
Shortest Paths [BFS, Djikstra]

All mistakes are my own! - Ivan Abraham (Fall 2024)

Sides based on material by Kani, Chekuri, Erickson et. al.

Last time: Kosanagu's algoith

Breadth first search (BFS)
Overview

• Breadth-first search (BFS) is an algorithm for traversing or searching a Tree or
Graph data structure which returns the nodes of the graph level by level.

• BFS on a graph with vertices and edges takes time (obtained
from BasicSearch by processing edges using a queue data structure).

n m O(n + m)

• It processes the vertices in the graph in the order of their shortest distance
from the vertex (the start vertex)s

• DFS good for exploring graph structure | BFS good for exploring distances

 2

-

-

--

 3

Breadth first search (BFS)

BFS traversal of a graph returns the
nodes of the graph level by level.

The Idea of the BFS:

Visit the vertices as follows:

• Visit all vertices at distance 1

A

B C D

E F

 L0

 L1

 3

Breadth first search (BFS)

BFS traversal of a graph returns the
nodes of the graph level by level.

The Idea of the BFS:

Visit the vertices as follows:

• Visit all vertices at distance 1
• Visit all vertices at distance 2

A

B C D

E F

 L0

 L1

 L2

 3

Breadth first search (BFS)

BFS traversal of a graph returns the
nodes of the graph level by level.

The Idea of the BFS:

Visit the vertices as follows:

• Visit all vertices at distance 1
• Visit all vertices at distance 2
• Visit all vertices at distance 3 etc.

A

B C D

E F

 L0

 L1

 L2

 3

Breadth first search (BFS)

BFS traversal of a graph returns the
nodes of the graph level by level.

The Idea of the BFS:

Visit the vertices as follows:

• Visit all vertices at distance 1
• Visit all vertices at distance 2
• Visit all vertices at distance 3 etc.

A

B C D

E F

 L0

 L1

 L2

A B C D E F

-

-

-

-
-

Queue data structure
Queues

A queue is a list of elements which supports the operations:

• Enqueue: Adds an element to the end of the list

• Dequeue: Removes an element from the front of the list

• Elements are extracted in first-in first-out (FIFO) order, i.e., elements are
picked in the order in which they were inserted.

• Contrast with LIFO (stacks)

 4

BFS algorithm
Pseudocode

Given (undirected or directed) graph and node G = (V, E) s ∈ V

 5

BFS(s):
Mark all vertices as unvisited;
Initialize search tree to be empty
Mark vertex s as visited
set to be the empty queue
enqueue(Q,s)
while is non-empty do

u = dequeue(Q)
for each vertex

if is not visited then
add edge to
Mark as visited and enqueue()

T

Q

Q

v ∈ Adj(u)
v

(u, v) T
v v

⑪
-

Z

Ob

BFS algorithm
Pseudocode

Given (undirected or directed) graph and node G = (V, E) s ∈ V

 5

BFS(s):
Mark all vertices as unvisited;
Initialize search tree to be empty
Mark vertex s as visited
set to be the empty queue
enqueue(Q,s)
while is non-empty do

u = dequeue(Q)
for each vertex

if is not visited then
add edge to
Mark as visited and enqueue()

T

Q

Q

v ∈ Adj(u)
v

(u, v) T
v v

Proposition

BFS(s) runs in timeO(n + m)

BFS: An example in undirected graphs

 6

1

32

54

6

7

8

queue

BFS: An example in undirected graphs

 Mark and enqueue 1
 6

1

32

54

6

7

8

1

1

BFS: An example in undirected graphs

 Mark and enqueue 1
 6

1

32

54

6

7

8

1

1

Dequeue 1

BFS: An example in undirected graphs

 Mark and enqueue 1
 6

1

32

54

6

7

8

1

1

Dequeue 1Mark and enqueue 2 and 3

2 3
2 3

BFS: An example in undirected graphs

 Mark and enqueue 1
 6

1

32

54

6

7

8

1

1

Dequeue 1Mark and enqueue 2 and 3

2 3

2

3

Dequeue 2

BFS: An example in undirected graphs

 Mark and enqueue 1
 6

1

32

54

6

7

8

1

1

Dequeue 1Mark and enqueue 2 and 3

2 3

2

3

Dequeue 2Mark and enqueue 4 and 5

4 5

4 5

BFS: An example in undirected graphs

 Mark and enqueue 1
 6

1

32

54

6

7

8

1

1

Dequeue 1Mark and enqueue 2 and 3

2 3

2 3

Dequeue 2Mark and enqueue 4 and 5

4 5

4 5

Dequeue 3

BFS: An example in undirected graphs

 Mark and enqueue 1
 6

1

32

54

6

7

8

1

1

Dequeue 1Mark and enqueue 2 and 3

2 3

2 3

Dequeue 2Mark and enqueue 4 and 5

4 5

4 5

Dequeue 3

7

8

Mark and enqueue 7 and 8

7 8

BFS: An example in undirected graphs

 Mark and enqueue 1
 6

1

32

54

6

7

8

1

1

Dequeue 1Mark and enqueue 2 and 3

2 3

2 3

Dequeue 2Mark and enqueue 4 and 5

4 5 4

5

Dequeue 3

7

8

Mark and enqueue 7 and 8

7 8

Dequeue 4

BFS: An example in undirected graphs

 Mark and enqueue 1
 6

1

32

54

6

7

8

1

1

Dequeue 1Mark and enqueue 2 and 3

2 3

2 3

Dequeue 2Mark and enqueue 4 and 5

4 5 4 5

Dequeue 3

7

8

Mark and enqueue 7 and 8

7 8

Dequeue 4Dequeue 5

BFS: An example in undirected graphs

 Mark and enqueue 1
 6

1

32

54

6

7

8

1

1

Dequeue 1Mark and enqueue 2 and 3

2 3

2 3

Dequeue 2Mark and enqueue 4 and 5

4 5 4 5

Dequeue 3

7

8

Mark and enqueue 7 and 8

7 8

Dequeue 4Dequeue 5Mark and enqueue 6

6

6

BFS: An example in undirected graphs

 Mark and enqueue 1
 6

1

32

54

6

7

8

1

1

Dequeue 1Mark and enqueue 2 and 3

2 3

2 3

Dequeue 2Mark and enqueue 4 and 5

4 5 4 5

Dequeue 3

7

8

Mark and enqueue 7 and 8

7

8

Dequeue 4Dequeue 5Mark and enqueue 6

6

6

Dequeue 7

BFS: An example in undirected graphs

 Mark and enqueue 1
 6

1

32

54

6

7

8

1

1

Dequeue 1Mark and enqueue 2 and 3

2 3

2 3

Dequeue 2Mark and enqueue 4 and 5

4 5 4 5

Dequeue 3

7

8

Mark and enqueue 7 and 8

7 8

Dequeue 4Dequeue 5Mark and enqueue 6

6

6

Dequeue 7Dequeue 8

BFS: An example in undirected graphs

 Mark and enqueue 1
 6

1

32

54

6

7

8

1

1

Dequeue 1Mark and enqueue 2 and 3

2 3

2 3

Dequeue 2Mark and enqueue 4 and 5

4 5 4 5

Dequeue 3

7

8

Mark and enqueue 7 and 8

7 8

Dequeue 4Dequeue 5Mark and enqueue 6

6

6

Dequeue 7Dequeue 8Dequeue 6

-
-↳-
->

BFS: An example in undirected graphs

 Mark and enqueue 1
 6

1

32

54

6

7

8

1

1

Dequeue 1Mark and enqueue 2 and 3

2 3

2 3

Dequeue 2Mark and enqueue 4 and 5

4 5 4 5

Dequeue 3

7

8

Mark and enqueue 7 and 8

7 8

Dequeue 4Dequeue 5Mark and enqueue 6

6

6

Dequeue 7Dequeue 8Dequeue 6BFS tree is the set of purple edges

BFS: An example in undirected graphs

 Mark and enqueue 1
 6

1

32

54

6

7

8

1

1

Dequeue 1Mark and enqueue 2 and 3

2 3

2 3

Dequeue 2Mark and enqueue 4 and 5

4 5 4 5

Dequeue 3

7

8

Mark and enqueue 7 and 8

7 8

Dequeue 4Dequeue 5Mark and enqueue 6

6

6

Dequeue 7Dequeue 8Dequeue 6BFS tree is the set of purple edges

 L0

 L1

 L2

 L3

 7

BFS: An example in directed graphs

A CB

E DF

G H

 7

BFS: An example in directed graphs

A CB

E DF

G H

A Q1: A

 7

BFS: An example in directed graphs

A CB

E DF

G H

A Q1: AB C

F

Q2: B C F

 7

BFS: An example in directed graphs

A CB

E DF

G H

A Q1: AB C

F

Q2: B C F

E
Q3: C F E
f

 7

BFS: An example in directed graphs

A CB

E DF

G H

A Q1: AB C

F

Q2: B C F

E
Q3: C F E

D
Q4: F E D

 7

BFS: An example in directed graphs

A CB

E DF

G H

A Q1: AB C

F

Q2: B C F

E
Q3: C F E

D
Q4: F E D

G Q5: E D G

 7

BFS: An example in directed graphs

A CB

E DF

G H

A Q1: AB C

F

Q2: B C F

E
Q3: C F E

D
Q4: F E D

G Q5: E D GH

Q6: D G H

 7

BFS: An example in directed graphs

A CB

E DF

G H

A Q1: AB C

F

Q2: B C F

E
Q3: C F E

D
Q4: F E D

G Q5: E D GH

Q6: D G H
Q7: G H
Q8: H
Q9:

 7

BFS: An example in directed graphs

A CB

E DF

G H

A Q1: AB C

F

Q2: B C F

E
Q3: C F E

D
Q4: F E D

G Q5: E D GH

Q6: D G H
Q7: G H
Q8: H
Q9:

