
Shortest Paths [BFS, Djikstra]

All mistakes are my own! - Ivan Abraham (Fall 2024)

Sides based on material by Kani, Chekuri, Erickson et. al.

Last time: Kosanagu's algoith



Breadth first search (BFS)
Overview

• Breadth-first search (BFS) is an algorithm for traversing or searching a Tree or 
Graph data structure which returns the nodes of the graph level by level.

• BFS on a graph with  vertices and  edges takes  time (obtained 
from BasicSearch by processing edges using a queue data structure). 

n m O(n + m)

• It processes the vertices in the graph in the order of their shortest distance 
from the vertex  (the start vertex)s

• DFS good for exploring graph structure | BFS good for exploring distances
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Breadth first search (BFS)

BFS traversal of a graph returns the 
nodes of the graph level by level.

The Idea of the BFS: 

Visit the vertices as follows: 

• Visit all vertices at distance 1 
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Queue data structure
Queues

A queue is a list of elements which supports the operations:

• Enqueue: Adds an element to the end of the list 

• Dequeue: Removes an element from the front of the list

• Elements are extracted in first-in first-out (FIFO) order, i.e., elements are 
picked in the order in which they were inserted.

• Contrast with LIFO (stacks)
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BFS algorithm
Pseudocode

Given (undirected or directed) graph   and node  G = (V, E) s ∈ V

 5

BFS(s): 
Mark all vertices as unvisited;
Initialize search tree   to be empty 
Mark vertex s as visited 
set   to be the empty queue 
enqueue(Q,s)  
while   is non-empty do 

u = dequeue(Q) 
for each vertex   

if   is not visited then 
add edge   to   
Mark   as visited and enqueue( ) 

T

Q

Q

v ∈ Adj(u)
v

(u, v) T
v v

⑪
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BFS algorithm
Pseudocode

Given (undirected or directed) graph   and node  G = (V, E) s ∈ V

 5

BFS(s): 
Mark all vertices as unvisited;
Initialize search tree   to be empty 
Mark vertex s as visited 
set   to be the empty queue 
enqueue(Q,s)  
while   is non-empty do 

u = dequeue(Q) 
for each vertex   

if   is not visited then 
add edge   to   
Mark   as visited and enqueue( ) 

T

Q

Q

v ∈ Adj(u)
v

(u, v) T
v v

Proposition 


BFS(s) runs in   timeO(n + m)



BFS: An example in undirected graphs
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BFS with distances

 8

BFS(s): 
Mark all vertices as unvisited; for each   set  
Initialize search tree   to be empty 
Mark vertex s as visited and set  
set   to be the empty queue 
enqueue(s)  
while   is non-empty do 

u = dequeue(Q) 
for each vertex   do 

if   is not visited do 
add edge   to   
Mark   as visited, enqueue( ) 
and set  

v dist(v) = ∞
T

dist(s) = 0
Q

Q

v ∈ Adj(u)
v

(u, v) T
v v

dist(v) = dist(u) + 1

↓

-
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Properties of BFS
Undirected graphs

Theorem: The following properties hold upon termination of BFS(s)

• Search tree is the set of vertices in the connected component of .  s
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Properties of BFS
Undirected graphs

Theorem: The following properties hold upon termination of BFS(s)

• Search tree is the set of vertices in the connected component of .  s

• If  then  is visited before . dist(u) < dist(v) u v

• For every vertex ,  is the length of a shortest path (in terms of 
number of edges) from  to . 

u dist(u)
s u

• If  are in connected component of  and  is an edge of , 
then .

u, v s e = {u, v} G
|dist(u) − dist(v) | ≤ 1
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Properties of BFS
Directed graphs

Theorem: The following properties hold upon termination of BFS(s)

• Search tree contains exactly the set of vertices reachable from .  s
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Properties of BFS
Directed graphs

Theorem: The following properties hold upon termination of BFS(s)

• Search tree contains exactly the set of vertices reachable from .  s

• If  then  is visited before . dist(u) < dist(v) u v

• For every vertex ,  is indeed the length of shortest path from  to . u dist(u) s u

• If  is reachable from  and  is an edge of , then 
.

u s e = (u, v) G
dist(v) ≤ 1 + dist(u)
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BFS with layers

• BFS is a simple algorithm but proving its properties formally is not straight 
forward

• Since BFS explores graph in increasing order of distance from source s, there 
is a simpler variant that makes BFS exploration transparent and easier to 
understand.

• Given  and , define . G s ∈ V Li = {v ∣ dist(s, v) = i}

• Then L0 = {s}

 11
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BFS with layers

• BFS is a simple algorithm but proving its properties formally is not straight 
forward

• Since BFS explores graph in increasing order of distance from source s, there 
is a simpler variant that makes BFS exploration transparent and easier to 
understand.

• Given  and , define . G s ∈ V Li = {v ∣ dist(s, v) = i}

• Then L0 = {s}

• And  can be found from  for  inductively. Lk Lk−1 k ≥ 1
 11



BFS with layers
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BFSLayers(s): 
Mark all vertices as unvisited and initialize   to be empty 
Mark   as visited and set  
 
while   is not empty do

initialize   to be an empty list 
for each   in   do 

for each edge   do 
if   is not visited 
 mark   as visited 
 add   to tree   
 add   to  

 

T
s L0 = {s}

i = 0
Li

Li+1
u Li

(u, v) ∈ Adj(u)
v

v
(u, v) T
v Li+1

i = i + 1

O
z

1
-

O



BFS with layers
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BFSLayers(s): 
Mark all vertices as unvisited and initialize   to be empty 
Mark   as visited and set  
 
while   is not empty do

initialize   to be an empty list 
for each   in   do 

for each edge   do 
if   is not visited 
 mark   as visited 
 add   to tree   
 add   to  

 

T
s L0 = {s}

i = 0
Li

Li+1
u Li

(u, v) ∈ Adj(u)
v

v
(u, v) T
v Li+1

i = i + 1

Running time:  O(n + m)



Example - undirected

• Layer 0: 1

• Layer 1: 2, 3

• Layer 2: 4, 5, 7, 8

• Layer 3: 6
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BFS with layers: undirected graph
Properties

• BFSLayers(s) outputs a BFS tree

•  is the set of vertices at 
distance exactly  from .
Li

i s

• If  is undirected, each edge 
 is one of three types:

G
e = {u, v}
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BFS with layers: undirected graph
Properties

• BFSLayers(s) outputs a BFS tree

•  is the set of vertices at 
distance exactly  from .
Li

i s

• If  is undirected, each edge 
 is one of three types:

G
e = {u, v}

• tree edge between two 
consecutive layers 

• non-tree forward/backward 
edge between two 
consecutive layers 
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BFS with layers: undirected graph
Properties

• BFSLayers(s) outputs a BFS tree

•  is the set of vertices at 
distance exactly  from .
Li

i s

• If  is undirected, each edge 
 is one of three types:

G
e = {u, v}

• tree edge between two 
consecutive layers 

• non-tree forward/backward 
edge between two 
consecutive layers 

• non-tree cross-edge with 
both  in same layeru, v
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BFS with layers: undirected graph
Properties

• BFSLayers(s) outputs a BFS tree

•  is the set of vertices at 
distance exactly  from .
Li

i s

• If  is undirected, each edge 
 is one of three types:

G
e = {u, v}

• tree edge between two 
consecutive layers 

• non-tree forward/backward 
edge between two 
consecutive layers 

• non-tree cross-edge with 
both  in same layeru, v

• Every edge in the graph is 
either between two vertices 
that are either (i) in the same 
layer, or (ii) in two consecutive 
layers!
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Example - directed

• Layer 0: A

• Layer 1: B, F, C

• Layer 2: E, G, D

• Layer 3: H
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BFS with layers: directed graph
Properties

Proposition: The following properties hold on termination of BFS(s) if G is 
directed.                                                                                                                              

• Each edge  is one of four types:e = {u, v}

• A tree edge between consecutive layers,   for some u ∈ Li, v ∈ Li+1
i ≥ 0

• A non-tree forward edge between consecutive layers 

• A non-tree backward edge 
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BFS with layers: directed graph
Properties

Proposition: The following properties hold on termination of BFS(s) if G is 
directed.                                                                                                                              

• Each edge  is one of four types:e = {u, v}

• A tree edge between consecutive layers,   for some u ∈ Li, v ∈ Li+1
i ≥ 0

• A non-tree forward edge between consecutive layers 

• A non-tree backward edge 

• A cross-edge with both  in same layeru, v
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Shortest path problems
Description

Given graph  with associated edge lengths (or costs), denote for an 
edge  the quantity  as its length or cost. 

G = (V, E)
e = uv l(e) = l(uv)

 17

weishels
↑ on

the
edges

specifier melivered = w(u,v)

e
not directed 1

wes

-

6



Shortest path problems
Description

Given graph  with associated edge lengths (or costs), denote for an 
edge  the quantity  as its length or cost. 

G = (V, E)
e = uv l(e) = l(uv)

• Given nodes  find shortest path (in terms of summed lengths/costs) from 
 to  . (SSPP)

s, t
s t

• Given node  find shortest path from  to all other nodes (SSSP)s s
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Shortest path problems
Description

Given graph  with associated edge lengths (or costs), denote for an 
edge  the quantity  as its length or cost. 

G = (V, E)
e = uv l(e) = l(uv)

• Given nodes  find shortest path (in terms of summed lengths/costs) from 
 to  . (SSPP)

s, t
s t

• Given node  find shortest path from  to all other nodes (SSSP)s s

• Find shortest paths between all pairs of nodes (APSP)
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Shortest walks vs. paths

• A path is a sequence of distinct vertices  such that  
for .

v1, v2, …, vk (vi, vi+1) ∈ E
1 ≤ i ≤ k − 1

• A path is a sequence of vertices  such that  for 
.

v1, v2, …, vk (vi, vi+1) ∈ E
1 ≤ i ≤ k − 1

 18
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Shortest walks vs. paths

• A path is a sequence of distinct vertices  such that  
for .

v1, v2, …, vk (vi, vi+1) ∈ E
1 ≤ i ≤ k − 1

• A path is a sequence of vertices  such that  for 
.

v1, v2, …, vk (vi, vi+1) ∈ E
1 ≤ i ≤ k − 1

• Finding walks is often easier than finding paths (concatenating two walks 
gives a walk, while concatenating two paths may not give a path).

 18

wall
#

-



Shortest walks vs. paths

• A path is a sequence of distinct vertices  such that  
for .

v1, v2, …, vk (vi, vi+1) ∈ E
1 ≤ i ≤ k − 1

• A path is a sequence of vertices  such that  for 
.

v1, v2, …, vk (vi, vi+1) ∈ E
1 ≤ i ≤ k − 1

• Finding walks is often easier than finding paths (concatenating two walks 
gives a walk, while concatenating two paths may not give a path).

•  For edges with non-negative weights/lengths, finding the shortest walk is the 
same as finding the shortest  path.  s → t
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Single-source shortest paths
Assumption: non-negative edge lengths

Single-source shortest path problems (SSSPs)

• Input: A (undirected or directed) graph  with non-negative edge 
lengths. For edge ,  is its length. 

G = (V, E)
e = (u, v) l(e) = l(u, v)

 19
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Single-source shortest paths
Assumption: non-negative edge lengths

Single-source shortest path problems (SSSPs)

• Input: A (undirected or directed) graph  with non-negative edge 
lengths. For edge ,  is its length. 

G = (V, E)
e = (u, v) l(e) = l(u, v)

• Given nodes  find shortest path from  to . s, t s t
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Single-source shortest paths
Assumption: non-negative edge lengths

Single-source shortest path problems (SSSPs)

• Input: A (undirected or directed) graph  with non-negative edge 
lengths. For edge ,  is its length. 

G = (V, E)
e = (u, v) l(e) = l(u, v)

• Given nodes  find shortest path from  to . s, t s t

• Given node  find shortest path from  to all other nodes.s s
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Single-source shortest paths
Assumption: non-negative edge lengths

Single-source shortest path problems (SSSPs)

• Input: A (undirected or directed) graph  with non-negative edge 
lengths. For edge ,  is its length. 

G = (V, E)
e = (u, v) l(e) = l(u, v)

• Given nodes  find shortest path from  to . s, t s t

• Given node  find shortest path from  to all other nodes.s s

• Restrict attention to directed graphs 
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• Undirected graph problem can be reduced to directed graph problem - 
how?

• Given undirected graph , create a new directed graph  by replacing 
each edge  in  by  and  in  . 

G G′ 

{u, v} G (u, v) (v, u) G′ 
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• Undirected graph problem can be reduced to directed graph problem - 
how?

• Given undirected graph , create a new directed graph  by replacing 
each edge  in  by  and  in  . 

G G′ 

{u, v} G (u, v) (v, u) G′ 

• set  l(u, v) = l(v, u) = l({u, v})
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• Undirected graph problem can be reduced to directed graph problem - 
how?

• Given undirected graph , create a new directed graph  by replacing 
each edge  in  by  and  in  . 

