| oot o Yaolopaa AWCY 0(60&%

Shortest Paths [BFS, Djikstra]

Sides based on material by Kani, Chekuri, Erickson et. al.

All mistakes are my own! - lvan Abraham (Fall 2024)

Image by ChatGPT (probably collaborated with DALL-E)

Breadth first search (BFS)

Overview

* Breadth-first search (BFS) is an algorithm for traversing or | ree or
Graph data structure which returns the nodes of the graph level by level.

——

. BFMth n vertices and m edges takes O(n + m) time (obtained

from/BasicSearchhby processing edges using a queue data structure).

* |t processes the vertices in the graph in the order of their shortest distance
from the vertex s (the start vertex)

* DFS good for exploring graph structure | BFS good for exploring distances

N~ — -— _J

Breadth first search (BFS)

BFS traversal of a graph returns the
nodes of the graph level by level. Ly /QA&
The Idea of the BFS:

Visit the vertices as follows: x @ \@

- Visit all vertices at distance 1 d g

Breadth first search (BFS)

BFS traversal of a graph returns the
nodes of the graph level by level.

The Idea of the BFS:

Visit the vertices as follows: b Q

 Visit all vertices at distance 1

 Visit all vertices at distance 2

Breadth first search (BFS)

BFS traversal of a graph returns the
nodes of the graph level by level.

The Idea of the BFS:
Visit the vertices as follows:

 Visit all vertices at distance 1

 Visit all vertices at distance 2

 Visit all vertices at distance 3 etc.

Breadth first search (BFS)

BFS traversal of a graph returns the
nodes of the graph level by level.

The Idea of the BFS:

Visit the vertices as follows:

 Visit all vertices at distance 1

 Visit all vertices at distance 2

* Visit all vertices at distance 3 etc. ABCDEF

Queue data structure

Queues

A queue is a list of elements which supports the operations:
 Enqueue: Adds an element to the end of the list
e Dequeue: Removes an element from the front of the list

 Elements are extracted in first-in first-out (FIFO) order, I.e., elements are
picked in the order in which they were inserted.

e Contrast with LIFO (stacks)

BFS algorithm

Pseudocode

Given (undirected or directed) graph G = (V,E) and node s € V

BE
ark all vertices as unvisited;
Initialize search tree T to be empty

a—

Mark vertex s as visited
set 0 to beﬁe empty gqueue
enqueue(Q, s)
while Q is non- empty do
= dequeue(Q
for each vert@A)
if v 1s not visited then
add edge (u,v) to T
Mark v as visited and enqueue (V)

BFS algorithm

Pseudocode

Given (undirected or directed) graph G = (V, E) and node s € V

BFS(s):
Mark all vertices as unvisited;
Initialize search tree T to be empty
Mark vertex s as visited
set 0 to be the empty queue
enqueue(Q, s)
while () is non-empty do
u = dequeue(Q)
for each vertex v € Adj(u)
if v 1s not visited then
add edge (u,v) to T
Mark v as visited and enqueue (V)

Proposition

BFS(s) runs in O(n + m) time

BFS: An example in undirected graphs

T

A

BFS: An example in undirected graphs

ﬁ 1

A

Mark and enqueue 1

BFS: An example in undirected graphs

T

A
1

Dequeue 1

BFS: An example in undirected graphs

0
O NE
Z ©
©
© O 1
©

Mark and enqueue 2 and 3

BFS: An example in undirected graphs

O O 1 2

Dequeue 2

BFS: An example in undirected graphs

0
a 31495
0 ©
©
O O 2
©

Mark and enqueue 4 and 5

BFS: An example in undirected graphs

1 2 3

Dequeue 3

BFS: An example in undirected graphs

0
6 415|738
0 ©
o
O O 12 3
©

Mark and enqueue 7 and 8

BFS: An example in undirected graphs

O & 12 3 4

Dequeue 4

BFS: An example in undirected graphs

0 9 12 3 4 5

Dequeue 5

BFS: An example in undirected graphs

Mark and enqueue 6

12 3 4 5

BFS: An example in undirected graphs

Dequeue 7

12 3 45 7

BFS: An example in undirected graphs

Dequeue 8

12 3 45 7 8

BFS: An example in undirected graphs

Dequeue 6

BFS: An example in undirected graphs

O
O
(2, ©
e
0 9 12 3 45 7 8 6
&

BFS tree is the set of purple edges

BFS: An example in undirected graphs

O O 12 3 45 7 8 6
L, | (e

BFS tree is the set of purple edges

BFS: An example in directed graphs

BFS: An example in directed graphs

BFS: An example in directed graphs

(B) (A) (c) Qtl: |A

Q2: [BIC|F

BFS: An example in directed graphs

(B) (A) (c) Qtl: |A

Q2: [BIC|F

Q3: |C|F |E

a—v» O U
O——@

BFS: An example in directed graphs

G ° G Ql: |A
Q2: |B[C|F
Q3: |C|F |E
(E) (F) O
Q4: |F|E |D

BFS: An example in directed graphs

e 0 G Q1: |A
Q2: |B|C|F
Q3: |C|F |E
(E) (F) O
Q4: |F|E |D
e Q Q5: |ED|G

BFS: '
FS: An example in directed graphs

Q2:

e G Q Q3:

Q4:

e Q Q5:

G Q1:

mi| |7 (O] (W (B
Of |mj |mp O

W (T (M} [T

Q6:

Q1:

Q2:

Q3:

Q4:
Q5:

BFS: '
FS: An example in directed graphs

mi| |7 (O] (W (B
Of |mj |mp O

W (T (M} [T

Q6:

Q7: |G

Q8:
Q9:

BFS: '
FS: An example in directed graphs

Q1:

Q2:

Q3:

Q4:
Q5:

mi| |7 (O] (W (B
Of |mj |mp O

W (T (M} [T

Q6:

Q7: |G

Q8:
Q9:

BFS with distances

BFS(S): —
Mark all vertices as unvisited;(‘i:>

Initialize search tree T to be em ;::7 -

Mark vertex s as visited
T~

set 0 to be the empty queue
enqueue(s)
while () is non-empty do
u = dequeue(Q)
for each vertex v € Adj(u) do
if v 1s not visited do
add edge (u,v) to T
Mark LS ueue (V)

and :é.et dist(v) = dist(u) + 1

Properties of BFS
Undirected graphs

Theorem: The following properties hold upon termination of BFS(s)

o Search tree is the set of vertices in the connected component of s.

h— —

—

Properties of BFS

Undirected graphs

Theorem: The following properties hold upon termination of BFS(s)
o Search tree is the set of vertices in the connected component of s.

o If dist(u) < dist(v) then u is visited before v.

Properties of BFS

Undirected graphs

Theorem: The following properties hold upon termination of BFS(s)
o Search tree is the set of vertices in the connected component of s.
o If dist(u) < dist(v) then u is visited before v.

 For every vertex u, cjist(u) Is the length of a shortest path (in terms of
number of edges) from s to u. T B

—

—7

Properties of BFS

Undirected graphs

Theorem: The following properties hold upon termination of BFS(s)
o Search tree is the set of vertices in the connected component of s.
o If dist(u) < dist(v) then u is visited before v.

» For every vertex u, dist(u) is the length of a shortest path (in terms of
number of edges) from s to u.

e If u, v are in connected component of s and ¢ = {u, v} is an edge of G,

then | dist(u) — dist(v)| < 1D

Properties of BFS

Directed graphs

Theorem: The following properties hold upon termination of BFS(s)

e —

e Search tree contains exactly the set of ve@eachable frow S.

10

Properties of BFS

Directed graphs

Theorem: The following properties hold upon termination of BFS(s)
o Search tree contains exactly the set of vertices reachable from s.

o If dist(u) < dist(v) then u is visited before v.
—

10

Properties of BFS

Directed graphs

Theorem: The following properties hold upon termination of BFS(s)
o Search tree contains exactly the set of vertices reachable from s.
o If dist(u) < dist(v) then u is visited before v.