 L0 L1

 L2

 L3

BFS with distances

 8

BFS(s):
Mark all vertices as unvisited; for each set
Initialize search tree to be empty
Mark vertex s as visited and set
set to be the empty queue
enqueue(s)
while is non-empty do

u = dequeue(Q)
for each vertex do

if is not visited do
add edge to
Mark as visited, enqueue()
and set

v dist(v) = ∞
T

dist(s) = 0
Q

Q

v ∈ Adj(u)
v

(u, v) T
v v

dist(v) = dist(u) + 1

↓

-
e

-

Properties of BFS
Undirected graphs

Theorem: The following properties hold upon termination of BFS(s)

• Search tree is the set of vertices in the connected component of . s

 9

-

-

Properties of BFS
Undirected graphs

Theorem: The following properties hold upon termination of BFS(s)

• Search tree is the set of vertices in the connected component of . s

• If then is visited before . dist(u) < dist(v) u v

 9

Properties of BFS
Undirected graphs

Theorem: The following properties hold upon termination of BFS(s)

• Search tree is the set of vertices in the connected component of . s

• If then is visited before . dist(u) < dist(v) u v

• For every vertex , is the length of a shortest path (in terms of
number of edges) from to .

u dist(u)
s u

 9

-
-

-

Properties of BFS
Undirected graphs

Theorem: The following properties hold upon termination of BFS(s)

• Search tree is the set of vertices in the connected component of . s

• If then is visited before . dist(u) < dist(v) u v

• For every vertex , is the length of a shortest path (in terms of
number of edges) from to .

u dist(u)
s u

• If are in connected component of and is an edge of ,
then .

u, v s e = {u, v} G
|dist(u) − dist(v) | ≤ 1

 9

-

Properties of BFS
Directed graphs

Theorem: The following properties hold upon termination of BFS(s)

• Search tree contains exactly the set of vertices reachable from . s

 10

-

-

Properties of BFS
Directed graphs

Theorem: The following properties hold upon termination of BFS(s)

• Search tree contains exactly the set of vertices reachable from . s

• If then is visited before . dist(u) < dist(v) u v

 10

-

Properties of BFS
Directed graphs

Theorem: The following properties hold upon termination of BFS(s)

• Search tree contains exactly the set of vertices reachable from . s

• If then is visited before . dist(u) < dist(v) u v

• For every vertex , is indeed the length of shortest path from to . u dist(u) s u

 10

-

Properties of BFS
Directed graphs

Theorem: The following properties hold upon termination of BFS(s)

• Search tree contains exactly the set of vertices reachable from . s

• If then is visited before . dist(u) < dist(v) u v

• For every vertex , is indeed the length of shortest path from to . u dist(u) s u

• If is reachable from and is an edge of , then
.

u s e = (u, v) G
dist(v) ≤ 1 + dist(u)

 10

I
--

v

·t

BFS with layers

• BFS is a simple algorithm but proving its properties formally is not straight
forward

• Since BFS explores graph in increasing order of distance from source s, there
is a simpler variant that makes BFS exploration transparent and easier to
understand.

• Given and , define . G s ∈ V Li = {v ∣ dist(s, v) = i}

• Then L0 = {s}

 11

E

BFS with layers

• BFS is a simple algorithm but proving its properties formally is not straight
forward

• Since BFS explores graph in increasing order of distance from source s, there
is a simpler variant that makes BFS exploration transparent and easier to
understand.

• Given and , define . G s ∈ V Li = {v ∣ dist(s, v) = i}

• Then L0 = {s}

• And can be found from for inductively. Lk Lk−1 k ≥ 1
 11

BFS with layers

 12

BFSLayers(s):
Mark all vertices as unvisited and initialize to be empty
Mark as visited and set

while is not empty do

initialize to be an empty list
for each in do

for each edge do
if is not visited
 mark as visited
 add to tree
 add to

T
s L0 = {s}

i = 0
Li

Li+1
u Li

(u, v) ∈ Adj(u)
v

v
(u, v) T
v Li+1

i = i + 1

O
z

1
-

O

BFS with layers

 12

BFSLayers(s):
Mark all vertices as unvisited and initialize to be empty
Mark as visited and set

while is not empty do

initialize to be an empty list
for each in do

for each edge do
if is not visited
 mark as visited
 add to tree
 add to

T
s L0 = {s}

i = 0
Li

Li+1
u Li

(u, v) ∈ Adj(u)
v

v
(u, v) T
v Li+1

i = i + 1

Running time: O(n + m)

Example - undirected

• Layer 0: 1

• Layer 1: 2, 3

• Layer 2: 4, 5, 7, 8

• Layer 3: 6

 13

1

32

54

6

7

8

 L0

 L1

 L2

 L3

BFS with layers

BFS with layers: undirected graph
Properties

• BFSLayers(s) outputs a BFS tree

• is the set of vertices at
distance exactly from .
Li

i s

• If is undirected, each edge
 is one of three types:

G
e = {u, v}

 14

-

BFS with layers: undirected graph
Properties

• BFSLayers(s) outputs a BFS tree

• is the set of vertices at
distance exactly from .
Li

i s

• If is undirected, each edge
 is one of three types:

G
e = {u, v}

• tree edge between two
consecutive layers

 14

BFS with layers: undirected graph
Properties

• BFSLayers(s) outputs a BFS tree

• is the set of vertices at
distance exactly from .
Li

i s

• If is undirected, each edge
 is one of three types:

G
e = {u, v}

• tree edge between two
consecutive layers

• non-tree forward/backward
edge between two
consecutive layers

 14

11

BFS with layers: undirected graph
Properties

• BFSLayers(s) outputs a BFS tree

• is the set of vertices at
distance exactly from .
Li

i s

• If is undirected, each edge
 is one of three types:

G
e = {u, v}

• tree edge between two
consecutive layers

• non-tree forward/backward
edge between two
consecutive layers

• non-tree cross-edge with
both in same layeru, v

 14

non-tree
inter-layer

↑ edge -

Il 1

Yutro-layer

BFS with layers: undirected graph
Properties

• BFSLayers(s) outputs a BFS tree

• is the set of vertices at
distance exactly from .
Li

i s

• If is undirected, each edge
 is one of three types:

G
e = {u, v}

• tree edge between two
consecutive layers

• non-tree forward/backward
edge between two
consecutive layers

• non-tree cross-edge with
both in same layeru, v

• Every edge in the graph is
either between two vertices
that are either (i) in the same
layer, or (ii) in two consecutive
layers!

 14

-

-

--

-

Example - directed

• Layer 0: A

• Layer 1: B, F, C

• Layer 2: E, G, D

• Layer 3: H

 15

BFS with layers

A CB

E DF

G H

 L0 L1

 L2

 L3

BFS with layers: directed graph
Properties

Proposition: The following properties hold on termination of BFS(s) if G is
directed.

• Each edge is one of four types:e = {u, v}

• A tree edge between consecutive layers, for some u ∈ Li, v ∈ Li+1
i ≥ 0

• A non-tree forward edge between consecutive layers

• A non-tree backward edge

 16

makea

BFS with layers: directed graph
Properties

Proposition: The following properties hold on termination of BFS(s) if G is
directed.

• Each edge is one of four types:e = {u, v}

• A tree edge between consecutive layers, for some u ∈ Li, v ∈ Li+1
i ≥ 0

• A non-tree forward edge between consecutive layers

• A non-tree backward edge

• A cross-edge with both in same layeru, v
 16

Shortest path problems
Description

Given graph with associated edge lengths (or costs), denote for an
edge the quantity as its length or cost.

G = (V, E)
e = uv l(e) = l(uv)

 17

weishels
↑ on

the
edges

specifier melivered = w(u,v)

e
not directed 1

wes

-

6

Shortest path problems
Description

Given graph with associated edge lengths (or costs), denote for an
edge the quantity as its length or cost.

G = (V, E)
e = uv l(e) = l(uv)

• Given nodes find shortest path (in terms of summed lengths/costs) from
 to . (SSPP)

s, t
s t

• Given node find shortest path from to all other nodes (SSSP)s s

 17

-

single sovel shoulest
& paths

O --
-

Shortest path problems
Description

Given graph with associated edge lengths (or costs), denote for an
edge the quantity as its length or cost.

G = (V, E)
e = uv l(e) = l(uv)

• Given nodes find shortest path (in terms of summed lengths/costs) from
 to . (SSPP)

s, t
s t

• Given node find shortest path from to all other nodes (SSSP)s s

• Find shortest paths between all pairs of nodes (APSP)

 17

D

=

Shortest walks vs. paths

• A path is a sequence of distinct vertices such that
for .

v1, v2, …, vk (vi, vi+1) ∈ E
1 ≤ i ≤ k − 1

• A path is a sequence of vertices such that for
.

v1, v2, …, vk (vi, vi+1) ∈ E
1 ≤ i ≤ k − 1

 18

wark .
z

&

Shortest walks vs. paths

• A path is a sequence of distinct vertices such that
for .

v1, v2, …, vk (vi, vi+1) ∈ E
1 ≤ i ≤ k − 1

• A path is a sequence of vertices such that for
.

v1, v2, …, vk (vi, vi+1) ∈ E
1 ≤ i ≤ k − 1

• Finding walks is often easier than finding paths (concatenating two walks
gives a walk, while concatenating two paths may not give a path).

 18

wall
#

-

Shortest walks vs. paths

• A path is a sequence of distinct vertices such that
for .

v1, v2, …, vk (vi, vi+1) ∈ E
1 ≤ i ≤ k − 1

• A path is a sequence of vertices such that for
.

v1, v2, …, vk (vi, vi+1) ∈ E
1 ≤ i ≤ k − 1

• Finding walks is often easier than finding paths (concatenating two walks
gives a walk, while concatenating two paths may not give a path).

• For edges with non-negative weights/lengths, finding the shortest walk is the
same as finding the shortest path. s → t

 18

walk,
Z

-

Single-source shortest paths
Assumption: non-negative edge lengths

Single-source shortest path problems (SSSPs)

• Input: A (undirected or directed) graph with non-negative edge
lengths. For edge , is its length.