G G′ 

{u, v} G (u, v) (v, u) G′ 

• set  l(u, v) = l(v, u) = l({u, v})
• Exercise: show reduction works. Relies on non-negativity!
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Shortest path in the weighted 
case using BFS



Single-source shortest paths via BFS

• Special case: All edge lengths are 1. 


• Run BFS(s) to get shortest path distances from s to all other nodes. 


•  O(m + n) time algorithm. 

 22
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Single-source shortest paths via BFS

• Special case: All edge lengths are 1. 


• Run BFS(s) to get shortest path distances from s to all other nodes. 


•  O(m + n) time algorithm. 

• Special case: Suppose  is an integer for all ? Can we use BFS? Reduce 
to unit edge-length problem by placing  dummy nodes on .

l(e) e
l(e) ∈ 1 e
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Single-source shortest paths via BFS

• Special case: All edge lengths are 1. 


• Run BFS(s) to get shortest path distances from s to all other nodes. 


•  O(m + n) time algorithm. 

• Special case: Suppose  is an integer for all ? Can we use BFS? Reduce 
to unit edge-length problem by placing  dummy nodes on .

l(e) e
l(e) ∈ 1 e

• Let . New graph has  edges and  nodes. BFS 
takes  time. Not efficient if  is large.

L = maxel(e) O(mL) O(mL + n)
O(mL + n) L

 22
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Example of edge refinement
⑧

⑨



 24

Example of edge refinement
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You can not shortcut a shortest path
Lemma (… also goes by Bellman’s principle of optimality)

Let  be a directed graph with non-negative edge lengths. Suppose that G

 p = v0 ∞ v1 ∞ v2 ∞ . . . ∞ vk

is the shortest path from  to . v0 vk

 26



You can not shortcut a shortest path
Lemma (… also goes by Bellman’s principle of optimality)

Let  be a directed graph with non-negative edge lengths. Suppose that G

 p = v0 ∞ v1 ∞ v2 ∞ . . . ∞ vk

is the shortest path from  to . v0 vk

Then for any   we have that 0 − i < j − k

 vi ∞ vi+1 ∞ . . . ∞ vj

is the shortest path from  to .vi vj

 26
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A proof by picture
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 s = v0

 v1

 v2

 v3

 v5

 v4  v6

 v7

 v8

 v9

 v10

Shortest path 
from   to  v0 v10



A proof by picture
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 s = v0

 v1

 v2

 v3

 v5

 v4  v6

 v7

 v8

 v9

 v10

Shortest path 
from   to  v0 v10

Shorter path 
from   to  v2 v8



A proof by picture
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 s = v0

 v1

 v2

 v3

 v5

 v4  v6

 v7

 v8

 v9

 v10

Shortest path 
from   to  v0 v10

A shorter path from   to  .               
A contradiction

v0 v10



What we really need…
Stated in terms of distance 

Let  be a directed graph with non-negative edge lengths and let  
denote the length of the shortest path from  to .

G dist(s, v)
s v
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What we really need…
Stated in terms of distance 

Let  be a directed graph with non-negative edge lengths and let  
denote the length of the shortest path from  to .

G dist(s, v)
s v

 If   s = v0 ∞ v1 ∞ v2 ∞ . . . ∞ vk

is the shortest path from  to  then for any  we have that s = v0 vk 0 − i < j − k
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What we really need…
Stated in terms of distance 

Let  be a directed graph with non-negative edge lengths and let  
denote the length of the shortest path from  to .

G dist(s, v)
s v

 If   s = v0 ∞ v1 ∞ v2 ∞ . . . ∞ vk

is the shortest path from  to  then for any  we have that s = v0 vk 0 − i < j − k

 is shortest path from  to  and s = v0 ∞ v1 ∞ v2 . . . ∞ vi s vi

dist(s, vi) − dist(s, vk)

 30
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Find the   closest vertexith
A basic strategy

Explore vertices in increasing order of distance from : (For simplicity, assume 
that nodes are at different distances from  and that no edge has zero length)

s
s
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Find the   closest vertexith
A basic strategy

Explore vertices in increasing order of distance from : (For simplicity, assume 
that nodes are at different distances from  and that no edge has zero length)

s
s

 31

Initialize for each node  ,   
Initialize  ,

for   to   do
(* Invariant: X contains the   closest nodes to s *)
Among nodes in  , find the node   that is the
  closest to  
Update  
 

v dist(s, v) = ≤
X = {s}

i = 2 |V |
i ∈ 1

V∖X v
ith s

dist(s, v)
X = X ∣ {v}

"settled "norles

d
- 0 z
f



Find the   closest vertexith
A basic strategy

Explore vertices in increasing order of distance from : (For simplicity, assume 
that nodes are at different distances from  and that no edge has zero length)

s
s

How can we implement the step in the for loop?

 31

Initialize for each node  ,   
Initialize  ,

for   to   do
(* Invariant: X contains the   closest nodes to s *)
Among nodes in  , find the node   that is the
  closest to  
Update  
 

v dist(s, v) = ≤
X = {s}

i = 2 |V |
i ∈ 1

V∖X v
ith s

dist(s, v)
X = X ∣ {v}

3



Finding the   closest nodeith

•   contains the   closest nodes to   


• Want to find the   closest node from  .


What do we know about the   closest node? 


Claim: Let   be a shortest path from   to   where   is the   closest node. 
Then, all intermediate nodes in   belong to  . 


Proof:  If   had an intermediate node   not in   then   will be closer to   than  . 
Implies   is not the  closest node to   - recall that   already has the   
closest nodes!

X i ∈ 1 s

ith V∖X

ith

P s v v ith

P X

P u X u s v
v ith s X i ∈ 1

 32

What we have …

0
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Algorithm

 34

Initialize for each node  :   
Initialize  ,   
for   to   do

(* Invariant: X contains the   closest nodes to s *) 
(* Invariant:   is shortest path distance from   to   
using only X as intermediate nodes*)

Let   be such that  

 
 
for each node   in   do

 

v dist(s, v) = ≤
X = ≥ d→ (s, s) = 0

i = 1 |V |
i ∈ 1

d→ (s, u) u s

v d→ (s, v) = min
u′V∖X

d→ (s, u)

dist(s, v) = d→ (s, v)
X = X ∣ {v}

u V ∈ X
d→ (s, u) = min

t′X
(dist(s, t) + l(t, u))

VIX -> elevents in

↓ that are not in X

Vetminus
v - X

-



Algorithm

 34

Initialize for each node  :   
Initialize  ,   
for   to   do

(* Invariant: X contains the   closest nodes to s *) 
(* Invariant:   is shortest path distance from   to   
using only X as intermediate nodes*)

