
Shortest Paths [BFS, Djikstra]

All mistakes are my own! - Ivan Abraham (Fall 2024)

Sides based on material by Kani, Chekuri, Erickson et. al.

Breadth first search (BFS)
Overview

• Breadth-first search (BFS) is an algorithm for traversing or searching a Tree or
Graph data structure which returns the nodes of the graph level by level.

• BFS on a graph with vertices and edges takes time (obtained
from BasicSearch by processing edges using a queue data structure).

• It processes the vertices in the graph in the order of their shortest distance
from the vertex (the start vertex)

• DFS good for exploring graph structure | BFS good for exploring distances

n m O(n + m)

s

 2

 3

Breadth first search (BFS)

BFS traversal of a graph returns the
nodes of the graph level by level.

The Idea of the BFS:

Visit the vertices as follows:

• Visit all vertices at distance 1

• Visit all vertices at distance 2

• Visit all vertices at distance 3 etc.

A

B C D

E F

 L0

 L1

 L2

A B C D E F

Queue data structure
Queues

A queue is a list of elements which supports the operations:

• Enqueue: Adds an element to the end of the list

• Dequeue: Removes an element from the front of the list

• Elements are extracted in first-in first-out (FIFO) order, i.e., elements are
picked in the order in which they were inserted.

• Contrast with LIFO (stacks)

 4

BFS algorithm
Pseudocode

Given (undirected or directed) graph and node G = (V, E) s ∈ V

 5

BFS(s):
Mark all vertices as unvisited;
Initialize search tree to be empty
Mark vertex s as visited
set to be the empty queue
enqueue(Q,s)
while is non-empty do

u = dequeue(Q)
for each vertex

if is not visited then
add edge to
Mark as visited and enqueue()

T

Q

Q

v ∈ Adj(u)
v

(u, v) T
v v

Proposition

BFS(s) runs in timeO(n + m)

BFS: An example in undirected graphs

 Mark and enqueue 1

 6

1

32

54

6

7

8

1

1

Dequeue 1Mark and enqueue 2 and 3

2 3

2 3

Dequeue 2Mark and enqueue 4 and 5

4 5

4 5

Dequeue 3

7

8

Mark and enqueue 7 and 8

7 8

Dequeue 4Dequeue 5Mark and enqueue 6

6

6

Dequeue 7Dequeue 8Dequeue 6BFS tree is the set of purple edges

 L0

 L1

 L2

 L3

 7

BFS: An example in directed graphs

A CB

E DF

G H

A Q1: AB C

F

Q2: B C F

E
Q3: C F E

D
Q4: F E D

G Q5: E D GH

Q6: D G H

Q7: G H

Q8: H

Q9:

 L0 L1

 L2

 L3

BFS with distances

 8

BFS(s):
Mark all vertices as unvisited; for each set
Initialize search tree to be empty
Mark vertex s as visited and set
set to be the empty queue
enqueue(s)
while is non-empty do

u = dequeue(Q)
for each vertex do

if is not visited do
add edge to
Mark as visited, enqueue()
and set

v dist(v) = ∞
T

dist(s) = 0
Q

Q

v ∈ Adj(u)
v

(u, v) T
v v

dist(v) = dist(u) + 1

Properties of BFS
Undirected graphs

Theorem: The following properties hold upon termination of BFS(s)

• Search tree is the set of vertices in the connected component of .

• If then is visited before .

• For every vertex , is the length of a shortest path (in terms of
number of edges) from to .

• If are in connected component of and is an edge of ,
then .

s

dist(u) < dist(v) u v

u dist(u)
s u

u, v s e = {u, v} G
|dist(u) − dist(v) | ≤ 1

 9

Properties of BFS
Directed graphs

Theorem: The following properties hold upon termination of BFS(s)

• Search tree contains exactly the set of vertices reachable from .

• If then is visited before .

• For every vertex , is indeed the length of shortest path from to .

• If is reachable from and is an edge of , then
 .

s

dist(u) < dist(v) u v

u dist(u) s u

u s e = (u, v) G
dist(v) ≤ 1 + dist(u)

 10

BFS with layers

• BFS is a simple algorithm but proving its properties formally is not straight
forward

• Since BFS explores graph in increasing order of distance from source s, there
is a simpler variant that makes BFS exploration transparent and easier to
understand.