G = (V, E)
e = (u, v) l(e) = l(u, v)

 19

s5

- -
t

v

Single-source shortest paths
Assumption: non-negative edge lengths

Single-source shortest path problems (SSSPs)

• Input: A (undirected or directed) graph with non-negative edge
lengths. For edge , is its length.

G = (V, E)
e = (u, v) l(e) = l(u, v)

• Given nodes find shortest path from to . s, t s t

 19

0
--

Single-source shortest paths
Assumption: non-negative edge lengths

Single-source shortest path problems (SSSPs)

• Input: A (undirected or directed) graph with non-negative edge
lengths. For edge , is its length.

G = (V, E)
e = (u, v) l(e) = l(u, v)

• Given nodes find shortest path from to . s, t s t

• Given node find shortest path from to all other nodes.s s

 19

=>

Single-source shortest paths
Assumption: non-negative edge lengths

Single-source shortest path problems (SSSPs)

• Input: A (undirected or directed) graph with non-negative edge
lengths. For edge , is its length.

G = (V, E)
e = (u, v) l(e) = l(u, v)

• Given nodes find shortest path from to . s, t s t

• Given node find shortest path from to all other nodes.s s

• Restrict attention to directed graphs

 19

ADSP next week

Bellnam-Fond

Floyd-Warshal.

-

- Djikstra's
alguel ..
-

• Undirected graph problem can be reduced to directed graph problem -
how?

• Given undirected graph , create a new directed graph by replacing
each edge in by and in .

G G′

{u, v} G (u, v) (v, u) G′

 20

Single-source shortest paths
Assumption: non-negative edge lengths

Osa

• Undirected graph problem can be reduced to directed graph problem -
how?

• Given undirected graph , create a new directed graph by replacing
each edge in by and in .

G G′

{u, v} G (u, v) (v, u) G′

• set l(u, v) = l(v, u) = l({u, v})

 20

Single-source shortest paths
Assumption: non-negative edge lengths

• Undirected graph problem can be reduced to directed graph problem -
how?

• Given undirected graph , create a new directed graph by replacing
each edge in by and in .

G G′

{u, v} G (u, v) (v, u) G′

• set l(u, v) = l(v, u) = l({u, v})
• Exercise: show reduction works. Relies on non-negativity!

 20

Single-source shortest paths
Assumption: non-negative edge lengths
-

-

 21

Shortest path in the weighted
case using BFS

Single-source shortest paths via BFS

• Special case: All edge lengths are 1.

• Run BFS(s) to get shortest path distances from s to all other nodes.

• O(m + n) time algorithm.

 22

-> ↳ edge neyll can be
nale this

Single-source shortest paths via BFS

• Special case: All edge lengths are 1.

• Run BFS(s) to get shortest path distances from s to all other nodes.

• O(m + n) time algorithm.

• Special case: Suppose is an integer for all ? Can we use BFS? Reduce
to unit edge-length problem by placing dummy nodes on .

l(e) e
l(e) ∈ 1 e

 22

--

Single-source shortest paths via BFS

• Special case: All edge lengths are 1.

• Run BFS(s) to get shortest path distances from s to all other nodes.

• O(m + n) time algorithm.

• Special case: Suppose is an integer for all ? Can we use BFS? Reduce
to unit edge-length problem by placing dummy nodes on .

l(e) e
l(e) ∈ 1 e

• Let . New graph has edges and nodes. BFS
takes time. Not efficient if is large.

L = maxel(e) O(mL) O(mL + n)
O(mL + n) L

 22

O

- 3
&

 23

Example of edge refinement
⑧

⑨

 24

Example of edge refinement

 25

Example of edge refinement
⑨

⑧

You can not shortcut a shortest path
Lemma (… also goes by Bellman’s principle of optimality)

Let be a directed graph with non-negative edge lengths. Suppose that G

 p = v0 ∞ v1 ∞ v2 ∞ . . . ∞ vk

is the shortest path from to . v0 vk

 26

You can not shortcut a shortest path
Lemma (… also goes by Bellman’s principle of optimality)

Let be a directed graph with non-negative edge lengths. Suppose that G

 p = v0 ∞ v1 ∞ v2 ∞ . . . ∞ vk

is the shortest path from to . v0 vk

Then for any we have that 0 − i < j − k

 vi ∞ vi+1 ∞ . . . ∞ vj

is the shortest path from to .vi vj

 26

guae
of path

·
G

A proof by picture

 27

 s = v0

 v1

 v2

 v3

 v5

 v4 v6

 v7

 v8

 v9

 v10

Shortest path
from to v0 v10

A proof by picture

 28

 s = v0

 v1

 v2

 v3

 v5

 v4 v6

 v7

 v8

 v9

 v10

Shortest path
from to v0 v10

Shorter path
from to v2 v8

A proof by picture

 29

 s = v0

 v1

 v2

 v3

 v5

 v4 v6

 v7

 v8

 v9

 v10

Shortest path
from to v0 v10

A shorter path from to .
A contradiction

v0 v10

What we really need…
Stated in terms of distance

Let be a directed graph with non-negative edge lengths and let
denote the length of the shortest path from to .

G dist(s, v)
s v

 30

What we really need…
Stated in terms of distance

Let be a directed graph with non-negative edge lengths and let
denote the length of the shortest path from to .

G dist(s, v)
s v

 If s = v0 ∞ v1 ∞ v2 ∞ . . . ∞ vk

is the shortest path from to then for any we have that s = v0 vk 0 − i < j − k

 30

for
Vo

alae =

-

What we really need…
Stated in terms of distance

Let be a directed graph with non-negative edge lengths and let
denote the length of the shortest path from to .

G dist(s, v)
s v

 If s = v0 ∞ v1 ∞ v2 ∞ . . . ∞ vk

is the shortest path from to then for any we have that s = v0 vk 0 − i < j − k

 is shortest path from to and s = v0 ∞ v1 ∞ v2 . . . ∞ vi s vi

dist(s, vi) − dist(s, vk)

 30

⑭
-

-
*
--

Find the closest vertexith
A basic strategy

Explore vertices in increasing order of distance from : (For simplicity, assume
that nodes are at different distances from and that no edge has zero length)

s
s

 31

Find the closest vertexith
A basic strategy

Explore vertices in increasing order of distance from : (For simplicity, assume
that nodes are at different distances from and that no edge has zero length)

s
s

 31

Initialize for each node ,
Initialize ,

for to do
(* Invariant: X contains the closest nodes to s *)
Among nodes in , find the node that is the
 closest to
Update

v dist(s, v) = ≤
X = {s}

i = 2 |V |
i ∈ 1

V∖X v
ith s

dist(s, v)
X = X ∣ {v}

"settled "norles

d
- 0 z
f

Find the closest vertexith
A basic strategy

Explore vertices in increasing order of distance from : (For simplicity, assume
that nodes are at different distances from and that no edge has zero length)

s
s

How can we implement the step in the for loop?

 31

Initialize for each node ,
Initialize ,

for to do
(* Invariant: X contains the closest nodes to s *)
Among nodes in , find the node that is the
 closest to
Update

v dist(s, v) = ≤
X = {s}

i = 2 |V |
i ∈ 1

V∖X v
ith s

dist(s, v)
X = X ∣ {v}

3

Finding the closest nodeith

• contains the closest nodes to

• Want to find the closest node from .

What do we know about the closest node?

Claim: Let be a shortest path from to where is the closest node.
Then, all intermediate nodes in belong to .

Proof: If had an intermediate node not in then will be closer to than .
Implies is not the closest node to - recall that already has the
closest nodes!

X i ∈ 1 s

ith V∖X

ith

P s v v ith

P X

P u X u s v
v ith s X i ∈ 1

 32

What we have …

0
-

 33

Finding the closest nodeith

9

6

13

10

18

30

208

25

16

19 6

6

6

11

A

B

C

E

D

F

G

H

 33

Finding the closest nodeith

9

6

13

10

18

30

208

25

16

19 6

6

6

11

A

B

C

E

D

F

G

H

0

 33

Finding the closest nodeith

9

6

13

10

18

30

208

25

16

19 6

6

6

11

A

B

C

E

D

F

G

H

0
6

X

 33

Finding the closest nodeith

9

6

13

10

18

30

208

25

16

19 6

6

6

11

A

B

C

E

D

F

G

H

0
6

9

X

 33

Finding the closest nodeith

9

6

13

10

18

30

208

25

16

19 6

6

6

11

A

B

C

E

D

F

G

H

0
6

9

13
X

 33

Finding the closest nodeith

9

6

13

10

18

30

208

25

16

19 6

6

6

11

A

B

C

E

D

F

G

H

0
6

9

13

19

these# don't change after

P addition toX.