Let   be such that  

 
 
for each node   in   do

 

v dist(s, v) = ≤
X = ≥ d→ (s, s) = 0

i = 1 |V |
i ∈ 1

d→ (s, u) u s

v d→ (s, v) = min
u′V∖X

d→ (s, u)

dist(s, v) = d→ (s, v)
X = X ∣ {v}

u V ∈ X
d→ (s, u) = min

t′X
(dist(s, t) + l(t, u))

Running time:  timeO(n . (n + m))

0

- 3



Algorithm

 34

Initialize for each node  :   
Initialize  ,   
for   to   do

(* Invariant: X contains the   closest nodes to s *) 
(* Invariant:   is shortest path distance from   to   
using only X as intermediate nodes*)

Let   be such that  

 
 
for each node   in   do

 

v dist(s, v) = ≤
X = ≥ d→ (s, s) = 0

i = 1 |V |
i ∈ 1

d→ (s, u) u s

v d→ (s, v) = min
u′V∖X

d→ (s, u)

dist(s, v) = d→ (s, v)
X = X ∣ {v}

u V ∈ X
d→ (s, u) = min

t′X
(dist(s, t) + l(t, u))

Running time:  timeO(n . (n + m))

There are  outer iterations. In each iteration,  for each  by scanning all 
edges out of nodes in ;  time/iteration

n d→ (s, u) u
X O(m + n)
-



 

Dĳkstra’s algorithm
Dijkstra's Algorithm finds the shortest path between a given node 
(called the source node) and all other nodes in a non-negatively 
edge-weighted graph.

This algorithm was created by Dr. Edsger W. Dijkstra, a Dutch 
computer scientist and software engineer, “in about 20 minutes”. 

1

What’s the shortest way to travel from Rotterdam to Groningen? It is the algorithm for the shortest path, which 
I designed in about 20 minutes. One morning I was shopping in Amsterdam with my young fiancée, and tired, 
we sat down on the café terrace to drink a cup of coffee and I was just thinking about whether I could do this, 
and I then designed the algorithm for the shortest path. As I said, it was a 20-minute invention. In fact, it was 
published in 1959, three years later. 

https://doi.org/10.1145/1787234.1787249
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Dĳkstra’s algorithm
Key point: We keep distance estimates from source node to every 
other node, and keep updating estimates until nodes are “settled”.
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Dĳkstra’s algorithm
Key point: We keep distance estimates from source node to every 
other node, and keep updating estimates until nodes are “settled”.

2

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance 
estimate

Previous 
node

S 0
A
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Unexplored = [ S, A, C, F, D, B, E ]Settled = [    ]
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Unexplored = [ S, A, C, F, D, B, E ]

• Set distance to source node = 0.
• Distances to all other nodes from source node are currently unknown, 

therefore ∞ .

Initialization step
Settled = [    ]
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• Pick the unsettled node with the smallest known estimate from the 
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• The first time, it is the source node (S) itself.  
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• This time, it is node (C).
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• For the current node, examine its unexplored neighbors 
• Current node → C; unexplored neighbors → {A & D} 
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from the source node via current node.
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1
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Node Distance 
estimate

Previous 
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S 0
A 3 S
C 2 S
F 6 S
D ∞
B ∞
E ∞

Settled = [ S ]
Iterative step - Iter 2

C

Unexplored = [A, C, F, D, B, E ]

A

D

2+2=4

2+3=5

• For the current node, calculate the distance of each unsettled neighbor 
from the source node via current node.

• If the calculated distance of a node is less than or equal to distance 
estimate, update the estimate & previous node.
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1
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Node Distance 
estimate

Previous 
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S 0
A 3 S
C 2 S
F 6 S
D ∞
B ∞
E ∞

Settled = [ S ]
Iterative step - Iter 2

C

Unexplored = [A, C, F, D, B, E ]

A

D

2+2=4

2+3=5

• For the current node, calculate the distance of each unsettled neighbor 
from the source node via current node.

• If the calculated distance of a node is less than or equal to distance 
estimate, update the estimate & previous node.

5 C
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estimate
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S 0
A 3 S
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E ∞

Settled = [ S,    ] Unexplored = [A, C, F, D, B, E ]

C
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estimate

Previous 
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S 0
A 3 S
C 2 S
F 6 S
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E ∞

Settled = [ S,    ] Unexplored = [A, C, F, D, B, E ]

C

• Add the current node to the list of settled nodes
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S 0
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C 2 S
F 6 S
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Settled = [ S,    ]

C

• Add the current node to the list of settled nodes

Unexplored = [A, F, D, B, E ]
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Node Distance 
estimate

Previous 
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S 0
A 3 S
C 2 S
F 6 S
D 5 C
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Settled = [ S,    ]

• Add the current node to the list of settled nodes

Unexplored = [A, F, D, B, E ]C
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S 0
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C 2 S
F 6 S
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Settled = [ S,    ]
Iterative step - End Iter 2

• Add the current node to the list of settled nodes

Unexplored = [A, F, D, B, E ]C
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estimate
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S 0
A 3 S
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E ∞

Settled = [ S, C ] Unexplored = [A, F, D, B, E ]
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estimate

Previous 
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S 0
A 3 S
C 2 S
F 6 S
D 5 C
B ∞
E ∞

Settled = [ S, C ]
Iterative step - Begin Iter 3

Unexplored = [A, F, D, B, E ]

▶▶

◀◀



 

• Pick the unsettled node with the smallest known distance from the 
source node 

Dĳkstra’s algorithm
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1
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Node Distance 
estimate

Previous 
node

S 0
A 3 S
C 2 S
F 6 S
D 5 C
B ∞
E ∞

Settled = [ S, C ]
Iterative step - Begin Iter 3

Unexplored = [A, F, D, B, E ]

▶▶

◀◀



 

• Pick the unsettled node with the smallest known distance from the 
source node 


• This time, it is node (A).
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Previous 
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S 0
A 3 S
C 2 S
F 6 S
D 5 C
B ∞
E ∞

Settled = [ S, C ]
Iterative step - Begin Iter 3

Unexplored = [A, F, D, B, E ]

A

▶▶

◀◀
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Node Distance 
estimate

Previous 
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S 0
A 3 S
C 2 S
F 6 S
D 5 C
B ∞
E ∞

Settled = [ S, C ]
Iterative step - Begin Iter 3

Unexplored = [A, F, D, B, E ]

• For the current node, examine its unexplored neighbors 

A

▶▶

◀◀
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1
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estimate

Previous 
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S 0
A 3 S
C 2 S
F 6 S
D 5 C
B ∞
E ∞

Settled = [ S, C ]
Iterative step - Begin Iter 3

Unexplored = [A, F, D, B, E ]

• For the current node, examine its unexplored neighbors 
• Current node → A; unexplored neighbors → {B & D} 

A B

D

▶▶

◀◀
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Settled = [ S, C ]
Iterative step - Iter 3

Unexplored = [A, F, D, B, E ]

A B

D
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Node Distance 
estimate

Previous 
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S 0
A 3 S
C 2 S
F 6 S
D 5 C
B ∞
E ∞

Settled = [ S, C ]
Iterative step - Iter 3

Unexplored = [A, F, D, B, E ]

A B

D

• For the current node, calculate the distance of each unsettled neighbor 
from the source node via current node.
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S 0
A 3 S
C 2 S
F 6 S
D 5 C
B ∞
E ∞

Settled = [ S, C ]
Iterative step - Iter 3

Unexplored = [A, F, D, B, E ]

A B

D

• For the current node, calculate the distance of each unsettled neighbor 
from the source node via current node.