• Given and , define .

• Then

• And can be found from for inductively.

G s ∈ V Li = {v ∣ dist(s, v) = i}

L0 = {s}

Lk Lk−1 k ≥ 1
 11

BFS with layers

 12

BFSLayers(s):
Mark all vertices as unvisited and initialize to be empty
Mark as visited and set

while is not empty do

initialize to be an empty list
for each in do

for each edge do
if is not visited
 mark as visited
 add to tree
 add to

T
s L0 = {s}

i = 0
Li

Li+1
u Li

(u, v) ∈ Adj(u)
v

v
(u, v) T
v Li+1

i = i + 1

Running time: O(n + m)

Example - undirected

• Layer 0: 1

• Layer 1: 2, 3

• Layer 2: 4, 5, 7, 8

• Layer 3: 6

 13

1

32

54

6

7

8

 L0

 L1

 L2

 L3

BFS with layers

BFS with layers: undirected graph
Properties

• BFSLayers(s) outputs a BFS tree

• is the set of vertices at
distance exactly from .

• If is undirected, each edge
 is one of three types:

• tree edge between two
consecutive layers

• non-tree forward/backward
edge between two
consecutive layers

• non-tree cross-edge with
both in same layer

• Every edge in the graph is
either between two vertices
that are either (i) in the same
layer, or (ii) in two consecutive
layers!

Li
i s

G
e = {u, v}

u, v

 14

Example - directed

• Layer 0: A

• Layer 1: B, F, C

• Layer 2: E, G, D

• Layer 3: H

 15

BFS with layers

A CB

E DF

G H

 L0 L1

 L2

 L3

BFS with layers: directed graph
Properties

Proposition: The following properties hold on termination of BFS(s) if G is
directed.

• Each edge is one of four types:

• A tree edge between consecutive layers, for some

• A non-tree forward edge between consecutive layers

• A non-tree backward edge

• A cross-edge with both in same layer

e = {u, v}

u ∈ Li, v ∈ Li+1
i ≥ 0

u, v
 16

Shortest path problems
Description

Given graph with associated edge lengths (or costs), denote for an
edge the quantity as its length or cost.

• Given nodes find shortest path (in terms of summed lengths/costs) from
 to . (SSPP)

• Given node find shortest path from to all other nodes (SSSP)

• Find shortest paths between all pairs of nodes (APSP)

G = (V, E)
e = uv l(e) = l(uv)

s, t
s t

s s

 17

Shortest walks vs. paths

• A path is a sequence of distinct vertices such that
for .

• A path is a sequence of vertices such that for
 .

• Finding walks is often easier than finding paths (concatenating two walks
gives a walk, while concatenating two paths may not give a path).

• For edges with non-negative weights/lengths, finding the shortest walk is the
same as finding the shortest path.

v1, v2, …, vk (vi, vi+1) ∈ E
1 ≤ i ≤ k − 1

v1, v2, …, vk (vi, vi+1) ∈ E
1 ≤ i ≤ k − 1

s → t

 18

Single-source shortest paths
Assumption: non-negative edge lengths

Single-source shortest path problems (SSSPs)

• Input: A (undirected or directed) graph with non-negative edge
lengths. For edge , is its length.

• Given nodes find shortest path from to .

• Given node find shortest path from to all other nodes.

• Restrict attention to directed graphs

G = (V, E)
e = (u, v) l(e) = l(u, v)

s, t s t

s s

 19

• Undirected graph problem can be reduced to directed graph problem -
how?

• Given undirected graph , create a new directed graph by replacing
each edge in by and in .

• set

• Exercise: show reduction works. Relies on non-negativity!

G G′

{u, v} G (u, v) (v, u) G′

l(u, v) = l(v, u) = l({u, v})

 20

Single-source shortest paths
Assumption: non-negative edge lengths

 21

Shortest path in the weighted
case using BFS

Single-source shortest paths via BFS

• Special case: All edge lengths are 1.

• Run BFS(s) to get shortest path distances from s to all other nodes.

• O(m + n) time algorithm.

• Special case: Suppose is an integer for all ? Can we use BFS? Reduce
to unit edge-length problem by placing dummy nodes on .

