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Sides based on material by Kani, Chekuri, Erickson et. al.



Breadth first search (BFS)
Overview

• Breadth-first search (BFS) is an algorithm for traversing or searching a Tree or 
Graph data structure which returns the nodes of the graph level by level.


• BFS on a graph with   vertices and   edges takes   time (obtained 
from BasicSearch by processing edges using a queue data structure). 


• It processes the vertices in the graph in the order of their shortest distance 
from the vertex   (the start vertex)


• DFS good for exploring graph structure | BFS good for exploring distances

n m O(n + m)

s
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Breadth first search (BFS)

BFS traversal of a graph returns the 
nodes of the graph level by level.


The Idea of the BFS: 


Visit the vertices as follows: 


• Visit all vertices at distance 1 


• Visit all vertices at distance 2 


• Visit all vertices at distance 3 etc.
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Queue data structure
Queues

A queue is a list of elements which supports the operations:


• Enqueue: Adds an element to the end of the list 


• Dequeue: Removes an element from the front of the list


• Elements are extracted in first-in first-out (FIFO) order, i.e., elements are 
picked in the order in which they were inserted.


• Contrast with LIFO (stacks)
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BFS algorithm
Pseudocode

Given (undirected or directed) graph   and node  G = (V, E) s ∈ V
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BFS(s): 
Mark all vertices as unvisited;
Initialize search tree   to be empty 
Mark vertex s as visited 
set   to be the empty queue 
enqueue(Q,s)  
while   is non-empty do 

u = dequeue(Q) 
for each vertex   

if   is not visited then 
add edge   to   
Mark   as visited and enqueue( ) 

T

Q

Q

v ∈ Adj(u)
v

(u, v) T
v v

Proposition 


BFS(s) runs in   timeO(n + m)



BFS: An example in undirected graphs

 Mark and enqueue 1

 6

1

32

54

6

7

8

1

1

Dequeue 1Mark and enqueue 2 and 3

2 3

2 3

Dequeue 2Mark and enqueue 4 and 5
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BFS: An example in directed graphs

A CB

E DF

G H

A Q1: AB C 
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G Q5: E D GH 
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Q8: H
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BFS with distances
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BFS(s): 
Mark all vertices as unvisited; for each   set  
Initialize search tree   to be empty 
Mark vertex s as visited and set  
set   to be the empty queue 
enqueue(s)  
while   is non-empty do 

u = dequeue(Q) 
for each vertex   do 

if   is not visited do 
add edge   to   
Mark   as visited, enqueue( ) 
and set  

v dist(v) = ∞
T

dist(s) = 0
Q

Q

v ∈ Adj(u)
v

(u, v) T
v v

dist(v) = dist(u) + 1



Properties of BFS
Undirected graphs

Theorem: The following properties hold upon termination of BFS(s)


• Search tree is the set of vertices in the connected component of  .  


• If   then   is visited before  . 


• For every vertex  ,   is the length of a shortest path (in terms of 
number of edges) from   to  . 


• If   are in connected component of   and   is an edge of  , 
then  .

s

dist(u) < dist(v) u v

u dist(u)
s u

u, v s e = {u, v} G
|dist(u) − dist(v) | ≤ 1
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Properties of BFS
Directed graphs

Theorem: The following properties hold upon termination of BFS(s)


• Search tree contains exactly the set of vertices reachable from  .  


• If   then   is visited before  . 


• For every vertex  ,   is indeed the length of shortest path from   to  . 


• If   is reachable from   and   is an edge of  , then 
 .

s

dist(u) < dist(v) u v

u dist(u) s u

u s e = (u, v) G
dist(v) ≤ 1 + dist(u)
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BFS with layers

• BFS is a simple algorithm but proving its properties formally is not straight 
forward


• Since BFS explores graph in increasing order of distance from source s, there 
is a simpler variant that makes BFS exploration transparent and easier to 
understand.


• Given   and  , define  . 


• Then  


• And   can be found from   for   inductively. 