Y
These #'s are infect shortest distance

tor from A

 33

Finding the closest nodeith

9

6

13

10

18

30

208

25

16

19 6

6

6

11

A

B

C

E

D

F

G

H

0
6

9

13

19

25

 33

Finding the closest nodeith

9

6

13

10

18

30

208

25

16

19 6

6

6

11

A

B

C

E

D

F

G

H

0
6

9

13

19

25

38

Algorithm

 34

Initialize for each node :
Initialize ,
for to do

(* Invariant: X contains the closest nodes to s *)
(* Invariant: is shortest path distance from to
using only X as intermediate nodes*)

Let be such that

for each node in do

v dist(s, v) = ≤
X = ≥ d→ (s, s) = 0

i = 1 |V |
i ∈ 1

d→ (s, u) u s

v d→ (s, v) = min
u′V∖X

d→ (s, u)

dist(s, v) = d→ (s, v)
X = X ∣ {v}

u V ∈ X
d→ (s, u) = min

t′X
(dist(s, t) + l(t, u))

VIX -> elevents in

↓ that are not in X

Vetminus
v - X

-

Algorithm

 34

Initialize for each node :
Initialize ,
for to do

(* Invariant: X contains the closest nodes to s *)
(* Invariant: is shortest path distance from to
using only X as intermediate nodes*)

Let be such that

for each node in do

v dist(s, v) = ≤
X = ≥ d→ (s, s) = 0

i = 1 |V |
i ∈ 1

d→ (s, u) u s

v d→ (s, v) = min
u′V∖X

d→ (s, u)

dist(s, v) = d→ (s, v)
X = X ∣ {v}

u V ∈ X
d→ (s, u) = min

t′X
(dist(s, t) + l(t, u))

Running time: timeO(n . (n + m))

0

- 3

Algorithm

 34

Initialize for each node :
Initialize ,
for to do

(* Invariant: X contains the closest nodes to s *)
(* Invariant: is shortest path distance from to
using only X as intermediate nodes*)

Let be such that

for each node in do

v dist(s, v) = ≤
X = ≥ d→ (s, s) = 0

i = 1 |V |
i ∈ 1

d→ (s, u) u s

v d→ (s, v) = min
u′V∖X

d→ (s, u)

dist(s, v) = d→ (s, v)
X = X ∣ {v}

u V ∈ X
d→ (s, u) = min

t′X
(dist(s, t) + l(t, u))

Running time: timeO(n . (n + m))

There are outer iterations. In each iteration, for each by scanning all
edges out of nodes in ; time/iteration

n d→ (s, u) u
X O(m + n)
-

Dĳkstra’s algorithm
Dijkstra's Algorithm finds the shortest path between a given node
(called the source node) and all other nodes in a non-negatively
edge-weighted graph.

This algorithm was created by Dr. Edsger W. Dijkstra, a Dutch
computer scientist and software engineer, “in about 20 minutes”.

1

What’s the shortest way to travel from Rotterdam to Groningen? It is the algorithm for the shortest path, which
I designed in about 20 minutes. One morning I was shopping in Amsterdam with my young fiancée, and tired,
we sat down on the café terrace to drink a cup of coffee and I was just thinking about whether I could do this,
and I then designed the algorithm for the shortest path. As I said, it was a 20-minute invention. In fact, it was
published in 1959, three years later.

https://doi.org/10.1145/1787234.1787249

Dĳkstra’s algorithm

2

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Dĳkstra’s algorithm
Key point: We keep distance estimates from source node to every
other node, and keep updating estimates until nodes are “settled”.

2

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Dĳkstra’s algorithm
Key point: We keep distance estimates from source node to every
other node, and keep updating estimates until nodes are “settled”.

2

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A
C
F
D
B
E

Dĳkstra’s algorithm
Key point: We keep distance estimates from source node to every
other node, and keep updating estimates until nodes are “settled”.

2

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A
C
F
D
B
E

Unexplored = [S, A, C, F, D, B, E]Settled = []

Dĳkstra’s algorithm

3

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

Unexplored = [S, A, C, F, D, B, E]
Initialization step

Settled = []

Dĳkstra’s algorithm

3

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

Unexplored = [S, A, C, F, D, B, E]

• Set distance to source node = 0.

Initialization step
Settled = []

Dĳkstra’s algorithm

3

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0

Unexplored = [S, A, C, F, D, B, E]

• Set distance to source node = 0.

Initialization step
Settled = []

Dĳkstra’s algorithm

3

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0

Unexplored = [S, A, C, F, D, B, E]

• Set distance to source node = 0.
• Distances to all other nodes from source node are currently unknown,

therefore ∞ .

Initialization step
Settled = []

Dĳkstra’s algorithm

3

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A ∞
C ∞
F ∞
D ∞
B ∞
E ∞

Unexplored = [S, A, C, F, D, B, E]

• Set distance to source node = 0.
• Distances to all other nodes from source node are currently unknown,

therefore ∞ .

Initialization step
Settled = []

Dĳkstra’s algorithm

4

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A ∞
C ∞
F ∞
D ∞
B ∞
E ∞

Unexplored = [S, A, C, F, D, B, E]Settled = []

▶▶

Dĳkstra’s algorithm

4

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A ∞
C ∞
F ∞
D ∞
B ∞
E ∞

Unexplored = [S, A, C, F, D, B, E]
Iterative step - Begin Iter 1

Settled = []

▶▶

Dĳkstra’s algorithm

4

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A ∞
C ∞
F ∞
D ∞
B ∞
E ∞

Unexplored = [S, A, C, F, D, B, E]
Iterative step - Begin Iter 1

• Pick the unsettled node with the smallest known estimate from the
source node

Settled = []

▶▶

Dĳkstra’s algorithm

4

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A ∞
C ∞
F ∞
D ∞
B ∞
E ∞

Unexplored = [S, A, C, F, D, B, E]
Iterative step - Begin Iter 1

• Pick the unsettled node with the smallest known estimate from the
source node

• The first time, it is the source node (S) itself.

S

Settled = []

▶▶

Dĳkstra’s algorithm

4

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A ∞
C ∞
F ∞
D ∞
B ∞
E ∞

Unexplored = [S, A, C, F, D, B, E]
Iterative step - Begin Iter 1

• For the current node, examine its unexplored neighbors

S

Settled = []

▶▶

Dĳkstra’s algorithm

4

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A ∞
C ∞
F ∞
D ∞
B ∞
E ∞

Unexplored = [S, A, C, F, D, B, E]
Iterative step - Begin Iter 1

• For the current node, examine its unexplored neighbors
• Current node → S; unexplored neighbors → {A, C & F}

S

A

C

F

Settled = []

▶▶

Dĳkstra’s algorithm

5

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A ∞
C ∞
F ∞
D ∞
B ∞
E ∞

Unexplored = [S, A, C, F, D, B, E]
Iterative step - Iter 1

S

A

C

F

Settled = []

Dĳkstra’s algorithm

5

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A ∞
C ∞
F ∞
D ∞
B ∞
E ∞

Unexplored = [S, A, C, F, D, B, E]
Iterative step - Iter 1

S

A

C

F

• For the current node, calculate the distance of each unsettled neighbor
from the source node via current node.

Settled = []

Dĳkstra’s algorithm

5

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A ∞
C ∞
F ∞
D ∞
B ∞
E ∞

Unexplored = [S, A, C, F, D, B, E]
Iterative step - Iter 1

S

A

C

F

• For the current node, calculate the distance of each unsettled neighbor
from the source node via current node.

0+3=3

0+2=2

0+6=6

Settled = []

Dĳkstra’s algorithm

5

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A ∞
C ∞
F ∞
D ∞
B ∞
E ∞

Unexplored = [S, A, C, F, D, B, E]
Iterative step - Iter 1

S

A

C

F

• For the current node, calculate the distance of each unsettled neighbor
from the source node via current node.

• If the calculated distance of a node is less than or equal to distance
estimate, update the estimate & previous node.

0+3=3

0+2=2

0+6=6

Settled = []

Dĳkstra’s algorithm

5

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A ∞
C ∞
F ∞
D ∞
B ∞
E ∞

Unexplored = [S, A, C, F, D, B, E]
Iterative step - Iter 1

S

A

C

F

• For the current node, calculate the distance of each unsettled neighbor
from the source node via current node.

• If the calculated distance of a node is less than or equal to distance
estimate, update the estimate & previous node.

0+3=3

0+2=2

0+6=6

3

6
2

S
S
S

Settled = []

Settled = []

Dĳkstra’s algorithm

6

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D ∞
B ∞
E ∞

Unexplored = [S, A, C, F, D, B, E]

S

Settled = []

Dĳkstra’s algorithm

6

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D ∞
B ∞
E ∞

Unexplored = [S, A, C, F, D, B, E]

• Add the current node to the list of settled nodes

S

Settled = []

Dĳkstra’s algorithm

6

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D ∞
B ∞
E ∞

• Add the current node to the list of settled nodes

Unexplored = [A, C, F, D, B, E]

Settled = []

Dĳkstra’s algorithm

6

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D ∞
B ∞
E ∞

• Add the current node to the list of settled nodes

Unexplored = [A, C, F, D, B, E]S

Settled = []

Dĳkstra’s algorithm

6

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D ∞
B ∞
E ∞

• Add the current node to the list of settled nodes

Unexplored = [A, C, F, D, B, E]
Iterative step - End Iter 1

S

Dĳkstra’s algorithm

7

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D ∞
B ∞
E ∞

Unexplored = [A, C, F, D, B, E]Settled = [S]

▶▶

◀◀

Dĳkstra’s algorithm

7

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D ∞
B ∞
E ∞

Iterative step - Begin Iter 2
Unexplored = [A, C, F, D, B, E]Settled = [S]

▶▶

◀◀

Dĳkstra’s algorithm

7

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D ∞
B ∞
E ∞

Iterative step - Begin Iter 2

• Pick the unsettled node with the smallest known distance from the
source node

Unexplored = [A, C, F, D, B, E]Settled = [S]

▶▶

◀◀

Dĳkstra’s algorithm

7

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D ∞
B ∞
E ∞

Iterative step - Begin Iter 2

• Pick the unsettled node with the smallest known distance from the
source node

• This time, it is node (C).

C

Unexplored = [A, C, F, D, B, E]Settled = [S]

▶▶

◀◀

Dĳkstra’s algorithm

7

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D ∞
B ∞
E ∞

Iterative step - Begin Iter 2

C

Unexplored = [A, C, F, D, B, E]

• For the current node, examine its unexplored neighbors

Settled = [S]

▶▶

◀◀

Dĳkstra’s algorithm

7

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D ∞
B ∞
E ∞

Iterative step - Begin Iter 2

C

Unexplored = [A, C, F, D, B, E]

• For the current node, examine its unexplored neighbors
• Current node → C; unexplored neighbors → {A & D}

A

D

Settled = [S]

▶▶

◀◀

Dĳkstra’s algorithm

8

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D ∞
B ∞
E ∞

Settled = [S]
Iterative step - Iter 2

C

Unexplored = [A, C, F, D, B, E]

A

D

Dĳkstra’s algorithm

8

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D ∞
B ∞
E ∞

Settled = [S]
Iterative step - Iter 2

C

Unexplored = [A, C, F, D, B, E]

A

D

• For the current node, calculate the distance of each unsettled neighbor
from the source node via current node.