• Let . New graph has edges and nodes. BFS
takes time. Not efficient if is large.

l(e) e
l(e) − 1 e

L = maxel(e) O(mL) O(mL + n)
O(mL + n) L

 22

 23

Example of edge refinement

 24

Example of edge refinement

 25

Example of edge refinement

You can not shortcut a shortest path
Lemma (… also goes by Bellman’s principle of optimality)

Let be a directed graph with non-negative edge lengths. Suppose that

is the shortest path from to .

Then for any we have that

is the shortest path from to .

G

p = v0 → v1 → v2 → . . . → vk

v0 vk

0 ≤ i < j ≤ k

vi → vi+1 → . . . → vj

vi vj

 26

A proof by picture

 27

 s = v0

 v1

 v2

 v3

 v5

 v4
 v6

 v7

 v8

 v9

 v10

Shortest path
from to v0 v10

A proof by picture

 28

 s = v0

 v1

 v2

 v3

 v5

 v4
 v6

 v7

 v8

 v9

 v10

Shortest path
from to v0 v10

Shorter path
from to v2 v8

A proof by picture

 29

 s = v0

 v1

 v2

 v3

 v5

 v4
 v6

 v7

 v8

 v9

 v10

Shortest path
from to v0 v10

A shorter path from to .
A contradiction

v0 v10

What we really need…
Stated in terms of distance

Let be a directed graph with non-negative edge lengths and let
denote the length of the shortest path from to .

 If

is the shortest path from to then for any we have that

 is shortest path from to and

G dist(s, v)
s v

s = v0 → v1 → v2 → . . . → vk

s = v0 vk 0 ≤ i < j ≤ k

s = v0 → v1 → v2 . . . → vi s vi

dist(s, vi) ≤ dist(s, vk)

 30

Find the closest vertexith

A basic strategy

Explore vertices in increasing order of distance from : (For simplicity, assume
that nodes are at different distances from and that no edge has zero length)

How can we implement the step in the for loop?

s
s

 31

Initialize for each node ,
Initialize ,

for to do
(* Invariant: X contains the closest nodes to s *)
Among nodes in , find the node that is the
 closest to
Update

v dist(s, v) = ∞
X = {s}

i = 2 |V |
i − 1

V∖X v
ith s

dist(s, v)
X = X ∪ {v}

Finding the closest nodeith

• contains the closest nodes to

• Want to find the closest node from .

What do we know about the closest node?

Claim: Let be a shortest path from to where is the closest node.
Then, all intermediate nodes in belong to .

Proof: If had an intermediate node not in then will be closer to than .
Implies is not the closest node to - recall that already has the
closest nodes!

X i − 1 s

ith V∖X

ith

P s v v ith

P X

P u X u s v
v ith s X i − 1

 32

What we have …

 33

Finding the closest nodeith

9

6

13

10

18

30

208

25

16

19 6

6

6

11

A

B

C

E

D

F

G

H

0
6

9

13

19

25

38

Algorithm

 34

Initialize for each node :
Initialize ,
for to do

(* Invariant: X contains the closest nodes to s *)
(* Invariant: is shortest path distance from to
using only X as intermediate nodes*)

Let be such that

for each node in do

v dist(s, v) = ∞
X = ∅ d′ (s, s) = 0

i = 1 |V |
i − 1

d′ (s, u) u s

v d′ (s, v) = minu∈V−Xd′ (s, u)
dist(s, v) = d′ (s, v)
X = X ∪ {v}

u V − X
d′ (s, u) = mint∈X(dist(s, t) + l(t, u))

Running time: time

There are outer iterations. In each iteration, for each by scanning all
edges out of nodes in ; time/iteration

O(n . (n + m))

n d′ (s, u) u
X O(m + n)

Dijkstra algorithm
Example

• Choose a starting vertex

 35

9

6

13

10

18

30

208

25

16

19 6

6

6

11

A

B

C

E

D

F

G

H

0
6

9

13

6

0+9

0+6

0+13

6+18

6+30

6+8 > 13
Do not update value

36

249
9+10

19

13

Repeat the steps

33

38

19

2525

3636

36

Improved algorithm

• Main work is to compute the values in each iteration

• changes from iteration to only because of the node that is added to in
iteration (previous step)

d′ (s, u)

d′ (s, u) i i + 1 v X
i

 36

Initialize for each node :
Initialize ,
for to do

// X contains the closest nodes to ,
// and the values of are current

Let be node realizing

Update for each in as follows:

v dist(s, v) = d′ (s, v) = ∞
X = ∅ d′ (s, s) = 0

i = 1 |V |
i − 1 s

d′ (s, u)
v d′ (s, v) = min

u∈V∖X
d′ (s, u)

dist(s, v) = d′ (s, v)
X = X ∪ {v}

d′ (s, u) u V − X
d′ (s, u) = min(d′ (s, u), dist(s, v) + l(v, u))

Running time: time.