3+6=9

3+1=4
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Previous 
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S 0
A 3 S
C 2 S
F 6 S
D 5 C
B ∞
E ∞

Settled = [ S, C ]
Iterative step - Iter 3

Unexplored = [A, F, D, B, E ]

A B

D

• For the current node, calculate the distance of each unsettled neighbor 
from the source node via current node.

• If the calculated distance of a node is less than or equal to distance 
estimate, update the estimate & previous node.

3+6=9

3+1=4
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Previous 
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S 0
A 3 S
C 2 S
F 6 S
D 5 C
B ∞
E ∞

Settled = [ S, C ]
Iterative step - Iter 3

Unexplored = [A, F, D, B, E ]

A B

D

• For the current node, calculate the distance of each unsettled neighbor 
from the source node via current node.

• If the calculated distance of a node is less than or equal to distance 
estimate, update the estimate & previous node.

3+6=9

3+1=4

A
9 A
4
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D 4 A
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Settled = [ S, C,    ] Unexplored = [A, F, D, B, E ]

A



 

Dĳkstra’s algorithm

12

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance 
estimate

Previous 
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
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Settled = [ S, C,    ] Unexplored = [A, F, D, B, E ]

A

• Add the current node to the list of settled nodes
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Settled = [ S, C,    ]

A

• Add the current node to the list of settled nodes

Unexplored = [F, D, B, E ]
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Settled = [ S, C,    ]

• Add the current node to the list of settled nodes

Unexplored = [F, D, B, E ]A
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Settled = [ S, C,    ]
Iterative step - End Iter 3

• Add the current node to the list of settled nodes

Unexplored = [F, D, B, E ]A
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Settled = [ S, C, A ] Unexplored = [F, D, B, E ]

▶▶
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estimate
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S 0
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F 6 S
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E ∞

Settled = [ S, C, A ]
Iterative step - Begin Iter 4

Unexplored = [F, D, B, E ]

▶▶
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• Pick the unsettled node with the smallest known distance from the 
source node 

Dĳkstra’s algorithm

13

S C D E
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F

3
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2
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1
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estimate

Previous 
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S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E ∞

Settled = [ S, C, A ]
Iterative step - Begin Iter 4

Unexplored = [F, D, B, E ]

▶▶

◀◀



 

• Pick the unsettled node with the smallest known distance from the 
source node 


• This time, it is node (D).

Dĳkstra’s algorithm

13
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F
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estimate

Previous 
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S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E ∞

Settled = [ S, C, A ]
Iterative step - Begin Iter 4

Unexplored = [F, D, B, E ]

D

▶▶

◀◀
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S 0
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C 2 S
F 6 S
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E ∞

Settled = [ S, C, A ]
Iterative step - Begin Iter 4

Unexplored = [F, D, B, E ]

• For the current node, examine its unexplored neighbors 

D

▶▶
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C 2 S
F 6 S
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Settled = [ S, C, A ]
Iterative step - Begin Iter 4

Unexplored = [F, D, B, E ]

• For the current node, examine its unexplored neighbors 
• Current node → D; unexplored neighbors → {E} 

D E

▶▶

◀◀
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E ∞

Settled = [ S, C, A ]
Iterative step - Iter 4

Unexplored = [F, D, B, E ]

D E
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S 0
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F 6 S
D 4 A
B 9 A
E ∞

Settled = [ S, C, A ]
Iterative step - Iter 4

Unexplored = [F, D, B, E ]

D E

• For the current node, calculate the distance of each unsettled neighbor 
from the source node.
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S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E ∞

Settled = [ S, C, A ]
Iterative step - Iter 4

Unexplored = [F, D, B, E ]

D E

• For the current node, calculate the distance of each unsettled neighbor 
from the source node.

4+4=8
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A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E ∞

Settled = [ S, C, A ]
Iterative step - Iter 4

Unexplored = [F, D, B, E ]

D E

• For the current node, calculate the distance of each unsettled neighbor 
from the source node.

• If the calculated distance of a node is less than or equal to distance 
estimate, update the estimate & previous node.

4+4=8
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S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E ∞

Settled = [ S, C, A ]
Iterative step - Iter 4

Unexplored = [F, D, B, E ]

D E

• For the current node, calculate the distance of each unsettled neighbor 
from the source node.

• If the calculated distance of a node is less than or equal to distance 
estimate, update the estimate & previous node.

4+4=8

8 D



 

Dĳkstra’s algorithm

15

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance 
estimate

Previous 
node

S 0
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Settled = [ S, C, A,    ] Unexplored = [F, D, B, E ]

D



 

Dĳkstra’s algorithm

15

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance 
estimate

Previous 
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D

Settled = [ S, C, A,    ] Unexplored = [F, D, B, E ]

• Add the current node to the list of settled nodes

D
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• Add the current node to the list of settled nodes

D

Unexplored = [F, B, E ]
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• Add the current node to the list of settled nodes

Unexplored = [F, B, E ]D



 

Dĳkstra’s algorithm

15

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance 
estimate

Previous 
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D

Settled = [ S, C, A,    ]
Iterative step - End Iter 4

• Add the current node to the list of settled nodes

Unexplored = [F, B, E ]D
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Iterative step - Begin Iter 5

Unexplored = [F, B, E ]
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• Pick the unsettled node with the smallest known distance from the 
source node 

Dĳkstra’s algorithm
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F 6 S
D 4 A
B 9 A
E 8 D

Settled = [ S, C, A, D ]
Iterative step - Begin Iter 5

Unexplored = [F, B, E ]
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• Pick the unsettled node with the smallest known distance from the 
source node 


• This time, it is node (F).