Dĳkstra’s algorithm

8

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D ∞
B ∞
E ∞

Settled = [S]
Iterative step - Iter 2

C

Unexplored = [A, C, F, D, B, E]

A

D

2+2=4

2+3=5

• For the current node, calculate the distance of each unsettled neighbor
from the source node via current node.

Dĳkstra’s algorithm

8

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D ∞
B ∞
E ∞

Settled = [S]
Iterative step - Iter 2

C

Unexplored = [A, C, F, D, B, E]

A

D

2+2=4

2+3=5

• For the current node, calculate the distance of each unsettled neighbor
from the source node via current node.

• If the calculated distance of a node is less than or equal to distance
estimate, update the estimate & previous node.

Dĳkstra’s algorithm

8

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D ∞
B ∞
E ∞

Settled = [S]
Iterative step - Iter 2

C

Unexplored = [A, C, F, D, B, E]

A

D

2+2=4

2+3=5

• For the current node, calculate the distance of each unsettled neighbor
from the source node via current node.

• If the calculated distance of a node is less than or equal to distance
estimate, update the estimate & previous node.

5 C

Dĳkstra’s algorithm

9

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 5 C
B ∞
E ∞

Settled = [S,] Unexplored = [A, C, F, D, B, E]

C

Dĳkstra’s algorithm

9

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 5 C
B ∞
E ∞

Settled = [S,] Unexplored = [A, C, F, D, B, E]

C

• Add the current node to the list of settled nodes

Dĳkstra’s algorithm

9

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 5 C
B ∞
E ∞

Settled = [S,]

C

• Add the current node to the list of settled nodes

Unexplored = [A, F, D, B, E]

Dĳkstra’s algorithm

9

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 5 C
B ∞
E ∞

Settled = [S,]

• Add the current node to the list of settled nodes

Unexplored = [A, F, D, B, E]C

Dĳkstra’s algorithm

9

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 5 C
B ∞
E ∞

Settled = [S,]
Iterative step - End Iter 2

• Add the current node to the list of settled nodes

Unexplored = [A, F, D, B, E]C

Dĳkstra’s algorithm

10

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 5 C
B ∞
E ∞

Settled = [S, C] Unexplored = [A, F, D, B, E]

▶▶

◀◀

Dĳkstra’s algorithm

10

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 5 C
B ∞
E ∞

Settled = [S, C]
Iterative step - Begin Iter 3

Unexplored = [A, F, D, B, E]

▶▶

◀◀

• Pick the unsettled node with the smallest known distance from the
source node

Dĳkstra’s algorithm

10

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 5 C
B ∞
E ∞

Settled = [S, C]
Iterative step - Begin Iter 3

Unexplored = [A, F, D, B, E]

▶▶

◀◀

• Pick the unsettled node with the smallest known distance from the
source node

• This time, it is node (A).

Dĳkstra’s algorithm

10

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 5 C
B ∞
E ∞

Settled = [S, C]
Iterative step - Begin Iter 3

Unexplored = [A, F, D, B, E]

A

▶▶

◀◀

Dĳkstra’s algorithm

10

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 5 C
B ∞
E ∞

Settled = [S, C]
Iterative step - Begin Iter 3

Unexplored = [A, F, D, B, E]

• For the current node, examine its unexplored neighbors

A

▶▶

◀◀

Dĳkstra’s algorithm

10

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 5 C
B ∞
E ∞

Settled = [S, C]
Iterative step - Begin Iter 3

Unexplored = [A, F, D, B, E]

• For the current node, examine its unexplored neighbors
• Current node → A; unexplored neighbors → {B & D}

A B

D

▶▶

◀◀

Dĳkstra’s algorithm

11

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 5 C
B ∞
E ∞

Settled = [S, C]
Iterative step - Iter 3

Unexplored = [A, F, D, B, E]

A B

D

Dĳkstra’s algorithm

11

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 5 C
B ∞
E ∞

Settled = [S, C]
Iterative step - Iter 3

Unexplored = [A, F, D, B, E]

A B

D

• For the current node, calculate the distance of each unsettled neighbor
from the source node via current node.

Dĳkstra’s algorithm

11

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 5 C
B ∞
E ∞

Settled = [S, C]
Iterative step - Iter 3

Unexplored = [A, F, D, B, E]

A B

D

• For the current node, calculate the distance of each unsettled neighbor
from the source node via current node.

3+6=9

3+1=4

Dĳkstra’s algorithm

11

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 5 C
B ∞
E ∞

Settled = [S, C]
Iterative step - Iter 3

Unexplored = [A, F, D, B, E]

A B

D

• For the current node, calculate the distance of each unsettled neighbor
from the source node via current node.

• If the calculated distance of a node is less than or equal to distance
estimate, update the estimate & previous node.

3+6=9

3+1=4

Dĳkstra’s algorithm

11

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 5 C
B ∞
E ∞

Settled = [S, C]
Iterative step - Iter 3

Unexplored = [A, F, D, B, E]

A B

D

• For the current node, calculate the distance of each unsettled neighbor
from the source node via current node.

• If the calculated distance of a node is less than or equal to distance
estimate, update the estimate & previous node.

3+6=9

3+1=4

A
9 A
4

Dĳkstra’s algorithm

12

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E ∞

Settled = [S, C,] Unexplored = [A, F, D, B, E]

A

Dĳkstra’s algorithm

12

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E ∞

Settled = [S, C,] Unexplored = [A, F, D, B, E]

A

• Add the current node to the list of settled nodes

Dĳkstra’s algorithm

12

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E ∞

Settled = [S, C,]

A

• Add the current node to the list of settled nodes

Unexplored = [F, D, B, E]

Dĳkstra’s algorithm

12

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E ∞

Settled = [S, C,]

• Add the current node to the list of settled nodes

Unexplored = [F, D, B, E]A

Dĳkstra’s algorithm

12

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E ∞

Settled = [S, C,]
Iterative step - End Iter 3

• Add the current node to the list of settled nodes

Unexplored = [F, D, B, E]A

Dĳkstra’s algorithm

13

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E ∞

Settled = [S, C, A] Unexplored = [F, D, B, E]

▶▶

◀◀

Dĳkstra’s algorithm

13

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E ∞

Settled = [S, C, A]
Iterative step - Begin Iter 4

Unexplored = [F, D, B, E]

▶▶

◀◀

• Pick the unsettled node with the smallest known distance from the
source node

Dĳkstra’s algorithm

13

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E ∞

Settled = [S, C, A]
Iterative step - Begin Iter 4

Unexplored = [F, D, B, E]

▶▶

◀◀

• Pick the unsettled node with the smallest known distance from the
source node

• This time, it is node (D).

Dĳkstra’s algorithm

13

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E ∞

Settled = [S, C, A]
Iterative step - Begin Iter 4

Unexplored = [F, D, B, E]

D

▶▶

◀◀

Dĳkstra’s algorithm

13

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E ∞

Settled = [S, C, A]
Iterative step - Begin Iter 4

Unexplored = [F, D, B, E]

• For the current node, examine its unexplored neighbors

D

▶▶

◀◀

Dĳkstra’s algorithm

13

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E ∞

Settled = [S, C, A]
Iterative step - Begin Iter 4

Unexplored = [F, D, B, E]

• For the current node, examine its unexplored neighbors
• Current node → D; unexplored neighbors → {E}

D E

▶▶

◀◀

Dĳkstra’s algorithm

14

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E ∞

Settled = [S, C, A]
Iterative step - Iter 4

Unexplored = [F, D, B, E]

D E

Dĳkstra’s algorithm

14

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E ∞

Settled = [S, C, A]
Iterative step - Iter 4

Unexplored = [F, D, B, E]

D E

• For the current node, calculate the distance of each unsettled neighbor
from the source node.

Dĳkstra’s algorithm

14

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E ∞

Settled = [S, C, A]
Iterative step - Iter 4

Unexplored = [F, D, B, E]

D E

• For the current node, calculate the distance of each unsettled neighbor
from the source node.

4+4=8

Dĳkstra’s algorithm

14

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E ∞

Settled = [S, C, A]
Iterative step - Iter 4

Unexplored = [F, D, B, E]

D E

• For the current node, calculate the distance of each unsettled neighbor
from the source node.

• If the calculated distance of a node is less than or equal to distance
estimate, update the estimate & previous node.

4+4=8

Dĳkstra’s algorithm

14

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E ∞

Settled = [S, C, A]
Iterative step - Iter 4

Unexplored = [F, D, B, E]

D E

• For the current node, calculate the distance of each unsettled neighbor
from the source node.

• If the calculated distance of a node is less than or equal to distance
estimate, update the estimate & previous node.

4+4=8

8 D

Dĳkstra’s algorithm

15

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D

Settled = [S, C, A,] Unexplored = [F, D, B, E]

D

Dĳkstra’s algorithm

15

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D

Settled = [S, C, A,] Unexplored = [F, D, B, E]

• Add the current node to the list of settled nodes

D

Dĳkstra’s algorithm

15

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D

Settled = [S, C, A,]

• Add the current node to the list of settled nodes

D

Unexplored = [F, B, E]

Dĳkstra’s algorithm

15

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D

Settled = [S, C, A,]

• Add the current node to the list of settled nodes

Unexplored = [F, B, E]D

Dĳkstra’s algorithm

15

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D

Settled = [S, C, A,]
Iterative step - End Iter 4

• Add the current node to the list of settled nodes

Unexplored = [F, B, E]D

Dĳkstra’s algorithm

16

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D

Settled = [S, C, A, D] Unexplored = [F, B, E]

▶▶

◀◀

Dĳkstra’s algorithm

16

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D

Settled = [S, C, A, D]
Iterative step - Begin Iter 5

Unexplored = [F, B, E]

▶▶

◀◀

• Pick the unsettled node with the smallest known distance from the
source node

Dĳkstra’s algorithm

16

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D

Settled = [S, C, A, D]
Iterative step - Begin Iter 5

Unexplored = [F, B, E]

▶▶

◀◀

• Pick the unsettled node with the smallest known distance from the
source node

• This time, it is node (F).