G s ∈ V Li = {v ∣ dist(s, v) = i}

L0 = {s}

Lk Lk−1 k ≥ 1
 11



BFS with layers
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BFSLayers(s): 
Mark all vertices as unvisited and initialize   to be empty 
Mark   as visited and set  
 
while   is not empty do

initialize   to be an empty list 
for each   in   do 

for each edge   do 
if   is not visited 
 mark   as visited 
 add   to tree   
 add   to  

 

T
s L0 = {s}

i = 0
Li

Li+1
u Li

(u, v) ∈ Adj(u)
v

v
(u, v) T
v Li+1

i = i + 1

Running time:  O(n + m)



Example - undirected

• Layer 0: 1


• Layer 1: 2, 3


• Layer 2: 4, 5, 7, 8


• Layer 3: 6
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BFS with layers: undirected graph
Properties

• BFSLayers(s) outputs a BFS tree


•   is the set of vertices at 
distance exactly   from  .


• If   is undirected, each edge 
  is one of three types:


• tree edge between two 
consecutive layers 


• non-tree forward/backward 
edge between two 
consecutive layers 


• non-tree cross-edge with 
both   in same layer


• Every edge in the graph is 
either between two vertices 
that are either (i) in the same 
layer, or (ii) in two consecutive 
layers!

Li
i s

G
e = {u, v}

u, v

 14



Example - directed

• Layer 0: A


• Layer 1: B, F, C


• Layer 2: E, G, D


• Layer 3: H
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BFS with layers
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BFS with layers: directed graph
Properties

Proposition: The following properties hold on termination of BFS(s) if G is 
directed.                                                                                                                              


• Each edge   is one of four types:


• A tree edge between consecutive layers,     for some 
 


• A non-tree forward edge between consecutive layers 


• A non-tree backward edge 


• A cross-edge with both   in same layer

e = {u, v}

u ∈ Li, v ∈ Li+1
i ≥ 0

u, v
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Shortest path problems
Description

Given graph   with associated edge lengths (or costs), denote for an 
edge   the quantity   as its length or cost. 


• Given nodes   find shortest path (in terms of summed lengths/costs) from 
  to   . (SSPP)


• Given node   find shortest path from   to all other nodes (SSSP)


• Find shortest paths between all pairs of nodes (APSP)

G = (V, E)
e = uv l(e) = l(uv)

s, t
s t

s s
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Shortest walks vs. paths

• A path is a sequence of distinct vertices   such that   
for  .


• A path is a sequence of vertices   such that   for 
 .


• Finding walks is often easier than finding paths (concatenating two walks 
gives a walk, while concatenating two paths may not give a path).


•  For edges with non-negative weights/lengths, finding the shortest walk is the 
same as finding the shortest   path.  

v1, v2, …, vk (vi, vi+1) ∈ E
1 ≤ i ≤ k − 1

v1, v2, …, vk (vi, vi+1) ∈ E
1 ≤ i ≤ k − 1

s → t
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Single-source shortest paths
Assumption: non-negative edge lengths

Single-source shortest path problems (SSSPs)


• Input: A (undirected or directed) graph   with non-negative edge 
lengths. For edge  ,   is its length. 


• Given nodes   find shortest path from   to  . 


• Given node   find shortest path from   to all other nodes.


• Restrict attention to directed graphs 

G = (V, E)
e = (u, v) l(e) = l(u, v)

s, t s t

s s
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• Undirected graph problem can be reduced to directed graph problem - 
how?


• Given undirected graph  , create a new directed graph   by replacing 
each edge   in   by   and   in   . 


• set   


• Exercise: show reduction works. Relies on non-negativity!

G G′ 

{u, v} G (u, v) (v, u) G′ 

l(u, v) = l(v, u) = l({u, v})
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Single-source shortest paths
Assumption: non-negative edge lengths



 21

Shortest path in the weighted 
case using BFS



Single-source shortest paths via BFS

• Special case: All edge lengths are 1. 


• Run BFS(s) to get shortest path distances from s to all other nodes. 


•  O(m + n) time algorithm. 


• Special case: Suppose   is an integer for all  ? Can we use BFS? Reduce 
to unit edge-length problem by placing   dummy nodes on  .