» For every vertex u, dist(u) is indeed the length of shortest path from s to u.

e

10

Properties of BFS

Directed graphs

Theorem: The following properties hold upon termination of BFS(s)
o Search tree contains exactly the set of vertices reachable from s.
o If dist(u) < dist(v) then u is visited before v.

» For every vertex u, dist(u«) is indeed the length of shortest path from s to u.

dist(v) < 1 + dlst(u)

o AR

\J L

o If u is reachable from s and ¢ = (u, v) is an edge of G, then 7@

10

BFS with layers

 BFS is a simple algorithm but proving its properties formally is not straight
forward

* Since BFS explores graph in increasing order of distance from source s, there

Is a simpler variant that makes BFS exploration transparent and easier to
understand.

» Given G and s € V, define L. = {v | dist(s,v) = i}.

« Then L, = {s5}£

11

BFS with layers

 BFS is a simple algorithm but proving its properties formally is not straight
forward

* Since BFS explores graph in increasing order of distance from source s, there

Is a simpler variant that makes BFS exploration transparent and easier to
understand.

» Given G and s € V, define L. = {v | dist(s,v) = i}.
° Then LO — {S}

» And L, can be found from L, | for k > 1 inductively.

11

BFS with layers

BFSLayers(s):
and initialize T to be empty

Mark all vertices as unvisite
Mark s as visited and s
1 =0

while L, is not empty do
_’///? initialize L, ; to be an empty list

N——
for each u in L, do

for each edge (u,v) € Adj(u) do
1f v 1is not visited

mark v as visited
add (#,v) to tree T
add v to L,

12

BFS with layers

BFSLayers(s):
Mark all vertices as unvisited and initialize T to be empty
Mark s as visited and set L= {s}
1 =0
while L, is not empty do
initialize L, ; to be an empty list
for each u in L, do
for each edge (u,v) € Adj(u) do
1f v 1is not visited
mark v as visited
add (#,v) to tree T
add v to L,
=1+ 1

Running time: O(n + m)

12

BFS with layers

Example - undirected

 Layer O: 1

e |Layer1:2,3 /@\
L
e Layer?2:4,5, 7,8 2

+ Layer 3: 6 ©
]

13

BFS with layers: undirected graph

Properties
« BFSLayers(s) outputs a BFS tree

o L. is the set of vertices at
distance exactly i from s.

 If G is undirected, each edge
e = {u, v} is one of three types:

14

BFS with layers: undirected graph

Properties

« BFSLayers(s) outputs a BFS tree

o L. is the set of vertices at
distance exactly 1 from s.

 If G is undirected, each edge
e = {u, v} is one of three types:

* tree edge between two
consecutive layers

14

BFS with layers: undirected graph

Properties
N\ 4
« BFSLayers(s) outputs a BFS tree * non-tree forward/backward
edge between two
o L. is the set of vertices at consecutive layers

distance exactly 1 from s.

 If G is undirected, each edge
e = {u, v} is one of three types:

* tree edge between two
consecutive layers

14

non—tred

BFS with layers: undirected graph who-lager

Properties 7‘1 edge -
\L :
« BFSLayers(s) outputs a BFS tree * non-tree forward/backward
edge between two
o L. is the set of vertices at consecutive layers

distance exactly 1 from s. .
y * non-tree cross-edge with

. If G is undirected, each edge both u, v in same layer

_ - . I
e = {u, v} is one of three types: Lo (et

* tree edge between two
consecutive layers

14

BFS with layers: undirected graph

Properties
« BFSLayers(s) outputs a BFS tree * non-tree forward/backward
edge between two
o L. is the set of vertices at consecutive layers

distance exactly 1 from s. .
y * non-tree cross-edge with

« If G is undirected, each edge both u, v in same layer
e = {u, v} is one of three types:

 Every edge in the graph is
either between two vertices
that are either (i) in the_same
layer, or (il) in two consecutive
layers! o

-

* tree edge between two
consecutive layers

14

BFS with layers

Example - directed

 Layer?2:E, G, D
 |Layer 3. H

15

BFS with layers: directed graph

Properties

Proposition: The following properties hold on termination of BFS(s) if G is
directed.

e Each edge ¢ = {u, v} is one of four types:

« A tree edge between consecutive layers, u € L;, v € L, , for some
1 >0

W@%{L- A non-tree forward edge between consecutive layers

g

* A non-tree backward edge

16

BFS with layers: directed graph

Properties

Proposition: The following properties hold on termination of BFS(s) if G is
directed.

e Each edge ¢ = {u, v} is one of four types:

« A tree edge between consecutive layers, u € L;, v € L, , for some
1 >0

* A non-tree forward edge between consecutive layers

* A non-tree backward edge

e A cross-edge with both u, v in same layer

16

ek WK
Shortest path problems | .c /) o oS -

Description S V:;jdi'f M\ (oS = 1 MD
7 A N

Given graph G = (V, E) with associated edge lengths (or costs), denote for an
edge ¢ =@1e quantity /(e¢) = [(uv) as its length or cost.

Shortest path problems

Description

Given graph G = (V, E) with associated edge lengths (or costs), denote for an
edge ¢ = uv the quantity /(e) = [(uv) as its length or cost.

e Given nodes s, 1 find shortest path (in terms of summed lengths/costs) from

stor. (SSPP? w\gle NV Z oulest
2 poThZ
» Given no@nd shortest path from s to all other nodes (SSSP)

e

[

17

Shortest path problems

Description

Given graph G = (V, E) with associated edge lengths (or costs), denote for an
edge ¢ = uv the quantity /(e) = [(uv) as its length or cost.

e Given nodes s, 1 find shortest path (in terms of summed lengths/costs) from
stor. ($SPP)

e Given node s find shortest path from s to all other nodes (SSSP)

* Find shortest paths between all pairs of nodes (APSP)

——

17

Shortest walks vs. paths

» A path is a sequence of distinct vertices v, v,, ..., v, such that (v,,v,.) € E
forl <i<k-—1.
oMM

- A pafhis a sequence of vertices v, v,, ..., v, such that (v, v;, ;) € E for
1 <i<k-1.

18

Shortest walks vs. paths

« A path is a sequence of distinct vertices v, v,, ..., v, such that (vl-, V; +1) ek
for] <i<k-—1.
wa |
« A patTis a sequence of vertices vy, v,, ..., V, such that (vl-, vl-+1) e E for
1 <i<k-1.

 Finding walks is often easier than finding paths (concatenating two walks

gives a

E—

walk, while concatenating two paths may not give a path).

18

Shortest walks vs. paths

« A path is a sequence of distinct vertices v, v,, ..., v, such that (vl-, V; +1) ek
for] <i<k-—1.

« A pa# is a sequence of vertices vy, v,, ..., V, such that (vl-, vl-+1) e E for
1 <i<k-1.

* Finding walks is often easier than finding paths (concatenating two walks
gives a walk, while concatenating two paths may not give a path).

* For edges with non-negative weights/lengths, finding the shortest walk is the
same as finding the shortest s — 7 path.

18

)

Single-source shortest paths B 11*’} V@& (
Assumption: non-negative edge Ieng;chs ‘L é
)
V

Single-source shortest path problems (SSSPs)

. A (undirected or directed) graph G = (V, E) with non-negative edge
lengths. For edge ¢ = (u, v), [(e) = [(u, v) is its length.

19

Single-source shortest paths

Assumption: nhon-negative edge lengths

Single-source shortest path problems (SSSPs)

. A (undirected or directed) graph G = (V, E) with non-negative edge
lengths. For edge ¢ = (u, v), l(e) =@t, V) is its length.

 Given nodes s, f find shortest path from s to 7.

19

Single-source shortest paths

Assumption: nhon-negative edge lengths

Single-source shortest path problems (SSSPs)

. A (undirected or directed) graph G = (V, E) with non-negative edge
lengths. For edge ¢ = (u, v), [(e) = [(u, v) is its length.

 Given nodes s, f find shortest path from s to 7.

* Given node s find shortest path from s to all other nodes.

19

AVCD AREE weel

Single-source shortest paths Rellnew. - Fords
Assumption: nhon-negative edge lengths ﬂ%& ~ Wonelad .-
Single-source shortest path problems (SSSPs)

. A (undirected or directed) graph G = (V, E) with non-negative edge

lengths. For edge ¢ = (u, v), [(e) = [(u, v) is its length.
» Given nodes s, find shortest path from sto 7. <.