Dĳkstra’s algorithm

16

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D

Settled = [S, C, A, D]
Iterative step - Begin Iter 5

Unexplored = [F, B, E]

F

▶▶

◀◀

Dĳkstra’s algorithm

16

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D

Settled = [S, C, A, D]
Iterative step - Begin Iter 5

Unexplored = [F, B, E]

F

▶▶

◀◀

Dĳkstra’s algorithm

16

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D

Settled = [S, C, A, D]
Iterative step - Begin Iter 5

Unexplored = [F, B, E]

• For the current node, examine its unexplored neighbors

F

▶▶

◀◀

Dĳkstra’s algorithm

16

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D

Settled = [S, C, A, D]
Iterative step - Begin Iter 5

Unexplored = [F, B, E]

• For the current node, examine its unexplored neighbors
• Current node → F; unexplored neighbors → {E}

E

F

▶▶

◀◀

Dĳkstra’s algorithm

17

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D

Settled = [S, C, A, D]
Iterative step - Iter 5

Unexplored = [F, B, E]

E

F

Dĳkstra’s algorithm

17

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D

Settled = [S, C, A, D]
Iterative step - Iter 5

Unexplored = [F, B, E]

E

F

• For the current node, calculate the distance of each unsettled neighbor
from the source node.

Dĳkstra’s algorithm

17

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D

Settled = [S, C, A, D]
Iterative step - Iter 5

Unexplored = [F, B, E]

E

F

• For the current node, calculate the distance of each unsettled neighbor
from the source node.

6+2=8

Dĳkstra’s algorithm

17

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D

Settled = [S, C, A, D]
Iterative step - Iter 5

Unexplored = [F, B, E]

E

F

• For the current node, calculate the distance of each unsettled neighbor
from the source node.

• If the calculated distance of a node is less than or equal to distance
estimate, update the estimate & previous node.

6+2=8

Dĳkstra’s algorithm

17

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D

Settled = [S, C, A, D]
Iterative step - Iter 5

Unexplored = [F, B, E]

E

F

• For the current node, calculate the distance of each unsettled neighbor
from the source node.

• If the calculated distance of a node is less than or equal to distance
estimate, update the estimate & previous node.

6+2=8

8 D or F

Dĳkstra’s algorithm

18

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D or F

Settled = [S, C, A, D,] Unexplored = [F, B, E]

F

Dĳkstra’s algorithm

18

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D or F

Settled = [S, C, A, D,] Unexplored = [F, B, E]

• Add the current node to the list of settled nodes

F

Dĳkstra’s algorithm

18

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D or F

Settled = [S, C, A, D,]

• Add the current node to the list of settled nodes

F

Unexplored = [B, E]

Dĳkstra’s algorithm

18

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D or F

Settled = [S, C, A, D,]

• Add the current node to the list of settled nodes

Unexplored = [B, E]F

Dĳkstra’s algorithm

18

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D or F

Settled = [S, C, A, D,]

• Add the current node to the list of settled nodes

Unexplored = [B, E]
Iterative step - End Iter 5

F

Dĳkstra’s algorithm

19

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D or F

Settled = [S, C, A, D, F] Unexplored = [B, E]

▶▶

◀◀

Dĳkstra’s algorithm

19

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D or F

Settled = [S, C, A, D, F]
Iterative step - Begin Iter 6

Unexplored = [B, E]

▶▶

◀◀

• Pick the unsettled node with the smallest known distance from the
source node

Dĳkstra’s algorithm

19

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D or F

Settled = [S, C, A, D, F]
Iterative step - Begin Iter 6

Unexplored = [B, E]

▶▶

◀◀

• Pick the unsettled node with the smallest known distance from the
source node

• This time, it is node (E).

Dĳkstra’s algorithm

19

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D or F

Settled = [S, C, A, D, F]
Iterative step - Begin Iter 6

Unexplored = [B, E]

E

▶▶

◀◀

• For the current node, examine its unexplored neighbors
Dĳkstra’s algorithm

19

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D or F

Settled = [S, C, A, D, F]
Iterative step - Begin Iter 6

Unexplored = [B, E]

E

▶▶

◀◀

• For the current node, examine its unexplored neighbors
• Current node → E; unexplored neighbors → {}

Dĳkstra’s algorithm

19

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D or F

Settled = [S, C, A, D, F]
Iterative step - Begin Iter 6

Unexplored = [B, E]

E

▶▶

◀◀

• For the current node, examine its unexplored neighbors
• Current node → E; unexplored neighbors → {}
• Add the current node to the list of settled nodes

Dĳkstra’s algorithm

19

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D or F

Settled = [S, C, A, D, F]
Iterative step - Begin Iter 6

Unexplored = [B, E]

E

▶▶

◀◀

Dĳkstra’s algorithm

20

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D or F

E

• For the current node, examine its unexplored neighbors

• Current node → E; unexplored neighbors → {}

• Add the current node to the list of settled nodes

Settled = [S, C, A, D, F, E] Unexplored = [B]

Dĳkstra’s algorithm

20

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D or F

• For the current node, examine its unexplored neighbors

• Current node → E; unexplored neighbors → {}

• Add the current node to the list of settled nodes

Settled = [S, C, A, D, F, E] Unexplored = [B]

Dĳkstra’s algorithm

20

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D or F

Iterative step - End Iter 6

• For the current node, examine its unexplored neighbors

• Current node → E; unexplored neighbors → {}

• Add the current node to the list of settled nodes

Settled = [S, C, A, D, F, E] Unexplored = [B]

Dĳkstra’s algorithm

21

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D or F

Settled = [S, C, A, D, F, E] Unexplored = [B]

▶▶

◀◀

Dĳkstra’s algorithm

21

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D or F

Iterative step - Begin Iter 7
Settled = [S, C, A, D, F, E] Unexplored = [B]

▶▶

◀◀

Dĳkstra’s algorithm

21

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D or F

Iterative step - Begin Iter 7
Settled = [S, C, A, D, F, E] Unexplored = [B]

• Pick the unsettled node with the smallest known distance from the
source node

▶▶

◀◀

Dĳkstra’s algorithm

21

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D or F

Iterative step - Begin Iter 7
Settled = [S, C, A, D, F, E] Unexplored = [B]

• Pick the unsettled node with the smallest known distance from the
source node

• This time, it is node (B).

B

▶▶

◀◀

Dĳkstra’s algorithm

21

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D or F

Iterative step - Begin Iter 7
Settled = [S, C, A, D, F, E] Unexplored = [B]

• For the current node, examine its unexplored neighbors

B

▶▶

◀◀

Dĳkstra’s algorithm

21

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D or F

Iterative step - Begin Iter 7
Settled = [S, C, A, D, F, E] Unexplored = [B]

• For the current node, examine its unexplored neighbors
• Current node → B; unexplored neighbors → {}

B

▶▶

◀◀

Dĳkstra’s algorithm

21

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D or F

Iterative step - Begin Iter 7
Settled = [S, C, A, D, F, E] Unexplored = [B]

• For the current node, examine its unexplored neighbors
• Current node → B; unexplored neighbors → {}
• Add the current node to the list of settled nodes

B

▶▶

◀◀

Dĳkstra’s algorithm

22

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D or F

Settled = [S, C, A, D, F, E,] Unexplored = [B]

• For the current node, examine its unexplored neighbors

• Current node → B; unexplored neighbors → {}

• Add the current node to the list of settled nodes

B

Dĳkstra’s algorithm

22

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D or F

Settled = [S, C, A, D, F, E,]

• For the current node, examine its unexplored neighbors

• Current node → B; unexplored neighbors → {}

• Add the current node to the list of settled nodes

B

Unexplored = []

Dĳkstra’s algorithm

22

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D or F

Settled = [S, C, A, D, F, E,]

• For the current node, examine its unexplored neighbors

• Current node → B; unexplored neighbors → {}

• Add the current node to the list of settled nodes

Unexplored = []B

Dĳkstra’s algorithm

22

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D or F

Iterative step - End Iter 7
Settled = [S, C, A, D, F, E,]

• For the current node, examine its unexplored neighbors

• Current node → B; unexplored neighbors → {}

• Add the current node to the list of settled nodes

Unexplored = []B

Dĳkstra’s algorithm

22

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D or F

Iterative step - End Iter 7
Settled = [S, C, A, D, F, E,]

• For the current node, examine its unexplored neighbors

• Current node → B; unexplored neighbors → {}

• Add the current node to the list of settled nodes

Unexplored = []B

Algorithm terminates when all
nodes have been settled.

Dĳkstra’s algorithm

23

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Settled = [S, C, A, D, F, E, B] Unexplored = []

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D or F

◀◀

Dĳkstra’s algorithm

23

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Settled = [S, C, A, D, F, E, B]

• We have the distance from source node S to every other node

Unexplored = []

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D or F

◀◀

Dĳkstra’s algorithm

23

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Settled = [S, C, A, D, F, E, B]

• We have the distance from source node S to every other node
• We also have the path which achieves this distance!