• outer iterations and in each iteration following steps take place:

• updating after is added takes time so total work is
 since a node enters at most once

• Finding from values takes time

O(m+n2)

n

d′ (s, u) v O(deg(v))
O(m) X

v d′ (s, u) O(n)

 37

Improved algorithm

Dijkstra’s Algorithm

• Eliminate and let maintain it

• Update values after adding by scanning edges out of

d′ (s, u) dist(s, u)

dist v v

 38

Initialize for each node :
Initialize ,
for to do

Let v be such that

for each in do

v dist(s, v) = ∞
X = ∅ d(s, s) = 0

i = 1 |V |
dist(s, v) = min

u∈V∖X
dist(s, u)

X = X ∪ {v}
u Adj(v)

dist(s, u) = min(dist(s, u), dist(s, v) + l(v, u))

Can use Priority Queues to maintain values for even faster running time

• Using heaps and standard priority queues:

• Using Fibonacci heaps:

dist
O((m + n) log n)

O(m + n log n)

Dijkstra using Priority Queues
Priority Queues

Data structure to store a set of elements where each element has an
associated real/integer key alongwith that the following operations:

All operations can be performed in time - decreaseKey is implemented
via delete and insert.

S n v ∈ S
k(v)

O(log n)

 39

• makePQ: create an empty queue.

• findMin: find the minimum key in .

• extractMin: Remove with
smallest key and return it.

• insert(): Add new element v
with key to .

• delete(): Remove element from .

• decreaseKey(): decrease key
of from (current key) to
(new key). Assumption:

• meld: merge two separate priority
queues into one.

S
v ∈ S

v, k(v)
k(v) S

v v S
v, k′ (v)

v k(v) k′ (v)
k′ (v) ≤ k(v) .

PQ operations:

• insert operations

• extractMin operations

• decreaseKey operations
O(n)

O(n)

O(m)
 40

Dijkstra’s algorithm using priority queues
Q makePQ()
insert(Q, (s, 0))
for each node do

insert(Q, (u,))

for to do

for each in do

←

u ≠ s
∞

X ← ∅
i = 1 |V |

(v, dist(s, v)) = extractMin(Q)
X = X ∪ {v}

u Adj(v)

decreaseKey (Q, (u, min (dist(s, u), dist(s, v) + l(v, u))))

Shortest Path Tree
Dijkstra’s alg. finds the shortest path distances from to .
Question: How do we find the paths themselves?

s V

 41

Q makePQ()
insert(Q, (s, 0))
prev(u) null
for each node do

insert(Q, (u,))
 prev(u) null

for to do

 for each in do

if then

prev(u) = v

←

←
u ≠ s

∞
←

X ← ∅
i = 1 |V |
(v, dist(s, v)) = extractMin(Q)
X = X ∪ {v}

u Adj(v)
(dist(s, v) + l(v, u) < dist(s, u))
decreaseKey (Q, (u, dist(s, u) + l(v, u)))

Lemma: The edge set is the reverse of a shortest path tree rooted at
 . For each , the reverse of the path from to in the tree is a shortest path from
 to .

Proof Sketch:

• The edge set induces a directed in-tree rooted at
(Why?)

• Use induction on to argue that the obtained tree is a shortest path tree for
nodes in .

(u, prev(u))
s u u s
s u

{(u, prev(u)) |u ∈ V} s

|X |
V

 42

Shortest Path Tree

Shortest paths to s?

Dijkstra’s alg. gives shortest paths from to all nodes in .

How do we find shortest paths from all of to ?

• In undirected graphs shortest path from to is a shortest path from to
so there is no need to distinguish.

• In directed graphs, use Dijkstra’s algorithm in !

s V

V s

s u u s

Grev

 43