» Given node s find shortest path from s to all other nodes. Z — D&S 5 Ks&wu‘g
» Restrict attention to directed graphs ojgovu& ~ ¢

=

19

Single-source shortest paths

Assumption: nhon-negative edge lengths

* Undirected graph problem can be reduced to directed graph problem -
how?

« Given undirected graph G, create a new directed graph G’ by replacing
each en G by (u,v)yand (v,u) in G'.
21 —1

20

Single-source shortest paths

Assumption: nhon-negative edge lengths

* Undirected graph problem can be reduced to directed graph problem -
how?

« Given undirected graph G, create a new directed graph G’ by replacing
each edge {u,v} in Gby (u,v)and (v,u) in G".

e setl(u,v) = l(v,u) = I({u,v})

20

Single-source shortest paths

Assumption: non-negative edge lengths

&—

* Undirected graph problem can be reduced to directed graph problem -
how?

« Given undirected graph G, create a new directed graph G’ by replacing
each edge {u,v} in Gby (u,v)and (v,u) in G".

e setl(u,v) = l(v,u) = I({u,v})

e Exercise: show reduction works.

20

WA

&

AN

> Z e 7,
;/i Shortest path in the weighted 5
" case using BFS

N
ST TS e TN\

Single-source shortest paths via BFS

» Special case: All edge Ien@ y L-edge W%VEDMZ% fl(ﬂ’li,a

 Run BFS(s) to get shortest path distances from s to all other nodes.

 O(m + n) time algorithm.

Single-source shortest paths via BFS

* Special case: All edge lengths are 1.
 Run BFS(s) to get shortest path distances from s to all other nodes.

 O(m + n) time algorithm.

» Special case: Suppose [(¢) is an integer for all ¢? Can we use BFS? Reduce

to Lﬂ]lt egge-length problem by pIaC|nng£e) ijl dummy nodes 0

22

Single-source shortest paths via BFS

* Special case: All edge lengths are 1.
 Run BFS(s) to get shortest path distances from s to all other nodes.

. D@+ n) time algorithm.

» Special case: Suppose [(¢) is an integer for all ¢? Can we use BFS? Reduce

to unit edge-length problem by placing /(¢) — 1 dummy nodes on e.

e Let L =fn_éxel(%. New graph has O(mL) edges and O(mL + n) nodes. BFS
takes O(mL + n) time. Not efficient if L is large.

(- :

Example of edge refinement

Example of edge refinement

Example of edge refinement

You can not shortcut a shortest path

Lemma (... also goes by Bellman’s principle of optimality)

Let G be a directed graph with non-negative edge lengths. Suppose that
pZVO_:'Vl_)Vz_)...—)Vk

s the shortest path from v, to v;.

26

You can not shortcut a shortest path

Lemma (... also goes by Bellman’s principle of optimality)
A podl~
7?\0/\/\2/

Let G be a directed graph with non-negative edge lengths. Suppose that

1
s the shortest path from v, to v;.

/ 2 Thenforany 0 <i < j <k we have that
&

is the shortest path frcn@

26

e
ictur
1IC
fbyp

00

pr

A

V7

th
a
rtest p

0

Sh

Vs \

V3

V10
O

Vo {

m

fro

27

V10

A proof by picture

Shorter path
from v, to vy

S:VO

Vg

V7

\ Shortest path

from VO {o Vlo

28

A proof by picture

A shorter path from vy, to vy.
A contradiction

@
Vv
O 10

Vg

V7

N
> \ Shortest path
V3

from VO {o Vlo

29

What we really need...

Stated in terms of distance

Let G be a directed graph with non-negative edge lengths and let dist(s, v)
denote the length of the shortest path from s to V.

30

What we really need... N
Stated in terms of distance f6r

Let G be a directed graph with neh-negative edge lengths and let dist(s, v)
denote the length/0f the shortest path from s to V. =

Ifs =% 2> vi—=>v, > ... 2>V

is the shortest path from s = v, to v, then forany 0 < i < j < k we have that

30

What we really need...

Stated in terms of distance

Let G be a directed graph with non-negative edge lengths and let dist(s, v)
denote the length of the shortest path from s to V.

IfS:VO_>V1 _)Vz_ﬂ... _)Vk
e———f— = J
s the shortest path from s = v, to v, then for any 0 < i <7 < k we have that

T

S =Vy— VvV, = V... — V.is shortest path from s to v: and

dist(s, v;) < dist(s, v}

30

Find the ;" closest vertex
A basic strategy

Explore vertices in increasing order of distance from s: (For simplicity, assume
that nodes are at different distances from s and that no edge has zero length)

31

Find the ;" closest vertex
A basic strategy W Mweﬂé’ﬂ

Explore vertices in increasing order of distance from s: (For simplicity, assume
that nodes are at different distances from s and that no edge has zero length)

Initialize each node v, dis#®,v) = oo

o |V| do

Initialize
for 1 =

Among nodes in V\X, find the node v that is the
i closest to s
Update dist(s,Vv)

X=XU{v}

31

Find the ;" closest vertex
A basic strategy

Explore vertices in increasing order of distance from s: (For simplicity, assume
that nodes are at different distances from s and that no edge has zero length)

Initialize for each node v, dist(s,v) = o0
Initialize X = {s},
for i=2 to |V| do

Among nodes in V\X, find the node v that is the

i closest to s

Update dist(s,Vv)
X=XU{v}

How can we implement the step in the for loop?

31

Finding the i"* closest node

What we have ...

@ontains the i — | closest nodes to s

. Want to find the i closest node from V\ X.

What do we know about the i’ closest node?

Claim: Let P be a shortest path from s to v where v is the i closest node.
Then, all intermediate nodes in /° belong to X.

Proof: If /° had an intermediate node 1z not in X then u will be closer to s than v.

Implies v is not the i""closest node to s - recall that X already hasthe i — 1
closest nodes!

32

Finding the i"* closest node

B -
(O - (0
9
A « :
e ()@
30 11
‘ 19
13 8 20 6
D 46

o . O

E H

Finding the i"* closest node

B F
(> ~ ()
4’ \
Viraa'e 6 Ok
30 11
‘ 19
13 8 20 o
D 46

o . O

E H

Finding the i"* closest node

B F

ﬂ' ', G

AN
13 38 20 ‘

D 45

(_ 25

E

Finding the i"* closest node

B ' F
SO T N
@ /AN
X 6 ,G(30 11 ‘ ;
13 38 20 ‘ 19 6
D 16

o . O

E H

Finding the i"* closest node

Finding the i"”* closest node
tree w dy

Finding the i"* closest node

A
. ’ /s
13 ——()

25
E H

Finding the i"* closest node

© = cowevdk w
Algorithm A \l, Aol ae vat ws K

Initialize for each node v: dist(s,v) = o \Q@\‘MU’\QJ \(>C
Initialize X=g, d(s,s) =0
for i=1 to |V| do

Let v be such that d'(s,v) = min d'(s, u)
ueV\X

dist(s,v) = d'(s,v)

X=XU{v} -
for each node
d'(s,u) = min(dist(s, ¢) + I(t, u))
reX

34

Algorithm

Initialize for each node v: dist(s,v) = o0
Initialize X =g, = ()
for i=1 to |V

Let v be such that d'(s,v) = min d'(s, u)

cV\X
dist(s,v) = d'(s, v) /b

X=XU{v}
for each node u in V—X do

d'(s,u) = min(dist(s, ¢) + I(t, u))
reX

Running time: O(n . (n + m)) time

34

Algorithm

Initialize for each node v: dist(s,v) = o0
Initialize X=@, d(s,s)=0
for i=1 to |V| do

Let v be such that d'(s,v) = min d'(s, u)
ueV\X

dist(s,v) = d'(s,v)
X=XU{v}
for each node u in V—X do

d'(s,u) = min(dist(s, ¢) + I(t, u))
reX

Running time: O(n . (n + m)) time

There are n outer iterations. In each iteration, d'(s, i) for each 1« by scanning all
edges out of nodes in X; O(m + n) time/iteration

S

34

Dijkstra’s algorithm

Dijkstra's Algorithm finds the shortest path between a given node
(called the source node) and all other nodes in a non-negatively

edge-weighted graph.