Unexplored = []

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D or F

◀◀

Dĳkstra’s pseudocode

24

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Let the graph be . Denote:G = (V, E, w)

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D or F

Dĳkstra’s pseudocode

24

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Let the graph be . Denote:G = (V, E, w) Source vertex with .s

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D or F

Dĳkstra’s pseudocode

24

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Distance estimate with d(v)

Let the graph be . Denote:G = (V, E, w) Source vertex with .s

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D or F

Dĳkstra’s pseudocode

24

S C D E

A B

F

3
6

2
2 3 4

6 2

1
1

Distance estimate with d(v)

Let the graph be . Denote:G = (V, E, w) Source vertex with .s

Node Distance
estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D or F

Settled vertices with XSettled = []…

Dijkstra(G, s)

25

 with source vertex , distance estimate and settled list G = (V, E, w) s d(v) X

Dĳkstra’s pseudocode

Dijkstra(G, s)
Initialization steps

25

 with source vertex , distance estimate and settled list G = (V, E, w) s d(v) X

Dĳkstra’s pseudocode

Dijkstra(G, s)
Initialization steps

• set ∀u ∈ V∖{s} d(u) = ∞

25

 with source vertex , distance estimate and settled list G = (V, E, w) s d(v) X

Dĳkstra’s pseudocode

Dijkstra(G, s)
Initialization steps

• set ∀u ∈ V∖{s} d(u) = ∞
• Set , d(s) = 0 X = {}

25

 with source vertex , distance estimate and settled list G = (V, E, w) s d(v) X

Dĳkstra’s pseudocode

Dijkstra(G, s)
Initialization steps

• set ∀u ∈ V∖{s} d(u) = ∞
• Set , d(s) = 0 X = {}

25

 with source vertex , distance estimate and settled list G = (V, E, w) s d(v) X

Iterative steps

Dĳkstra’s pseudocode

Dijkstra(G, s)
Initialization steps

• set ∀u ∈ V∖{s} d(u) = ∞
• Set , d(s) = 0 X = {}

25

 with source vertex , distance estimate and settled list G = (V, E, w) s d(v) X

Iterative steps
 While X ≠ V

Dĳkstra’s pseudocode

Dijkstra(G, s)
Initialization steps

• set ∀u ∈ V∖{s} d(u) = ∞
• Set , d(s) = 0 X = {}

25

 with source vertex , distance estimate and settled list G = (V, E, w) s d(v) X

Iterative steps
 While X ≠ V
• Pick over u = arg min d(x)

x ∉ X

Dĳkstra’s pseudocode

Dijkstra(G, s)
Initialization steps

• set ∀u ∈ V∖{s} d(u) = ∞
• Set , d(s) = 0 X = {}

25

 with source vertex , distance estimate and settled list G = (V, E, w) s d(v) X

Iterative steps
 While X ≠ V
• Pick over u = arg min d(x)

x ∉ X
• such that

 do Update(u, v)
∀ (u, v) ∈ E
v ∉ X

Dĳkstra’s pseudocode

Dijkstra(G, s)
Initialization steps

• set ∀u ∈ V∖{s} d(u) = ∞
• Set , d(s) = 0 X = {}

25

 with source vertex , distance estimate and settled list G = (V, E, w) s d(v) X

Iterative steps
 While X ≠ V
• Pick over u = arg min d(x)

x ∉ X
• such that

 do Update(u, v)
∀ (u, v) ∈ E
v ∉ X

• Set X = X ∪ {u}

Dĳkstra’s pseudocode

Dijkstra(G, s)
Initialization steps

• set ∀u ∈ V∖{s} d(u) = ∞
• Set , d(s) = 0 X = {}

25

 with source vertex , distance estimate and settled list G = (V, E, w) s d(v) X

Iterative steps
 While X ≠ V
• Pick over u = arg min d(x)

x ∉ X
• such that

 do Update(u, v)
∀ (u, v) ∈ E
v ∉ X

• Set X = X ∪ {u}

Update(u,v)

• If

• Set

d(v) > d(u) + w(u, v)
d(v) = d(u) + w(u, v)

Dĳkstra’s pseudocode

Dijkstra(G, s)
Initialization steps

• set ∀u ∈ V∖{s} d(u) = ∞
• Set , d(s) = 0 X = {}

25

 with source vertex , distance estimate and settled list G = (V, E, w) s d(v) X

Iterative steps
 While X ≠ V
• Pick over u = arg min d(x)

x ∉ X
• such that

 do Update(u, v)
∀ (u, v) ∈ E
v ∉ X

• Set X = X ∪ {u}

Update(u,v)

• If

• Set

d(v) > d(u) + w(u, v)
d(v) = d(u) + w(u, v)

Dĳkstra’s pseudocode
Key Observation

For each x ∈ R, d(x) = δ(x)

Dĳkstra’s - proof of validity
Proof: By induction on the size of X

26

 with source vertex , distance estimate and settled list G = (V, E, w) s d(v) X

Dĳkstra’s - proof of validity
Proof: By induction on the size of X

• Base case: |X | = 1

26

 with source vertex , distance estimate and settled list G = (V, E, w) s d(v) X

Dĳkstra’s - proof of validity
Proof: By induction on the size of X

• Base case: |X | = 1

• By initialization, when , and |X | = 1 X = {s} d(s) = 0 = δ(s)

26

 with source vertex , distance estimate and settled list G = (V, E, w) s d(v) X

Dĳkstra’s - proof of validity
Proof: By induction on the size of X

• Base case: |X | = 1

• By initialization, when , and |X | = 1 X = {s} d(s) = 0 = δ(s)

• Let be a vertex just added to and denote .u X X = X′ ∪ {u}

26

 with source vertex , distance estimate and settled list G = (V, E, w) s d(v) X

Dĳkstra’s - proof of validity
Proof: By induction on the size of X

• Base case: |X | = 1

• By initialization, when , and |X | = 1 X = {s} d(s) = 0 = δ(s)

• Let be a vertex just added to and denote .u X X = X′ ∪ {u}

• This implies over u = argmin d(v) v ∈ V∖X′

26

 with source vertex , distance estimate and settled list G = (V, E, w) s d(v) X

Dĳkstra’s - proof of validity
Proof: By induction on the size of X

• Base case: |X | = 1

• By initialization, when , and |X | = 1 X = {s} d(s) = 0 = δ(s)

• Let be a vertex just added to and denote .u X X = X′ ∪ {u}

• This implies over u = argmin d(v) v ∈ V∖X′

• Inductive hypothesis: ∀x ∈ X′ , d(x) = δ(x)

26

 with source vertex , distance estimate and settled list G = (V, E, w) s d(v) X

Dĳkstra’s - proof of validity
Proof: By induction on the size of X

• Base case: |X | = 1

• By initialization, when , and |X | = 1 X = {s} d(s) = 0 = δ(s)

• Let be a vertex just added to and denote .u X X = X′ ∪ {u}

• This implies over u = argmin d(v) v ∈ V∖X′

• Inductive hypothesis: ∀x ∈ X′ , d(x) = δ(x)

• Need to show: d(u) = δ(u)
26

 with source vertex , distance estimate and settled list G = (V, E, w) s d(v) X

Dĳkstra’s - proof of validity
Proof:

27

 Have over . Need to show: . u = argmin d(v) v ∈ V∖X′ d(u) = δ(u)

Dĳkstra’s - proof of validity
Proof:

Suppose a path
such that,

∃ Q : s → u

27

 Have over . Need to show: . u = argmin d(v) v ∈ V∖X′ d(u) = δ(u)

Dĳkstra’s - proof of validity
Proof:

Suppose a path
such that,

∃ Q : s → u

 δ(u) = l(Q) < d(u)

27

 Have over . Need to show: . u = argmin d(v) v ∈ V∖X′ d(u) = δ(u)

X′

s

u

Q

Dĳkstra’s - proof of validity
Proof:

Suppose a path
such that,

∃ Q : s → u

 δ(u) = l(Q) < d(u)
Then must leave to get to . Q X′ u

27

 Have over . Need to show: . u = argmin d(v) v ∈ V∖X′ d(u) = δ(u)

X′

s

u

Q

Dĳkstra’s - proof of validity
Proof:

Suppose a path
such that,

∃ Q : s → u

 δ(u) = l(Q) < d(u)
Then must leave to get to . Q X′ u

Let be the edge by which
leaves the first time and
the subpath of until .

x-y Q
X′ Qx

Q x

27

 Have over . Need to show: . u = argmin d(v) v ∈ V∖X′ d(u) = δ(u)

X′

s

u

x
y
Q

Qx

Dĳkstra’s - proof of validity
Proof:

Suppose a path
such that,

∃ Q : s → u

 δ(u) = l(Q) < d(u)
Then must leave to get to . Q X′ u

Let be the edge by which
leaves the first time and
the subpath of until .

x-y Q
X′ Qx

Q x

27

 Have over . Need to show: . u = argmin d(v) v ∈ V∖X′ d(u) = δ(u)

X′

s

u

x
y

l(Qx) + w(x, y) ≤ l(Q)

Q
Qx

Dĳkstra’s - proof of validity

28

R′

u

s

x
Qx

y

l(Qx) + w(x, y) ≤ l(Q)

 Have over . Need to show: . Assumed . u = argmin d(v) v ∈ V∖R′ d(u) = δ(u) δ(u) = l(Q) < d(u)

Dĳkstra’s - proof of validity
 by inductive hypothesis…

d(x) ≤ l(Qx)

28

R′

u

s

x
Qx

y

l(Qx) + w(x, y) ≤ l(Q)

 Have over . Need to show: . Assumed . u = argmin d(v) v ∈ V∖R′ d(u) = δ(u) δ(u) = l(Q) < d(u)

Dĳkstra’s - proof of validity
 by inductive hypothesis…

d(x) ≤ l(Qx)

28

R′

u

s

x
Qx

y

l(Qx) + w(x, y) ≤ l(Q)
d(x) + w(x, y) ≤ l(Q)

 Have over . Need to show: . Assumed . u = argmin d(v) v ∈ V∖R′ d(u) = δ(u) δ(u) = l(Q) < d(u)

Dĳkstra’s - proof of validity
 by inductive hypothesis…

d(x) ≤ l(Qx)
Since and (x, y) ∈ E x ∈ X′

28

R′

u

s

x
Qx

y

l(Qx) + w(x, y) ≤ l(Q)
d(x) + w(x, y) ≤ l(Q)

 Have over . Need to show: . Assumed . u = argmin d(v) v ∈ V∖R′ d(u) = δ(u) δ(u) = l(Q) < d(u)

Dĳkstra’s - proof of validity
 by inductive hypothesis…

d(x) ≤ l(Qx)
Since and (x, y) ∈ E x ∈ X′

d(y) ≤ d(x) + w(x, y)