Dĳkstra’s algorithm
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F 6 S
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E 8 D

Settled = [ S, C, A, D ]
Iterative step - Begin Iter 5

Unexplored = [F, B, E ]

F
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Iterative step - Begin Iter 5

Unexplored = [F, B, E ]

F
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Iterative step - Begin Iter 5

Unexplored = [F, B, E ]

• For the current node, examine its unexplored neighbors 

F
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Settled = [ S, C, A, D ]
Iterative step - Begin Iter 5

Unexplored = [F, B, E ]

• For the current node, examine its unexplored neighbors 
• Current node → F; unexplored neighbors → {E} 
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Iterative step - Iter 5
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Settled = [ S, C, A, D ]
Iterative step - Iter 5

Unexplored = [F, B, E ]

E

F

• For the current node, calculate the distance of each unsettled neighbor 
from the source node.
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Settled = [ S, C, A, D ]
Iterative step - Iter 5

Unexplored = [F, B, E ]

E

F

• For the current node, calculate the distance of each unsettled neighbor 
from the source node.

6+2=8
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B 9 A
E 8 D

Settled = [ S, C, A, D ]
Iterative step - Iter 5

Unexplored = [F, B, E ]

E

F

• For the current node, calculate the distance of each unsettled neighbor 
from the source node.

• If the calculated distance of a node is less than or equal to distance 
estimate, update the estimate & previous node.

6+2=8
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Settled = [ S, C, A, D ]
Iterative step - Iter 5

Unexplored = [F, B, E ]

E

F

• For the current node, calculate the distance of each unsettled neighbor 
from the source node.

• If the calculated distance of a node is less than or equal to distance 
estimate, update the estimate & previous node.

6+2=8

8 D or F
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• Add the current node to the list of settled nodes

Unexplored = [B, E ]
Iterative step - End Iter 5
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• Pick the unsettled node with the smallest known distance from the 
source node 
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• Pick the unsettled node with the smallest known distance from the 
source node 


• This time, it is node (E).
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• For the current node, examine its unexplored neighbors 
Dĳkstra’s algorithm
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• For the current node, examine its unexplored neighbors 
• Current node → E; unexplored neighbors → {} 
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• For the current node, examine its unexplored neighbors 
• Current node → E; unexplored neighbors → {} 
• Add the current node to the list of settled nodes
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• For the current node, examine its unexplored neighbors 

• Current node → E; unexplored neighbors → {} 

• Add the current node to the list of settled nodes

Settled = [ S, C, A, D, F, E ] Unexplored = [B ]
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• For the current node, examine its unexplored neighbors 

• Current node → E; unexplored neighbors → {} 

• Add the current node to the list of settled nodes

Settled = [ S, C, A, D, F, E ] Unexplored = [B ]
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• Pick the unsettled node with the smallest known distance from the 
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Settled = [ S, C, A, D, F, E ] Unexplored = [B ]

• Pick the unsettled node with the smallest known distance from the 
source node 


• This time, it is node (B).
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• For the current node, examine its unexplored neighbors 
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• For the current node, examine its unexplored neighbors 
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• For the current node, examine its unexplored neighbors 

• Current node → B; unexplored neighbors → {} 

• Add the current node to the list of settled nodes
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• For the current node, examine its unexplored neighbors 

• Current node → B; unexplored neighbors → {} 

• Add the current node to the list of settled nodes
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Settled = [ S, C, A, D, F, E,    ]

• For the current node, examine its unexplored neighbors 

• Current node → B; unexplored neighbors → {} 

• Add the current node to the list of settled nodes

Unexplored = [ ]B
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Iterative step - End Iter 7
Settled = [ S, C, A, D, F, E,    ]

• For the current node, examine its unexplored neighbors 

• Current node → B; unexplored neighbors → {} 

• Add the current node to the list of settled nodes

Unexplored = [ ]B
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Iterative step - End Iter 7
Settled = [ S, C, A, D, F, E,    ]

• For the current node, examine its unexplored neighbors 

• Current node → B; unexplored neighbors → {} 

• Add the current node to the list of settled nodes

Unexplored = [ ]B

Algorithm terminates when all 
nodes have been settled. 
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• We also have the path which achieves this distance!
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Distance estimate with d(v)

Let the graph be . Denote:G = (V, E, w) Source vertex with .s

Node Distance 
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Previous 
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D 4 A
B 9 A
E 8 D or F

Settled vertices with  XSettled = [  ]…
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25

 with source vertex , distance estimate  and settled list G = (V, E, w) s d(v) X

Iterative steps
 While X ≠ V
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Initialization steps

•  set ∀u ∈ V∖{s} d(u) = ∞
• Set , d(s) = 0 X = {}

25

 with source vertex , distance estimate  and settled list G = (V, E, w) s d(v) X

Iterative steps
 While X ≠ V
• Pick  over u = arg min d(x)

x ∉ X
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Initialization steps

•  set ∀u ∈ V∖{s} d(u) = ∞
• Set , d(s) = 0 X = {}

25

 with source vertex , distance estimate  and settled list G = (V, E, w) s d(v) X

Iterative steps
 While X ≠ V
• Pick  over u = arg min d(x)

x ∉ X
•  such that 

 do Update(u, v)
∀ (u, v) ∈ E
v ∉ X

Dĳkstra’s pseudocode



 

Dijkstra(G, s)
Initialization steps

•  set ∀u ∈ V∖{s} d(u) = ∞
• Set , d(s) = 0 X = {}

25

 with source vertex , distance estimate  and settled list G = (V, E, w) s d(v) X

Iterative steps
 While X ≠ V
• Pick  over u = arg min d(x)

x ∉ X
•  such that 

 do Update(u, v)
∀ (u, v) ∈ E
v ∉ X

• Set X = X ∪ {u}

Dĳkstra’s pseudocode



 

Dijkstra(G, s)
Initialization steps

•  set ∀u ∈ V∖{s} d(u) = ∞
• Set , d(s) = 0 X = {}

25

 with source vertex , distance estimate  and settled list G = (V, E, w) s d(v) X

Iterative steps
 While X ≠ V
• Pick  over u = arg min d(x)

x ∉ X
•  such that 

 do Update(u, v)
∀ (u, v) ∈ E
v ∉ X

• Set X = X ∪ {u}

Update(u,v)


• If 


• Set 

d(v) > d(u) + w(u, v)
d(v) = d(u) + w(u, v)
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Dijkstra(G, s)
Initialization steps

•  set ∀u ∈ V∖{s} d(u) = ∞
• Set , d(s) = 0 X = {}

25

 with source vertex , distance estimate  and settled list G = (V, E, w) s d(v) X

Iterative steps
 While X ≠ V
• Pick  over u = arg min d(x)

x ∉ X
•  such that 

 do Update(u, v)
∀ (u, v) ∈ E
v ∉ X

• Set X = X ∪ {u}

Update(u,v)