This algorithm was created by Dr. Edsger W. Dijkstra, a Dutch
computer scientist and software engineer, “in about 20 minutes”.

What'’s the shortest way to travel from Rotterdam to Groningen? It is the algorithm for the shortest path, which
[designed in about 20 minutes. One morning I was shopping in Amsterdam with my young fiancée, and tired,
we sat down on the café terrace to drink a cup of coffee and I was just thinking about whether I could do this,
and I then designed the algorithm for the shortest path. As I said, it was a 20-minute invention. In fact, it was

published in 1959, three years later.

https://doi.org/10.1145/1787234.1787249

lelelele 'ERSITY OF

ILLINOIS

Dijkstra’s algorithm

Dijkstra’s algorithm

Key point: We keep distance estimates from source node to every
other node, and keep updating estimates until nodes are “settled”.

UNIVERSITY OF
1L ILLINOIS
UEKEAMAE THAMPFA 2

Dijkstra’s algorithm

Key point: We keep distance estimates from source node to every
other node, and keep updating estimates until nodes are “settled”.

Distance Previous
estimate node

0

m W O m O > O»

UNIVERSITY OF
1L ILLINOIS
UEKEAMAE THAMPFA 2

Dijkstra’s algorithm

Key point: We keep distance estimates from source node to every
other node, and keep updating estimates until nodes are “settled”.

Distance Previous
estimate node

0

o O M1 O >» O

E

Settled = | Unexplored =[S, A, C,F D, B, E]

UNIVERSITY OF
1L ILLINOIS
UEKEAMAE THAMPFA 2

Dijkstra’s algorithm

Settled = | Unexplored =[S, A, C,F D, B, E]

Initialization step

Dijkstra’s algorithm

e Set distance to source node = 0.

Distance Previous
estimate node

Settled = | Unexplored =[S, A, C,F D, B, E]

Initialization step 1L ILLINOIS

Dijkstra’s algorithm

e Set distance to source node = 0.

Distance Previous
estimate node

S 0

Settled = | Unexplored =[S, A, C,F D, B, E]

Initialization step 1L ILLINOIS

Dijkstra’s algorithm

e Set distance to source node = 0.

* Distances to all other nodes from source node are currently unknown,

therefore o .
Distance Previous
“

S 0

Settled = | Unexplored =[S, A, C,F D, B, E]

Initialization step 1L ILLINOIS

Dijkstra’s algorithm

e Set distance to source node = 0.

* Distances to all other nodes from source node are currently unknown,

therefore o .
Distance Previous
“

S 0
A oo
C o0
F oo
D o0
B oo
E o0

Settled = | Unexplored =[S, A, C,F D, B, E]

Initialization step 1L ILLINOIS

Dijkstra’s algorithm

Settled = | Unexplored =[S, A, C,F D, B, E]

Dijkstra’s algorithm

Distance Previous
estimate node

S 0
A o0
C 0o
F 0o
D 00
B o0
E 00

Settled = | Unexplored =[S, A, C,F D, B, E]

Iterative step - Begin Iter 1 1L ILLINOIS

Dijkstra’s algorithm

e Pick the unsettled node with the smallest known estimate from the
source node

Distance Previous
estimate node

S 0
A oo
C oo
F oo
D o0
B oo
E oo

Settled = | Unexplored =[S, A, C,F D, B, E]

Iterative step - Begin Iter 1 1L ILLINOIS

Dijkstra’s algorithm

e Pick the unsettled node with the smallest known estimate from the
source node

* The first time, it is the source node (S) itself.

Distance Previous
estimate node

S 0
A oo
C oo
F oo
D oo
B oo
E oo

Settled = | Unexplored =[S, A, C,F D, B, E]

Iterative step - Begin Iter 1 1L ILLINOIS

Dijkstra’s algorithm

* For the current node, examine its unexplored neighbors

Distance Previous
estimate node

S 0
A o0
C 0o
F 0o
D 00
B o0
E o0

Settled = | Unexplored =[S, A, C,F D, B, E]

Iterative step - Begin Iter 1 1L ILLINOIS

Dijkstra’s algorithm

* For the current node, examine its unexplored neighbors

 Current node — S; unexplored neighbors — {A, C & F}

Distance Previous
estimate node

S 0
A oo
C oo
F oo
D oo
B oo
E oo

Settled = | Unexplored =[S, A, C,F D, B, E]

Iterative step - Begin Iter 1 1L ILLINOIS

Dijkstra’s algorithm

Settled = |

Dijkstra’s algorithm

* For the current node, calculate the distance of each unsettled neighbor
from the source node via current node.

Distance Previous
estimate node

S 0
A oo
C oo
F oo
D oo
B oo
E oo

Settled = | Unexplored =[S, A, C,F D, B, E]

Iterative step - Iter 1 1L ILLINOIS

Dijkstra’s algorithm

* For the current node, calculate the distance of each unsettled neighbor
from the source node via current node.

Distance Previous
estimate node

S 0
A oo
C oo
F oo
D oo
B oo
E oo

Settled = | Unexplored =[S, A, C,F D, B, E]

Iterative step - Iter 1 1L ILLINOIS

Dijkstra’s algorithm

* For the current node, calculate the distance of each unsettled neighbor
from the source node via current node.

e |f the calculated distance of a node is less than or equal to distance

estimate, update the estimate & previous node.
Distance Previous
“

S 0
A o0
C 0o
F 0o
D o0
B o0
E o0

Settled = | Unexplored =[S, A, C,F D, B, E]

Iterative step - Iter 1 1L ILLINOIS

Dijkstra’s algorithm

* For the current node, calculate the distance of each unsettled neighbor
from the source node via current node.

e |f the calculated distance of a node is less than or equal to distance

estimate, update the estimate & previous node.
Distance Previous
“

S 0
A 3 S
C 2 S
F 6 S
D oo
B oo
E oo

Settled = | Unexplored =[S, A, C,F D, B, E]

Iterative step - Iter 1 1L ILLINOIS

Dijkstra’s algorithm

Settled = | Unexplored =[S, A, C,F D, B, E]

Dijkstra’s algorithm

e Add the current node to the list of settled nodes

Distance Previous
estimate node

S 0
A 3 S
C 2 S
F 6 S
D 00
B o0
E o0
Settled = | Unexplored =[S, A, C,F D, B, E]

UNIVERSITY OF
E ILLINOIS
UEKAMA THAMPAI 25

Dijkstra’s algorithm

e Add the current node to the list of settled nodes

Distance Previous
estimate node

S 0
A 3 S
C 2 S
F 6 S
D 00
B 0o
E 00
Settled =[] Unexplored = [A, C, F, D, B, E]

UNIVERSITY OF
E ILLINOIS
UEKAMA THAMPAI 25

Dijkstra’s algorithm

e Add the current node to the list of settled nodes

Distance Previous
estimate node

S 0
A 3 S
C 2 S
F 6 S
D 00
B 0o
E 00
Settled = [S] Unexplored = [A, C, F, D, B, E]

UNIVERSITY OF
E ILLINOIS
UEKAMA THAMPAI 25

Dijkstra’s algorithm

e Add the current node to the list of settled nodes

Distance Previous
estimate node

S 0
A 3 S
C 2 S
F 6 S
D 00
B 0o
E 00
Settled = [S] Unexplored = [A, C, F, D, B, E]

Iterative step - End Iter 1 1L ILLINOIS

Dijkstra’s algorithm

S
A
C
F
D
B
E
E

Settled =[S] Unexplored = [A, C, F, D, B,

]

Dijkstra’s algorithm

Distance Previous
estimate node

S 0
A 3 S
C 2 S
F 6 S
D 00
B 0o
E 0o
Settled =[S] Unexplored = [A, C, F, D, B, E]

Iterative step - Begin Iter 2 1L ILLINOIS

Dijkstra’s algorithm

e Pick the unsettled node with the smallest known distance from the
source node

Distance Previous
estimate node

S 0
A 3 S
C 2 S
F 6 S
D o0
B oo
E oo

Settled =[S] Unexplored = [A, C, F, D, B, E]

Iterative step - Begin Iter 2 1L ILLINOIS

Dijkstra’s algorithm

e Pick the unsettled node with the smallest known distance from the
source node

* This time, it is node (C).