28

R′

u

s

x
Qx

y

l(Qx) + w(x, y) ≤ l(Q)
d(x) + w(x, y) ≤ l(Q)

 Have over . Need to show: . Assumed . u = argmin d(v) v ∈ V∖R′ d(u) = δ(u) δ(u) = l(Q) < d(u)

Dĳkstra’s - proof of validity
 by inductive hypothesis…

d(x) ≤ l(Qx)
Since and (x, y) ∈ E x ∈ X′

d(y) ≤ d(x) + w(x, y)

28

R′

u

s

x
Qx

y

l(Qx) + w(x, y) ≤ l(Q)

d(y) ≤ l(Q)
d(x) + w(x, y) ≤ l(Q)

 Have over . Need to show: . Assumed . u = argmin d(v) v ∈ V∖R′ d(u) = δ(u) δ(u) = l(Q) < d(u)

Dĳkstra’s - proof of validity
 by inductive hypothesis…

d(x) ≤ l(Qx)
Since and (x, y) ∈ E x ∈ X′

d(y) ≤ d(x) + w(x, y)
But was picked via
over vertices not in

u arg min d(v)
X′

d(u) ≤ d(y)

28

R′

u

s

x
Qx

y

l(Qx) + w(x, y) ≤ l(Q)

d(y) ≤ l(Q)
d(x) + w(x, y) ≤ l(Q)

 Have over . Need to show: . Assumed . u = argmin d(v) v ∈ V∖R′ d(u) = δ(u) δ(u) = l(Q) < d(u)

Dĳkstra’s - proof of validity
 by inductive hypothesis…

d(x) ≤ l(Qx)
Since and (x, y) ∈ E x ∈ X′

d(y) ≤ d(x) + w(x, y)
But was picked via
over vertices not in

u arg min d(v)
X′

d(u) ≤ d(y)

28

R′

u

s

x
Qx

y

l(Qx) + w(x, y) ≤ l(Q)

d(y) ≤ l(Q)
d(u) ≤ l(Q)

d(x) + w(x, y) ≤ l(Q)

 Have over . Need to show: . Assumed . u = argmin d(v) v ∈ V∖R′ d(u) = δ(u) δ(u) = l(Q) < d(u)

Dĳkstra’s - proof of validity
 by inductive hypothesis…

d(x) ≤ l(Qx)
Since and (x, y) ∈ E x ∈ X′

d(y) ≤ d(x) + w(x, y)
But was picked via
over vertices not in

u arg min d(v)
X′

d(u) ≤ d(y)

28

R′

u

s

x
Qx

y

l(Qx) + w(x, y) ≤ l(Q)

d(y) ≤ l(Q)
d(u) ≤ l(Q)Contradicts our assumption!

d(x) + w(x, y) ≤ l(Q)

 Have over . Need to show: . Assumed . u = argmin d(v) v ∈ V∖R′ d(u) = δ(u) δ(u) = l(Q) < d(u)

Improved algorithm
• Main work is to compute the values in each iteration

• changes from iteration to only because of the node that is added to in
iteration (previous step)

d∈ (s, u)
d∈ (s, u) i i + 1 v X

i

 36

Initialize for each node :
Initialize ,
for to do

// X contains the closest nodes to ,
// and the values of are current

Let be node realizing

Update for each in as follows:

v dist(s, v) = d∈ (s, v) = ∞
X = − d∈ (s, s) = 0

i = 1 |V |
i ≤ 1 s

d∈ (s, u)
v d∈ (s, v) = min

u∣V∖X
d∈ (s, u)

dist(s, v) = d∈ (s, v)
X = X ≥ {v}

d∈ (s, u) u V ≤ X
d∈ (s, u) = min(d∈ (s, u), dist(s, v) + l(v, u))

Running time: time.O(m+n2)

• outer iterations and in each iteration following steps take place:n

 37

Improved algorithm

Running time: time.O(m+n2)

• outer iterations and in each iteration following steps take place:n

• updating after is added takes time so total work is
 since a node enters at most once

d∈ (s, u) v O(deg(v))
O(m) X

 37

Improved algorithm

-

T

Running time: time.O(m+n2)

• outer iterations and in each iteration following steps take place:n

• updating after is added takes time so total work is
 since a node enters at most once

d∈ (s, u) v O(deg(v))
O(m) X

• Finding from values takes timev d∈ (s, u) O(n)

 37

Improved algorithm

T

Dijkstra’s Algorithm
• Eliminate and let maintain it

• Update values after adding by scanning edges out of

d∈ (s, u) dist(s, u)
dist v v

 38

Initialize for each node :
Initialize ,
for to do

Let v be such that

for each in do

v dist(s, v) = ∞
X = − d(s, s) = 0

i = 1 |V |
dist(s, v) = min

u∣V∖X
dist(s, u)

X = X ≥ {v}
u Adj(v)

dist(s, u) = min(dist(s, u), dist(s, v) + l(v, u))

Can use Priority Queues to maintain values for even faster running time dist

Dijkstra’s Algorithm
• Eliminate and let maintain it

• Update values after adding by scanning edges out of

d∈ (s, u) dist(s, u)
dist v v

 38

Initialize for each node :
Initialize ,
for to do

Let v be such that

for each in do

v dist(s, v) = ∞
X = − d(s, s) = 0

i = 1 |V |
dist(s, v) = min

u∣V∖X
dist(s, u)

X = X ≥ {v}
u Adj(v)

dist(s, u) = min(dist(s, u), dist(s, v) + l(v, u))

Can use Priority Queues to maintain values for even faster running time dist
• Using heaps and standard priority queues: O((m + n) log n)-0

Dijkstra’s Algorithm
• Eliminate and let maintain it

• Update values after adding by scanning edges out of

d∈ (s, u) dist(s, u)
dist v v

 38

Initialize for each node :
Initialize ,
for to do

Let v be such that

for each in do

v dist(s, v) = ∞
X = − d(s, s) = 0

i = 1 |V |
dist(s, v) = min

u∣V∖X
dist(s, u)

X = X ≥ {v}
u Adj(v)

dist(s, u) = min(dist(s, u), dist(s, v) + l(v, u))

Can use Priority Queues to maintain values for even faster running time dist
• Using heaps and standard priority queues: O((m + n) log n)
• Using Fibonacci heaps: O(m + n log n)
F

Dijkstra using Priority Queues
Priority Queues

Data structure to store a set of elements where each element has an
associated real/integer key alongwith that the following operations:

S n v ∣ S
k(v)

All operations can be performed in time - decreaseKey is implemented
via delete and insert.

O(log n)

 39

• makePQ: create an empty queue.
• findMin: find the minimum key in . S
• extractMin: Remove with

smallest key and return it.
v ∣ S

• insert(): Add new element v
with key to .

v, k(v)
k(v) S

• delete(): Remove element from . v v S
• decreaseKey(): decrease key

of from (current key) to
(new key). Assumption:

v, k∈ (v)
v k(v) k∈ (v)

k∈ (v) → k(v) .
• meld: merge two separate priority queues into one.

-

PQ operations:

• insert operations

• extractMin operations

• decreaseKey operations
O(n)

O(n)
O(m)

 40

Dijkstra’s algorithm using priority queues
Q makePQ()
insert(Q, (s, 0))
for each node do

insert(Q, (u,))

for to do

for each in do

′

u ∪ s
∞

X ′ −
i = 1 |V |

(v, dist(s, v)) = extractMin(Q)
X = X ≥ {v}

u Adj(v)
decreaseKey (Q, (u, min (dist(s, u), dist(s, v) + l(v, u))))

Ehis neghbre
⑳
T

2 = =-3

Shortest Path Tree
Dijkstra’s alg. finds the shortest path distances from to .
Question: How do we find the paths themselves?

s V

 41

Q makePQ()
insert(Q, (s, 0))
prev(u) null
for each node do

insert(Q, (u,))
 prev(u) null

for to do

 for each in do

if then

prev(u) = v

′

′
u ∪ s

∞
′

X ′ −
i = 1 |V |
(v, dist(s, v)) = extractMin(Q)
X = X ≥ {v}

u Adj(v)
(dist(s, v) + l(v, u) < dist(s, u))
decreaseKey (Q, (u, dist(s, u) + l(v, u)))

-

-

E

Lemma: The edge set is the reverse of a shortest path tree rooted at
. For each , the reverse of the path from to in the tree is a shortest path from
 to .

(u, prev(u))
s u u s
s u
Proof Sketch:

 42

Shortest Path Tree

3

Lemma: The edge set is the reverse of a shortest path tree rooted at
. For each , the reverse of the path from to in the tree is a shortest path from
 to .

(u, prev(u))
s u u s
s u
Proof Sketch:

• The edge set induces a directed in-tree rooted at
(Why?)

{(u, prev(u)) |u ∣ V} s

 42

Shortest Path Tree

Lemma: The edge set is the reverse of a shortest path tree rooted at
. For each , the reverse of the path from to in the tree is a shortest path from
 to .

(u, prev(u))
s u u s
s u
Proof Sketch:

• The edge set induces a directed in-tree rooted at
(Why?)

{(u, prev(u)) |u ∣ V} s

• Use induction on to argue that the obtained tree is a shortest path tree for
nodes in .

|X |
V

 42

Shortest Path Tree

Shortest paths to s?

Dijkstra’s alg. gives shortest paths from to all nodes in . s V

How do we find shortest paths from all of to ? V s

 43

O
-

Of

Shortest paths to s?

Dijkstra’s alg. gives shortest paths from to all nodes in . s V

How do we find shortest paths from all of to ? V s

• In undirected graphs shortest path from to is a shortest path from to
so there is no need to distinguish.

s u u s

 43

-

Shortest paths to s?

Dijkstra’s alg. gives shortest paths from to all nodes in . s V

How do we find shortest paths from all of to ? V s

• In undirected graphs shortest path from to is a shortest path from to
so there is no need to distinguish.

s u u s

• In directed graphs, use Dijkstra’s algorithm in !Grev

 43

O