• Let  . New graph has   edges and   nodes. BFS 
takes   time. Not efficient if   is large.

l(e) e
l(e) − 1 e

L = maxel(e) O(mL) O(mL + n)
O(mL + n) L
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Example of edge refinement
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Example of edge refinement
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Example of edge refinement



You can not shortcut a shortest path
Lemma (… also goes by Bellman’s principle of optimality)

Let   be a directed graph with non-negative edge lengths. Suppose that 


  


is the shortest path from   to  . 


Then for any    we have that 


  


is the shortest path from   to  .

G

p = v0 → v1 → v2 → . . . → vk

v0 vk

0 ≤ i < j ≤ k

vi → vi+1 → . . . → vj

vi vj
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A proof by picture
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 s = v0
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Shortest path 
from   to  v0 v10



A proof by picture
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A proof by picture
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 s = v0

 v1

 v2

 v3

 v5

 v4
 v6

 v7

 v8

 v9

 v10

Shortest path 
from   to  v0 v10

A shorter path from   to  .               
A contradiction

v0 v10



What we really need…
Stated in terms of distance 

Let   be a directed graph with non-negative edge lengths and let   
denote the length of the shortest path from   to  .


 If    


is the shortest path from   to   then for any   we have that 


  is shortest path from   to   and 


 

G dist(s, v)
s v

s = v0 → v1 → v2 → . . . → vk

s = v0 vk 0 ≤ i < j ≤ k

s = v0 → v1 → v2 . . . → vi s vi

dist(s, vi) ≤ dist(s, vk)
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Find the   closest vertexith

A basic strategy

Explore vertices in increasing order of distance from  : (For simplicity, assume 
that nodes are at different distances from   and that no edge has zero length)


How can we implement the step in the for loop?

s
s
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Initialize for each node  ,   
Initialize  ,

for   to   do
(* Invariant: X contains the   closest nodes to s *)
Among nodes in  , find the node   that is the
  closest to  
Update  
 

v dist(s, v) = ∞
X = {s}

i = 2 |V |
i − 1

V∖X v
ith s

dist(s, v)
X = X ∪ {v}



Finding the   closest nodeith

•   contains the   closest nodes to   


• Want to find the   closest node from  .


What do we know about the   closest node? 


Claim: Let   be a shortest path from   to   where   is the   closest node. 
Then, all intermediate nodes in   belong to  . 


Proof:  If   had an intermediate node   not in   then   will be closer to   than  . 
Implies   is not the  closest node to   - recall that   already has the   
closest nodes!

X i − 1 s

ith V∖X

ith

P s v v ith

P X

P u X u s v
v ith s X i − 1
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What we have …
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Finding the   closest nodeith
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Algorithm
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Initialize for each node  :   
Initialize  ,   
for   to   do

(* Invariant: X contains the   closest nodes to s *) 
(* Invariant:   is shortest path distance from   to   
using only X as intermediate nodes*)

Let   be such that  
 
 
for each node   in   do

 

v dist(s, v) = ∞
X = ∅ d′ (s, s) = 0

i = 1 |V |
i − 1

d′ (s, u) u s

v d′ (s, v) = minu∈V−Xd′ (s, u)
dist(s, v) = d′ (s, v)
X = X ∪ {v}

u V − X
d′ (s, u) = mint∈X(dist(s, t) + l(t, u))

Running time:   time


There are   outer iterations. In each iteration,   for each   by scanning all 
edges out of nodes in  ;   time/iteration

O(n . (n + m))

n d′ (s, u) u
X O(m + n)



Dijkstra algorithm
Example

• Choose a starting vertex
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Improved algorithm

• Main work is to compute the   values in each iteration  


•   changes from iteration   to   only because of the node   that is added to   in 
iteration   (previous step)

d′ (s, u)

d′ (s, u) i i + 1 v X
i
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Initialize for each node  :   
Initialize  ,   
for   to   do

// X contains the   closest nodes to  , 
// and the values of   are current

Let   be node realizing  

 
 
Update   for each   in   as follows:

 

v dist(s, v) = d′ (s, v) = ∞
X = ∅ d′ (s, s) = 0

i = 1 |V |
i − 1 s

d′ (s, u)
v d′ (s, v) = min

u∈V∖X
d′ (s, u)

dist(s, v) = d′ (s, v)
X = X ∪ {v}

d′ (s, u) u V − X
d′ (s, u) = min(d′ (s, u), dist(s, v) + l(v, u))



Running time:   time.