Distance Previous
estimate node

S 0
A 3 S
C 2 S
F 6 S
D o0
B oo
E oo

Settled =[S] Unexplored = [A, C, F, D, B, E]

Iterative step - Begin Iter 2 1L ILLINOIS

Dijkstra’s algorithm

* For the current node, examine its unexplored neighbors

Distance Previous
estimate node

S 0
A 3 S
C 2 S
F 6 S
D 00
B 0o
E 00
Settled =[S] Unexplored = [A, C, F, D, B, E]

Iterative step - Begin Iter 2 1L ILLINOIS

Dijkstra’s algorithm

* For the current node, examine its unexplored neighbors

* Current node — C; unexplored neighbors — {A & D}

Distance Previous
estimate node

S 0
A 3 S
C 2 S
F 6 S
D oo
B oo
E oo

Settled =[S] Unexplored = [A, C, F, D, B, E]

Iterative step - Begin Iter 2 1L ILLINOIS

Dijkstra’s algorithm

Distance
estimate node
0
3 S
2 S
6 S
E 0o
Settled =[S] Unexplored = [A, C, F, D, B, E]

Iterative step - Iter 2 1L ILLINOIS

Dijkstra’s algorithm

* For the current node, calculate the distance of each unsettled neighbor
from the source node via current node.

Distance Previous
estimate node

S 0
A 3 S
C 2 S
F 6 S
D 00
B 0o
E 00
Settled =[S] Unexplored = [A, C, F, D, B, E]

Iterative step - Iter 2 1L ILLINOIS

Dijkstra’s algorithm

* For the current node, calculate the distance of each unsettled neighbor
from the source node via current node.

Distance Previous
estimate node

S 0
A 3 S
C 2 S
F 6 S
D 00
B 0o
E 00
Settled =[S] Unexplored = [A, C, F, D, B, E]

Iterative step - Iter 2 1L ILLINOIS

Dijkstra’s algorithm

* For the current node, calculate the distance of each unsettled neighbor
from the source node via current node.

e |f the calculated distance of a node is less than or equal to distance

estimate, update the estimate & previous node.
Distance Previous
“

S 0
A 3 S
C 2 S
F 6 S
D 00
B 0o
E 00
Settled =[S] Unexplored = [A, C, F, D, B, E]

Iterative step - Iter 2 1L ILLINOIS

Dijkstra’s algorithm

* For the current node, calculate the distance of each unsettled neighbor
from the source node via current node.

e |f the calculated distance of a node is less than or equal to distance

estimate, update the estimate & previous node.
Distance Previous
“

S 0
A 3 S
C 2 S
F 6 S
D 3| C
B 0o
E 00
Settled =[S] Unexplored = [A, C, F, D, B, E]

Iterative step - Iter 2 1L ILLINOIS

Dijkstra’s algorithm

m.
8 8 U o N w O B
Q

S
A
C
=
D
B
E
E

Settled =[S, | Unexplored = [A, C, F, D, B, E]

Dijkstra’s algorithm

e Add the current node to the list of settled nodes

Distance

estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 5 C
B 0o
E 00
Settled =[S, | Unexplored = [A, C, F, D, B, E]

UNIVERSITY OF
E ILLINOIS
UEKAMA THAMPAI 25

Dijkstra’s algorithm

e Add the current node to the list of settled nodes

Distance

estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 5 C
B oo
E oo

Settled =[S, | Unexplored = [A, F, D, B, E]

UNIVERSITY OF
E ILLINOIS
UEKAMA THAMPAI 25

Dijkstra’s algorithm

e Add the current node to the list of settled nodes

Distance

estimate

Previous
node

S 0
A 3 S
C 2 S
F 6 S
D 5 C
B oo
E oo

Settled =[S, C] Unexplored = [A, F, D, B, E]

UNIVERSITY OF
E ILLINOIS
UEKAMA THAMPAI 25

Dijkstra’s algorithm

e Add the current node to the list of settled nodes

estimate node
S 0
A 3 S
C 2 S
F 6 S
D S C
B 00
E oo

Settled =[S, C] Unexplored = [A, F, D, B, E]

Iterative step - End Iter 2 1L ILLINOIS

Dijkstra’s algorithm

Distance Previous
estimate node

S 0
A 3 S
C 2 S
F 6 S
D 5 C
B oo
E oo

Settled =[S, C] Unexplored = [A, F, D, B, E]

UNIVERSITY OF
E ILLINOIS
UEKAMA THAMPAI 25

Dijkstra’s algorithm

Distance Previous
estimate node

S 0
A 3 S
C 2 S
F 6 S
D 5 C
B oo
E oo

Settled =[S, C] Unexplored = [A, F, D, B, E]

Iterative step - Begin Iter 3 1L ILLINOIS

Dijkstra’s algorithm

e Pick the unsettled node with the smallest known distance from the
source node

Distance Previous
estimate node

S 0
A 3 S
C 2 S
F 6 S
D 5 C
B oo
E oo

Settled =[S, C] Unexplored = [A, F, D, B, E]

Iterative step - Begin Iter 3 1L ILLINOIS

Dijkstra’s algorithm

e Pick the unsettled node with the smallest known distance from the
source node

* This time, it is node (A).

Distance Previous
estimate node

o O N W O
OO O »w W

m W O m O X» O

Settled =[S, C] Unexplored = [A, F, D, B, E]

Iterative step - Begin Iter 3 1L ILLINOIS

Dijkstra’s algorithm

* For the current node, examine its unexplored neighbors

Distance Previous
estimate node

S 0
A 3 S
C 2 S
F 6 S
D 5 C
B oo
E oo

Settled =[S, C] Unexplored = [A, F, D, B, E]

Iterative step - Begin Iter 3 1L ILLINOIS

Dijkstra’s algorithm

* For the current node, examine its unexplored neighbors

* Current node — A; unexplored neighbors — {B & D}

Distance Previous
estimate node

S 0
A 3 S
C 2 S
F 6 S
D 5 C
B oo
E oo

Settled =[S, C] Unexplored = [A, F, D, B, E]

Iterative step - Begin Iter 3 1L ILLINOIS

Dijkstra’s algorithm

estimate node
S 0
A 3 S
C 2 S
F 6 S
D S C
B 00
E oo

Settled =[S, C] Unexplored = [A, F, D, B, E]

Iterative step - Iter 3 1L ILLINOIS

Dijkstra’s algorithm

* For the current node, calculate the distance of each unsettled neighbor
from the source node via current node.

Distance Previous
estimate node

o O N W O
OO O »w W

m W O m O » O

Settled =[S, C] Unexplored = [A, F, D, B, E]

Iterative step - Iter 3 1L ILLINOIS

Dijkstra’s algorithm

* For the current node, calculate the distance of each unsettled neighbor
from the source node via current node.