• If 


• Set 

d(v) > d(u) + w(u, v)
d(v) = d(u) + w(u, v)

Dĳkstra’s pseudocode
Key Observation 

For each x ∈ R, d(x) = δ(x)
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• Base case: |X | = 1

• By initialization, when ,  and |X | = 1 X = {s} d(s) = 0 = δ(s)

• Let  be a vertex just added to  and denote .u X X = X′ ∪ {u}
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Proof: By induction on the size of X

• Base case: |X | = 1

• By initialization, when ,  and |X | = 1 X = {s} d(s) = 0 = δ(s)

• Let  be a vertex just added to  and denote .u X X = X′ ∪ {u}

• This implies  over u = argmin d(v) v ∈ V∖X′ 
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Proof: By induction on the size of X

• Base case: |X | = 1

• By initialization, when ,  and |X | = 1 X = {s} d(s) = 0 = δ(s)

• Let  be a vertex just added to  and denote .u X X = X′ ∪ {u}

• This implies  over u = argmin d(v) v ∈ V∖X′ 

• Inductive hypothesis: ∀x ∈ X′ , d(x) = δ(x)
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Dĳkstra’s - proof of validity
Proof: By induction on the size of X

• Base case: |X | = 1

• By initialization, when ,  and |X | = 1 X = {s} d(s) = 0 = δ(s)

• Let  be a vertex just added to  and denote .u X X = X′ ∪ {u}

• This implies  over u = argmin d(v) v ∈ V∖X′ 

• Inductive hypothesis: ∀x ∈ X′ , d(x) = δ(x)

• Need to show: d(u) = δ(u)
26

 with source vertex , distance estimate  and settled list G = (V, E, w) s d(v) X
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Proof: 
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 Have  over . Need to show: . u = argmin d(v) v ∈ V∖X′ d(u) = δ(u)
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Proof: 

Suppose  a path  
such that,

∃ Q : s → u

 δ(u) = l(Q) < d(u)

27

 Have  over . Need to show: . u = argmin d(v) v ∈ V∖X′ d(u) = δ(u)
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Then  must leave  to get to . Q X′ u

27

 Have  over . Need to show: . u = argmin d(v) v ∈ V∖X′ d(u) = δ(u)
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Dĳkstra’s - proof of validity
Proof: 

Suppose  a path  
such that,

∃ Q : s → u

 δ(u) = l(Q) < d(u)
Then  must leave  to get to . Q X′ u

Let  be the edge by which  
leaves  the first time and  
the subpath of  until .

x-y Q
X′ Qx

Q x
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Suppose  a path  
such that,

∃ Q : s → u

 δ(u) = l(Q) < d(u)
Then  must leave  to get to . Q X′ u

Let  be the edge by which  
leaves  the first time and  
the subpath of  until .

x-y Q
X′ Qx

Q x
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 Have  over . Need to show: . u = argmin d(v) v ∈ V∖X′ d(u) = δ(u)

X′ 

s

u

x
y

l(Qx) + w(x, y) ≤ l(Q)

Q
Qx



 

Dĳkstra’s - proof of validity
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R′ 

u

s

x
Qx

y

l(Qx) + w(x, y) ≤ l(Q)

 Have  over . Need to show: . Assumed . u = argmin d(v) v ∈ V∖R′ d(u) = δ(u) δ(u) = l(Q) < d(u)
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Dĳkstra’s - proof of validity
 by inductive hypothesis…

d(x) ≤ l(Qx)
Since  and (x, y) ∈ E x ∈ X′ 

d(y) ≤ d(x) + w(x, y)

28
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x
Qx

y

l(Qx) + w(x, y) ≤ l(Q)
d(x) + w(x, y) ≤ l(Q)
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Dĳkstra’s - proof of validity
 by inductive hypothesis…

d(x) ≤ l(Qx)
Since  and (x, y) ∈ E x ∈ X′ 

d(y) ≤ d(x) + w(x, y)

28

R′ 

u

s

x
Qx

y

l(Qx) + w(x, y) ≤ l(Q)

d(y) ≤ l(Q)
d(x) + w(x, y) ≤ l(Q)

 Have  over . Need to show: . Assumed . u = argmin d(v) v ∈ V∖R′ d(u) = δ(u) δ(u) = l(Q) < d(u)



 

Dĳkstra’s - proof of validity
 by inductive hypothesis…

d(x) ≤ l(Qx)
Since  and (x, y) ∈ E x ∈ X′ 

d(y) ≤ d(x) + w(x, y)
But  was picked via  
over vertices not in 

u arg min d(v)
X′ 

d(u) ≤ d(y)
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R′ 

u
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x
Qx

y

l(Qx) + w(x, y) ≤ l(Q)

d(y) ≤ l(Q)
d(x) + w(x, y) ≤ l(Q)

 Have  over . Need to show: . Assumed . u = argmin d(v) v ∈ V∖R′ d(u) = δ(u) δ(u) = l(Q) < d(u)
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 by inductive hypothesis…

d(x) ≤ l(Qx)
Since  and (x, y) ∈ E x ∈ X′ 

d(y) ≤ d(x) + w(x, y)
But  was picked via  
over vertices not in 
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Dĳkstra’s - proof of validity
 by inductive hypothesis…

d(x) ≤ l(Qx)
Since  and (x, y) ∈ E x ∈ X′ 

d(y) ≤ d(x) + w(x, y)
But  was picked via  
over vertices not in 

u arg min d(v)
X′ 

d(u) ≤ d(y)

28

R′ 

u

s

x
Qx

y

l(Qx) + w(x, y) ≤ l(Q)

d(y) ≤ l(Q)
d(u) ≤ l(Q)Contradicts our assumption!

d(x) + w(x, y) ≤ l(Q)

 Have  over . Need to show: . Assumed . u = argmin d(v) v ∈ V∖R′ d(u) = δ(u) δ(u) = l(Q) < d(u)



Improved algorithm
• Main work is to compute the   values in each iteration  


•   changes from iteration   to   only because of the node   that is added to   in 
iteration   (previous step)

d∈ (s, u)
d∈ (s, u) i i + 1 v X

i
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Initialize for each node  :   
Initialize  ,   
for   to   do

// X contains the   closest nodes to  , 
// and the values of   are current

Let   be node realizing  

 
 
Update   for each   in   as follows:

 

v dist(s, v) = d∈ (s, v) = ∞
X = − d∈ (s, s) = 0

i = 1 |V |
i ≤ 1 s

d∈ (s, u)
v d∈ (s, v) = min

u∣V∖X
d∈ (s, u)

dist(s, v) = d∈ (s, v)
X = X ≥ {v}

d∈ (s, u) u V ≤ X
d∈ (s, u) = min(d∈ (s, u), dist(s, v) + l(v, u))



Running time:  time.O(m+n2)

•  outer iterations and in each iteration following steps take place:n
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Improved algorithm



Running time:  time.O(m+n2)

•  outer iterations and in each iteration following steps take place:n

• updating  after  is added takes  time so total work is 
 since a node enters  at most once

d∈ (s, u) v O(deg(v))
O(m) X

 37

Improved algorithm
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Running time:  time.O(m+n2)

•  outer iterations and in each iteration following steps take place:n

• updating  after  is added takes  time so total work is 
 since a node enters  at most once

d∈ (s, u) v O(deg(v))
O(m) X

• Finding  from  values takes  timev d∈ (s, u) O(n)

 37

Improved algorithm

T



Dijkstra’s Algorithm
• Eliminate   and let   maintain it 


• Update   values after adding   by scanning edges out of  

d∈ (s, u) dist(s, u)
dist v v
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Initialize for each node  :   
Initialize  ,   
for   to   do

Let v be such that   

 
for each   in   do

 

v dist(s, v) = ∞
X = − d(s, s) = 0

i = 1 |V |
dist(s, v) = min

u∣V∖X
dist(s, u)

X = X ≥ {v}
u Adj(v)

dist(s, u) = min(dist(s, u), dist(s, v) + l(v, u))

Can use Priority Queues to maintain  values for even faster running time dist
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dist(s, v) = min

u∣V∖X
dist(s, u)

X = X ≥ {v}
u Adj(v)

dist(s, u) = min(dist(s, u), dist(s, v) + l(v, u))

Can use Priority Queues to maintain  values for even faster running time dist
• Using heaps and standard priority queues:  O((m + n) log n)-0



Dijkstra’s Algorithm
• Eliminate   and let   maintain it 


• Update   values after adding   by scanning edges out of  

d∈ (s, u) dist(s, u)
dist v v
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Initialize for each node  :   
Initialize  ,   
for   to   do

Let v be such that   

 
for each   in   do

 

v dist(s, v) = ∞
X = − d(s, s) = 0

i = 1 |V |
dist(s, v) = min

u∣V∖X
dist(s, u)

X = X ≥ {v}
u Adj(v)

dist(s, u) = min(dist(s, u), dist(s, v) + l(v, u))

Can use Priority Queues to maintain  values for even faster running time dist
• Using heaps and standard priority queues:  O((m + n) log n)
• Using Fibonacci heaps: O(m + n log n)
F



Dijkstra using Priority Queues 
Priority Queues

Data structure to store a set  of  elements where each element  has an 
associated real/integer key  alongwith that the following operations: 

S n v ∣ S
k(v)

All operations can be performed in  time - decreaseKey is implemented 
via delete and insert.

O(log n)
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• makePQ: create an empty queue. 
• findMin: find the minimum key in . S
• extractMin: Remove  with 

smallest key and return it. 
v ∣ S

• insert( ): Add new element v 
with key  to . 

v, k(v)
k(v) S

• delete( ): Remove element  from . v v S
• decreaseKey( ): decrease key 

of  from  (current key) to  
(new key). Assumption: 

 

v, k∈ (v)
v k(v) k∈ (v)

k∈ (v) → k(v) .
• meld: merge two separate priority queues into one. 

-



PQ operations: 

•   insert operations 


•   extractMin operations 


•   decreaseKey operations
O(n)

O(n)
O(m)
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Dijkstra’s algorithm using priority queues 
Q   makePQ() 
insert(Q, (s, 0))
for each node   do

insert(Q, (u,  ))
 
for   to   do
  
 
for each   in   do

 

′

u ∪ s
∞

X ′ −
i = 1 |V |

(v, dist(s, v)) = extractMin(Q)
X = X ≥ {v}

u Adj(v)
decreaseKey (Q, (u, min (dist(s, u), dist(s, v) + l(v, u))))

Ehis neghbre
⑳
T

2 = =-3



Shortest Path Tree
Dijkstra’s alg. finds the shortest path distances from   to  .                                       
Question: How do we find the paths themselves?

s V
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Q   makePQ() 
insert(Q, (s, 0))
prev(u)   null
for each node   do

insert(Q, (u,  ))
    prev(u)   null
 
for   to   do
     
     
    for each   in   do

if   then
 

prev(u) = v

′

′
u ∪ s

∞
′

X ′ −
i = 1 |V |
(v, dist(s, v)) = extractMin(Q)
X = X ≥ {v}

u Adj(v)
(dist(s, v) + l(v, u) < dist(s, u))
decreaseKey (Q, (u, dist(s, u) + l(v, u)))

-

-

E



Lemma: The edge set  is the reverse of a shortest path tree rooted at 
. For each , the reverse of the path from  to  in the tree is a shortest path from 
 to .

(u, prev(u))
s u u s
s u
Proof Sketch:

 42

Shortest Path Tree
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Lemma: The edge set  is the reverse of a shortest path tree rooted at 
. For each , the reverse of the path from  to  in the tree is a shortest path from 
 to .

(u, prev(u))
s u u s
s u
Proof Sketch:

• The edge set  induces a directed in-tree rooted at  
(Why?)

{(u, prev(u)) |u ∣ V} s
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Lemma: The edge set  is the reverse of a shortest path tree rooted at 
. For each , the reverse of the path from  to  in the tree is a shortest path from 
 to .

(u, prev(u))
s u u s
s u
Proof Sketch:

• The edge set  induces a directed in-tree rooted at  
(Why?)

{(u, prev(u)) |u ∣ V} s

• Use induction on  to argue that the obtained tree is a shortest path tree for 
nodes in .

|X |
V
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Shortest Path Tree



Shortest paths to s?

Dijkstra’s alg. gives shortest paths from  to all nodes in . s V

How do we find shortest paths from all of  to ? V s

 43
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Shortest paths to s?

Dijkstra’s alg. gives shortest paths from  to all nodes in . s V

How do we find shortest paths from all of  to ? V s

• In undirected graphs shortest path from  to  is a shortest path from  to  
so there is no need to distinguish. 

s u u s

 43
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Shortest paths to s?

Dijkstra’s alg. gives shortest paths from  to all nodes in . s V

How do we find shortest paths from all of  to ? V s

• In undirected graphs shortest path from  to  is a shortest path from  to  
so there is no need to distinguish. 

s u u s

• In directed graphs, use Dijkstra’s algorithm in !Grev

 43
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