•   outer iterations and in each iteration following steps take place:


• updating   after   is added takes   time so total work is 
  since a node enters   at most once


• Finding   from   values takes   time

O(m+n2)

n

d′ (s, u) v O(deg(v))
O(m) X

v d′ (s, u) O(n)
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Improved algorithm



Dijkstra’s Algorithm

• Eliminate   and let   maintain it 


• Update   values after adding   by scanning edges out of  

d′ (s, u) dist(s, u)

dist v v
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Initialize for each node  :   
Initialize  ,   
for   to   do

Let v be such that   

 
for each   in   do

 

v dist(s, v) = ∞
X = ∅ d(s, s) = 0

i = 1 |V |
dist(s, v) = min

u∈V∖X
dist(s, u)

X = X ∪ {v}
u Adj(v)

dist(s, u) = min(dist(s, u), dist(s, v) + l(v, u))

Can use Priority Queues to maintain   values for even faster running time 

• Using heaps and standard priority queues:   

• Using Fibonacci heaps:  

dist
O((m + n) log n)

O(m + n log n)



Dijkstra using Priority Queues 
Priority Queues

Data structure to store a set   of   elements where each element   has an 
associated real/integer key   alongwith that the following operations: 


All operations can be performed in   time - decreaseKey is implemented 
via delete and insert.

S n v ∈ S
k(v)

O(log n)
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• makePQ: create an empty queue. 

• findMin: find the minimum key in  . 


• extractMin: Remove   with 
smallest key and return it. 


• insert( ): Add new element v 
with key   to  . 


• delete( ): Remove element   from  . 


• decreaseKey( ): decrease key 
of   from   (current key) to   
(new key). Assumption: 
  


• meld: merge two separate priority 
queues into one. 

S
v ∈ S

v, k(v)
k(v) S

v v S
v, k′ (v)

v k(v) k′ (v)
k′ (v) ≤ k(v) .



PQ operations: 

•   insert operations 


•   extractMin operations 


•   decreaseKey operations
O(n)

O(n)

O(m)
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Dijkstra’s algorithm using priority queues 
Q   makePQ() 
insert(Q, (s, 0))
for each node   do

insert(Q, (u,  ))
 
for   to   do
  
 
for each   in   do

 

←

u ≠ s
∞

X ← ∅
i = 1 |V |

(v, dist(s, v)) = extractMin(Q)
X = X ∪ {v}

u Adj(v)

decreaseKey (Q, (u, min (dist(s, u), dist(s, v) + l(v, u))))



Shortest Path Tree
Dijkstra’s alg. finds the shortest path distances from   to  .                                       
Question: How do we find the paths themselves?

s V
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Q   makePQ() 
insert(Q, (s, 0))
prev(u)   null
for each node   do

insert(Q, (u,  ))
    prev(u)   null
 
for   to   do
     
     
    for each   in   do

if   then

 

prev(u) = v

←

←
u ≠ s

∞
←

X ← ∅
i = 1 |V |
(v, dist(s, v)) = extractMin(Q)
X = X ∪ {v}

u Adj(v)
(dist(s, v) + l(v, u) < dist(s, u))
decreaseKey (Q, (u, dist(s, u) + l(v, u)))



Lemma: The edge set   is the reverse of a shortest path tree rooted at 
 . For each  , the reverse of the path from   to   in the tree is a shortest path from 
  to  .


Proof Sketch:


• The edge set   induces a directed in-tree rooted at   
(Why?)


• Use induction on   to argue that the obtained tree is a shortest path tree for 
nodes in  .

(u, prev(u))
s u u s
s u

{(u, prev(u)) |u ∈ V} s

|X |
V
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Shortest Path Tree



Shortest paths to s?

Dijkstra’s alg. gives shortest paths from   to all nodes in  . 


How do we find shortest paths from all of   to  ? 


• In undirected graphs shortest path from   to   is a shortest path from   to   
so there is no need to distinguish. 


• In directed graphs, use Dijkstra’s algorithm in  !

s V

V s

s u u s

Grev
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