Distance Previous
estimate node

o O N W O
OO O »w W

m W O m O » O

Settled =[S, C] Unexplored = [A, F, D, B, E]

Iterative step - Iter 3 1L ILLINOIS

Dijkstra’s algorithm

* For the current node, calculate the distance of each unsettled neighbor
from the source node via current node.

e |f the calculated distance of a node is less than or equal to distance

estimate, update the estimate & previous node.
Distance Previous
“

o O N W O
OO O »w W

m W O m O » O

Settled =[S, C] Unexplored = [A, F, D, B, E]

Iterative step - Iter 3 1L ILLINOIS

Dijkstra’s algorithm

* For the current node, calculate the distance of each unsettled neighbor
from the source node via current node.

e |f the calculated distance of a node is less than or equal to distance

estimate, update the estimate & previous node.
Distance Previous
“

m W O m O » O
© A O N W O
> > OO 0N

Settled =[S, C] Unexplored = [A, F, D, B, E]

Iterative step - Iter 3 1L ILLINOIS

Dijkstra’s algorithm

estimate node

S 0

A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E oo

Settled =[S, C,] Unexplored=I[A,F D, B, E]

UNIVERSITY OF
E ILLINOIS
UEKAMA THAMPAI 25

Dijkstra’s algorithm

e Add the current node to the list of settled nodes

Distance

estimate

Previous
node

S 0

A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E oo

Settled =[S, C,] Unexplored=I[A,F D, B, E]

UNIVERSITY OF
E ILLINOIS
UEKAMA THAMPAI 25

Dijkstra’s algorithm

e Add the current node to the list of settled nodes

Distance

estimate

Previous
node

S 0

A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E oo

Settled=[S,C,] Unexplored=][F D, B, E]

UNIVERSITY OF
E ILLINOIS
UEKAMA THAMPAI 25

Dijkstra’s algorithm

e Add the current node to the list of settled nodes

Distance

estimate

Previous
node

S 0

A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E oo

Settled =[S, C,A] Unexplored=[F D, B, E]

UNIVERSITY OF
E ILLINOIS
UEKAMA THAMPAI 25

Dijkstra’s algorithm

e Add the current node to the list of settled nodes

Distance Previous
estimate node

S 0

A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E oo

Settled =[S, C,A] Unexplored=[F D, B, E]

Iterative step - End Iter 3 1L ILLINOIS

Dijkstra’s algorithm

estimate node

S 0

A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E oo

Settled =[S, C, A] Unexplored = [F, D, B, E]

UNIVERSITY OF
E ILLINOIS
UEKAMA THAMPAI 25

Dijkstra’s algorithm

estimate node

S 0

A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E oo

Settled =[S, C, A] Unexplored = [F, D, B, E]

Iterative step - Begin Iter 4 1L ILLINOIS

Dijkstra’s algorithm

e Pick the unsettled node with the smallest known distance from the
source node

Distance Previous
estimate node

S 0

A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E oo

Settled =[S, C, A] Unexplored = [F, D, B, E]

Iterative step - Begin Iter 4 1L ILLINOIS

Dijkstra’s algorithm

e Pick the unsettled node with the smallest known distance from the
source node

* This time, it is node (D).

Distance Previous
estimate node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E o0
Settled =[S, C, A] Unexplored = [F, D, B, E]

Iterative step - Begin Iter 4 1L ILLINOIS

Dijkstra’s algorithm

* For the current node, examine its unexplored neighbors

Distance Previous
estimate node

S 0

A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E oo

Settled =[S, C, A] Unexplored = [F, D, B, E]

Iterative step - Begin Iter 4 1L ILLINOIS

Dijkstra’s algorithm

* For the current node, examine its unexplored neighbors

 Current node — D; unexplored neighbors — {E}

Distance Previous
estimate node

S 0

A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E oo

Settled =[S, C, A] Unexplored = [F, D, B, E]

Iterative step - Begin Iter 4 1L ILLINOIS

Dijkstra’s algorithm

pistance
estimate node
0
3 S
2 S
6 S
4 A
9 A
E o0
Settled =[S, C, A] Unexplored = [F, D, B, E]

Iterative step - Iter 4 1L ILLINOIS

Dijkstra’s algorithm

* For the current node, calculate the distance of each unsettled neighbor
from the source node.

Distance Previous
estimate node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E o0
Settled =[S, C, A] Unexplored = [F, D, B, E]

Iterative step - Iter 4 1L ILLINOIS

Dijkstra’s algorithm

* For the current node, calculate the distance of each unsettled neighbor
from the source node.

Distance Previous
estimate node

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E o0
Settled =[S, C, A] Unexplored = [F, D, B, E]

Iterative step - Iter 4 1L ILLINOIS

Dijkstra’s algorithm

* For the current node, calculate the distance of each unsettled neighbor
from the source node.

e |f the calculated distance of a node is less than or equal to distance

estimate, update the estimate & previous node.
Distance Previous
“

S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E o0
Settled =[S, C, A] Unexplored = [F, D, B, E]

Iterative step - Iter 4 1L ILLINOIS

Dijkstra’s algorithm

* For the current node, calculate the distance of each unsettled neighbor
from the source node.

e |f the calculated distance of a node is less than or equal to distance

estimate, update the estimate & previous node.
Distance Previous
“

S 0

A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D

Settled =[S, C, A] Unexplored = [F, D, B, E]

Iterative step - Iter 4 1L ILLINOIS

Dijkstra’s algorithm

S
A
C
F
D
B
E
E

Settled =[S, C, A,] Unexplored = [F, D, B,

]

Dijkstra’s algorithm

e Add the current node to the list of settled nodes

Distance

estimate

Previous
node

S 0

A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D

Settled =[S, C, A,] Unexplored = [F, D, B, E]

UNIVERSITY OF
E ILLINOIS
UEKAMA THAMPAI 25

Dijkstra’s algorithm

e Add the current node to the list of settled nodes

Distance

estimate

Previous
node

S 0

A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D

Settled =[S, C, A,] Unexplored = [F, B, E]

UNIVERSITY OF
E ILLINOIS
UEKAMA THAMPAI 25

Dijkstra’s algorithm

e Add the current node to the list of settled nodes

Distance

estimate

Previous
node

S 0

A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 D

Settled =[S, C, A, D] Unexplored = [F, B, E]

UNIVERSITY OF
E ILLINOIS
UEKAMA THAMPAI 25

Dijkstra’s algorithm

e Add the current node to the list of settled nodes

Distance

estimate

Previous
node

0

m W O m O = W
© ©O© N O MNw
O >» > »nW O W

Settled =[S, C, A, D] Unexplored = [F, B, E]

Iterative step - End lter 4 1L ILLINOIS

Dijkstra’s algorithm

Settled =[S, C, A,D] Unexplored = [F, B, E]

Dijkstra’s algorithm

“ Distance
estimate node

S 0

A 3 S

C 2 S

F 6 S

D 4 A

B 9 A

E 8 D
Settled=[S, C, A, D] Unexplored = [F, B, E]

Iterative step - Begin Iter 5 1L ILLINOIS

Dijkstra’s algorithm

e Pick the unsettled node with the smallest known distance from the
source node

Distance Previous
estimate node

0

m W O m O = W
0 ©O© ~ O Now
O »>» = »nw 0 W

Settled =[S, C, A,D] Unexplored = [F, B, E]

Iterative step - Begin Iter 5 1L ILLINOIS

Dijkstra’s algorithm

e Pick the unsettled node with the smallest known distance from the
source node

* This time, it is node (F).

Distance Previous
estimate node

m W O m O » W
0 ©O© &~ OO N oW O
O >» = 0w 0 u

Settled =[S, C, A,D] Unexplored = [F, B, E]

Iterative step - Begin Iter 5 1L ILLINOIS

Dijkstra’s algorithm

“ Distance
estimate node

S 0

A 3 S

C 2 S

F 6 S

D 4 A

B 9 A

E 8 D
Settled=[S, C, A, D] Unexplored = [F, B, E]

Iterative step - Begin Iter 5 1L ILLINOIS

Dijkstra’s algorithm

* For the current node, examine its unexplored neighbors

Distance Previous
estimate node

0

m W O m O = W
0 ©O© ~ O Now
O »>» = »nw 0 W

Settled =[S, C, A,D] Unexplored = [F, B, E]

Iterative step - Begin Iter 5 1L ILLINOIS

Dijkstra’s algorithm

* For the current node, examine its unexplored neighbors

 Current node — F; unexplored neighbors — {E}

Distance Previous
estimate node

0

m W O m O = W
0 ©O© ~ O Now
O »>» = »nw 0 W

Settled =[S, C, A,D] Unexplored = [F, B, E]

Iterative step - Begin Iter 5 1L ILLINOIS

Dijkstra’s algorithm

“ Distance
estimate node

S 0

A 3 S

C 2 S

F 6 S

D 4 A

B 9 A

E 8 D
Settled=[S, C, A, D] Unexplored = [F, B, E]

Iterative step - Iter 5 1L ILLINOIS

Dijkstra’s algorithm

* For the current node, calculate the distance of each unsettled neighbor

from the source node.

