'(s, u), dist(s,v)+ (v, u))

36

Improved algorithm

O(m+n?) time.
e 1 outer iterations and in each iteration following steps take place:

» updating d'(s, u) after v is added takes O(deg(v)) time so total work is
O(m) since a node enters X at most once

» Finding v from d’(s, u) values takes O(n) time

37

Dijkstra’s Algorithm

 Eliminate d'(s, 1) and let dist(s, #) maintain it

e Update dist values after adding v by scanning edges out of v

Initialize for each node v: dist(s,v) =
Initialize X=@, d(s,s) =0
for i=1 to |V]| do

X=XU{v}
for each u in Adj(v) do
dist(s, #) = min(dist(s, u), dist(s,v) + (v, u))

Can use to maintain dist values for even faster running time
 Using heaps and standard priority queues: O((m + n) logn)
» Using Fibonacci heaps: O(m + nlog n)

38

Dijkstra using Priority Queues

Priority Queues

Data structure to store a set S of n elements where each element v € § has an
associated real/integer key k(v) alongwith that the following operations:

* makePQ: create an empty queue. » delete(): Remove element v from S.

e findMin: find the minimum key in S. . decreaseKey(v, k'(v)): decrease key

« extractMin: Remove v € § with of v from k(v) (current key) to k'(v)
smallest key and return it. }(n(e‘\}/\)/ ke3]’c(Sssumptlon

) ingert(v, k(v)): Add new element v meld: merge two separate priority
with key k(v) to S. qgueues At one.

All operations can be performed in O(log n) time - decreaseKey is implemented
via delete and insert.

39

Dijkstra’s algorithm using priority queues

Q <« makePQ()

insert(Q, (s, 0))

for each node u #s do
insert(Q, (u, o))

X<

for i=1 to |V| do

(v, dist(s, v)) = extractMin(Q)

X=XU{v}

for each # in Adj(v) do

decreaseKey (Q, (u, min (dist(s, u), dist(s, v) + (v, u))))

PQ operations: e O(n) extractMin operations

« (J(n) insert operations
() P « O(m) decreaseKey operations

40

Shortest Path Tree

Dijkstra’s alg. finds the shortest path distances from s to V.
Question: How do we find the paths themselves?

Q <« makePQ()

insert(Q, (s, 0))

prev(u) <« null

for each node u #s do
insert(Q, (u, o))

X«
for i=1 to |V]| do

(v, dist(s,v)) = extractMin(Q)
X=XU{v!}

for each u in Adj(v) do
if (dist(s,v)+ (v, u) < dist(s,u)) then

decreaseKey <Q, (u, dist(s, u) + (v, u)) >

41

Shortest Path Tree

Lemma: The edge set (u, prev(u)) is the reverse of a shortest path tree rooted at
s. For each u, the reverse of the path from i to s in the tree is a shortest path from
s 10 u.

Proof Sketch:

» The edge set {(u, prev(u)) |u € V} induces a directed in-tree rooted at s
(Why?)

» Use induction on | X| to argue that the obtained tree is a shortest path tree for
nodes in V.

42

Shortest paths to s?

Dijkstra’s alg. gives shortest paths from s to all nodes in V.
How do we find shortest paths from all of V' to §?

e |n undirected graphs shortest path from s to u« is a shortest path from u to s
so there Is no need to distinguish.

» In directed graphs, use Dijkstra’s algorithm in G’"!

43