Settled =[S, C, A,D]

m W U = O ==

Unexplored = [F, B, E]

Ilterative step - Iter 5

Distance Previous
estimate node

0

o O = O N W

O >» = 0O 0O W

UNIVERSITY OF
E ILLINOIS
UEKAMA SHAMPAI 20

Dijkstra’s algorithm

* For the current node, calculate the distance of each unsettled neighbor

from the source node.

Settled =[S, C, A,D]

m W U = O ==

Unexplored = [F, B, E]

Ilterative step - Iter 5

Distance Previous
estimate node

0

o O = O N W

O >» = 0O 0O W

UNIVERSITY OF
1L ILLINOIS
Ul AN A LS S a5

Dijkstra’s algorithm

* For the current node, calculate the distance of each unsettled neighbor
from the source node.

e |f the calculated distance of a node is less than or equal to distance

estimate, update the estimate & previous node.
Distance Previous
“

m W U =n O *» W
0 ©O© &~ OO N oW O
O >» = 0w 0 u

Settled =[S, C, A,D] Unexplored = [F, B, E]

Iterative step - Iter 5 1L ILLINOIS

Dijkstra’s algorithm

* For the current node, calculate the distance of each unsettled neighbor
from the source node.

e |f the calculated distance of a node is less than or equal to distance

estimate, update the estimate & previous node.
Distance Previous
“

S 0

A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 DorF

Settled =[S, C, A,D] Unexplored = [F, B, E]

Iterative step - Iter 5 1L ILLINOIS

Dijkstra’s algorithm

B
S 0
A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 DorF

Settled =[S, C, A, D,] Unexplored = [F, B, E]

Dijkstra’s algorithm

e Add the current node to the list of settled nodes

Distance

estimate

Previous
node

S 0

A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 DorF

Settled =[S, C, A, D,] Unexplored = [F, B, E]

UNIVERSITY OF
E ILLINOIS
UEKAMA SHAMPAI 20

Dijkstra’s algorithm

e Add the current node to the list of settled nodes

Distance

estimate

Previous
node

S 0

A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 DorF

Settled =[S, C, A, D,] Unexplored = [B, E]

UNIVERSITY OF
E ILLINOIS
UEKAMA SHAMPAI 20

Dijkstra’s algorithm

e Add the current node to the list of settled nodes

Distance

estimate

Previous
node

S 0

A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 DorF

Settled =[S, C, A, D, F] Unexplored = [B, E]

UNIVERSITY OF
E ILLINOIS
UEKAMA SHAMPAI 20

Dijkstra’s algorithm

e Add the current node to the list of settled nodes

Distance Previous
estimate node

S 0

A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 DorF

Settled =[S, C, A, D, F] Unexplored = [B, E]

Iterative step - End lter 5 1L ILLINOIS

Dijkstra’s algorithm

Settled =[S, C, A, D, F|] Unexplored = [B, E]

Dijkstra’s algorithm

Distance Previous
estimate node

6
5 1 S 0

2 . 3 S 4 A 3 S
C 2 S
F 6 S

6 2

D 4 A
B 9 A
E 8 DorF

Settled =[S, C, A, D, F|] Unexplored = [B, E]

Iterative step - Begin Iter 6 1L ILLINOIS

Dijkstra’s algorithm

e Pick the unsettled node with the smallest known distance from the
source node

Distance Previous
estimate node

S 0

A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 DorF

Settled =[S, C, A, D, F|] Unexplored = [B, E]

Iterative step - Begin Iter 6 1L ILLINOIS

Dijkstra’s algorithm

e Pick the unsettled node with the smallest known distance from the
source node

* This time, it is node (E).

Distance Previous
estimate node

S 0

A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 DorF

Settled =[S, C, A, D, F|] Unexplored = [B, E]

Iterative step - Begin Iter 6 1L ILLINOIS

Dijkstra’s algorithm

* For the current node, examine its unexplored neighbors

Distance Previous
estimate node

S 0

A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 DorF

Settled =[S, C, A, D, F|] Unexplored = [B, E]

Iterative step - Begin Iter 6 1L ILLINOIS

Dijkstra’s algorithm

* For the current node, examine its unexplored neighbors

 Current node — E; unexplored neighbors — {}

Distance Previous
estimate node

S 0

A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 DorF

Settled =[S, C, A, D, F|] Unexplored = [B, E]

Iterative step - Begin Iter 6 1L ILLINOIS

Dijkstra’s algorithm

* For the current node, examine its unexplored neighbors
 Current node — E; unexplored neighbors — {}

e Add the current node to the list of settled nodes

Distance Previous
estimate node

S 0

A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 DorF

Settled =[S, C, A, D, F|] Unexplored = [B, E]

Iterative step - Begin Iter 6 1L ILLINOIS

Dijkstra’s algorithm

* For the current node, examine its unexplored neighbors
 Current node — E; unexplored neighbors — {}

e Add the current node to the list of settled nodes

Distance Previous
estimate node

S 0

A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 DorF

Settled =[S, C,A,D, F, E] Unexplored = [B]

UNIVERSITY OF
1L ILLINOIS
Ul AN A LS S a5

Dijkstra’s algorithm

* For the current node, examine its unexplored neighbors
 Current node — E; unexplored neighbors — {}

e Add the current node to the list of settled nodes

Distance Previous
estimate node

S 0

A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 DorF

Settled =[S, C,A,D, F, E] Unexplored = [B]

UNIVERSITY OF
1L ILLINOIS
Ul AN A LS S a5

Dijkstra’s algorithm

* For the current node, examine its unexplored neighbors
 Current node — E; unexplored neighbors — {}

e Add the current node to the list of settled nodes

Distance Previous
estimate node

S 0

A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 DorF

Settled =[S, C,A,D, F, E] Unexplored = [B]

Iterative step - End Iter 6 1L ILLINOIS

Dijkstra’s algorithm

Settled =[S, C,A,D, F, E] Unexplored = [B]

Dijkstra’s algorithm

estimate node

S 0

A 3 S

C 2 S

F 6 S

D 4 A

B 9 A

E 38 DorF

Settled =[S, C,A,D, F, E] Unexplored = [B]

Iterative step - Begin Iter 7 1L ILLINOIS

Dijkstra’s algorithm

e Pick the unsettled node with the smallest known distance from the
source node

S 0

A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 38 DorF

Settled =[S, C,A,D, F, E] Unexplored = [B]

Iterative step - Begin Iter 7 1L ILLINOIS

Dijkstra’s algorithm

e Pick the unsettled node with the smallest known distance from the
source node

* This time, it is node (B).

S 0

A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 38 DorF

Settled =[S, C,A,D, F, E] Unexplored = [B]

Iterative step - Begin Iter 7 1L ILLINOIS

Dijkstra’s algorithm

* For the current node, examine its unexplored neighbors

S 0

A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 38 DorF

Settled =[S, C,A,D, F, E] Unexplored = [B]

Iterative step - Begin Iter 7 1L ILLINOIS

Dijkstra’s algorithm

* For the current node, examine its unexplored neighbors

* Current node — B; unexplored neighbors — {}

Distance Previous
estimate node

S 0

A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 38 DorF

Settled =[S, C,A,D, F, E] Unexplored = [B]

Iterative step - Begin Iter 7 1L ILLINOIS

Dijkstra’s algorithm

* For the current node, examine its unexplored neighbors
 Current node — B; unexplored neighbors — {}

e Add the current node to the list of settled nodes

Distance Previous
estimate node

S 0

A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 38 DorF

Settled =[S, C,A,D, F, E] Unexplored = [B]

Iterative step - Begin Iter 7 1L ILLINOIS

Dijkstra’s algorithm

* For the current node, examine its unexplored neighbors
 Current node — B; unexplored neighbors — {}

e Add the current node to the list of settled nodes

Distance Previous
estimate node
1
1

S 0
2

2»& 3 4 . . . S
C 2 S
F 6 S

6 2

D 4 A
B 9 A
E 8 DorF

Settled=[S,C,A,D,FE,] Unexplored=|B]

UNIVERSITY OF
1L ILLINOIS
Ul AN A LS S a5

Dijkstra’s algorithm

* For the current node, examine its unexplored neighbors
 Current node — B; unexplored neighbors — {}

e Add the current node to the list of settled nodes

Distance Previous
estimate node
1
1

S 0
2

2»& 3 4 . . . S
C 2 S
F 6 S

6 2

D 4 A
B 9 A
E 8 DorF

Settled =[S, C,A,D,F,E,] Unexplored =[]

UNIVERSITY OF
1L ILLINOIS
Ul AN A LS S a5

Dijkstra’s algorithm

* For the current node, examine its unexplored neighbors
 Current node — B; unexplored neighbors — {}

e Add the current node to the list of settled nodes

Distance Previous
estimate node
1
1

S 0
2

2»& 3 4 . . . S
C 2 S
F 6 S

6 2

D 4 A
B 9 A
E 8 DorF

Settled =[S, C,A, D, F E,B] Unexplored =[]

UNIVERSITY OF
1L ILLINOIS
Ul AN A LS S a5

Dijkstra’s algorithm

* For the current node, examine its unexplored neighbors
 Current node — B; unexplored neighbors — {}

e Add the current node to the list of settled nodes

Distance Previous
estimate node
1
1

S 0
2

2»& 3 4 . . . S
C 2 S
F 6 S

6 2

D 4 A
B 9 A
E 8 DorF

Settled =[S, C,A, D, F E,B] Unexplored =[]

Iterative step - End Iter 7 1L ILLINOIS

Dijkstra’s algorithm

* For the current node, examine its unexplored neighbors
 Current node — B; unexplored neighbors — {}

e Add the current node to the list of settled nodes

Distance Previous
estimate node
1
1

S 0
4 > A 3 S
C 2 S
F 6 S
. . D 4 A
Algorithm terminates when all
nodes have been settled. B 9 A
E 38 DorF

/ S
Settled =[S, C, A, D, F, E,B] Unexplored =[]

Iterative step - End Iter 7 1L ILLINOIS

Dijkstra’s algorithm

Distance Previous
estimate node

S 0

A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 DorF

Settled =[S, C,A,D,F, E,B] Unexplored =[]

UNIVERSITY OF
1L ILLINOIS
UEKEAMAE THAMPFA 2

Dijkstra’s algorithm

 We have the distance from source node S to every other node

Distance Previous
estimate node

S 0

A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 DorF

Settled =[S, C,A,D,F, E,B] Unexplored =[]

UNIVERSITY OF
1L ILLINOIS
UEKEAMAE THAMPFA 2

Dijkstra’s algorithm

 We have the distance from source node S to every other node

* \We also have the path which achieves this distance!

Distance Previous
estimate node

S 0

A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 DorF

Settled =[S, C,A,D,F, E,B] Unexplored =[]

UNIVERSITY OF
E ILLINOIS
UEKAMA THAMPAI 25

Dijkstra’s pseudocode

Let the graph be G = (V, E, w). Denote:

Distance Previous
estimate node

S 0

A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 DorF

UNIVERSITY OF
1L ILLINOIS
UEKEAMAE THAMPFA 2

Dijkstra’s pseudocode

Let the graph be G = (V, E, w). Denote: Source vertex with s.

Distance Previous
estimate node

S 0

A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 DorF

UNIVERSITY OF
1L ILLINOIS
UEKEAMAE THAMPFA 2

Dijkstra’s pseudocode

Let the graph be G = (V, E, w). Denote: Source vertex with s.

Distance Previous
estimate node

S 0

A 3 S
C 2 S
F 6 S
D 4 A
B 9 A
E 8 DorF

Distance estimate with d(v)

UNIVERSITY OF
E ILLINOIS
UEKAMA THAMPAI 25

Dijkstra’s pseudocode

Let the graph be G = (V, E, w). Denote: Source vertex with s.

Distance Previous
estimate node

S 0

A 3 S

C 2 S

F 6 S

D 4 A

B 9 A

E 8 DorF
Settled =[...] Settled vertices with X Distance estimate with d(Vv)

UNIVERSITY OF
E ILLINOIS
UEKAMA THAMPAI 25

G = (V, E, w) with source vertex s, distance estimate d(v) and settled list X

Dijkstra’s pseudocode

Dijkstra(G, s)

UNIVERSITY OF
1L ILLINOIS
UEKEAMAE THAMPFA 2

G = (V, E, w) with source vertex s, distance estimate d(v) and settled list X

Dijkstra’s pseudocode

Dijkstra(G, s)

Initialization steps

UNIVERSITY OF
1L ILLINOIS
UEKEAMAE THAMPFA 2

G = (V, E, w) with source vertex s, distance estimate d(v) and settled list X

Dijkstra’s pseudocode

Dijkstra(G, s)
Initialization steps

e Yu e V\{s}setd(u) = o

UNIVERSITY OF
1L ILLINOIS
UEKEAMAE THAMPFA 2

G = (V, E, w) with source vertex s, distance estimate d(v) and settled list X

Dijkstra’s pseudocode

Dijkstra(G, s)

Initialization steps
e Yu e V\{s}setd(u) = o
e Setd(s) =0,X=1{}

UNIVERSITY OF
1L ILLINOIS
UEKEAMAE THAMPFA 2

G = (V, E, w) with source vertex s, distance estimate d(v) and settled list X

Dijkstra’s pseudocode

Dijkstra(G, s)

Initialization steps Ilterative steps
e Yu e V\{s}setd(u) = o
. Setd(s) =0,X = {}

UNIVERSITY OF
1L ILLINOIS
UEKEAMAE THAMPFA 2

G = (V, E, w) with source vertex s, distance estimate d(v) and settled list X

Dijkstra’s pseudocode

Dijkstra(G, s)

Initialization steps Ilterative steps
e Yu e V\{s}setd(u) = o While X £ V
e Setd(s) =0,X=1{}

UNIVERSITY OF
1L ILLINOIS
UEKEAMAE THAMPFA 2

G = (V, E, w) with source vertex s, distance estimate d(v) and settled list X

Dijkstra’s pseudocode

Dijkstra(G, s)

Initialization steps Ilterative steps

e Yu e V\{s}setd(u) = o While X £ V

e Setd(s)=0,X=1{} e Pick u = arg min d(x) over
x&X

UNIVERSITY OF
E ILLINOIS
VERAMNAN ErAMPA B

G = (V, E, w) with source vertex s, distance estimate d(v) and settled list X

Dijkstra’s pseudocode

Dijkstra(G, s)

Initialization steps Ilterative steps

e Yu e V\{s}setd(u) = o While X £ V

e Setd(s)=0,X=1{} e Pick u = arg min d(x) over
x&X

e V (u,v) € E such that
v & X do Update(u, v)

UNIVERSITY OF
E ILLINOIS
VERAMNAN ErAMPA B

G = (V, E, w) with source vertex s, distance estimate d(v) and settled list X

Dijkstra’s pseudocode

Dijkstra(G, s)

Initialization steps Ilterative steps

e Yu e V\{s}setd(u) = o While X £ V

e Setd(s)=0,X=1{} e Pick u = arg min d(x) over
x&X

e V (u,v) € E such that
v & X do Update(u, v)

e SetX=XU{u}

'''''' 'ERSITY OF

ILLINOIS

G = (V, E, w) with source vertex s, distance estimate d(v) and settled list X

Dijkstra’s pseudocode

Dijkstra(G, s)

Initialization steps Ilterative steps
e Yu e V\{s}setd(u) = o While X £ V
e Setd(s)=0,X=1{} e Pick u = arg min d(x) over
x&X
Update(u,v) « V (u,v) € E such that
e 1fd(v) > d(u) + w(u,v) v & X do Update(u, v)
.+ Setd(v) = d(u) + w(u,) * SetX = XU {u}

UNIVERSITY OF
E ILLINOIS
VERAMNAN ErAMPA B

G = (V, E, w) with source vertex s, distance estimate d(v) and settled list X

Dijkstra’s pseudocode

Diikstra(G, s) Key Observation
Initialization steps For each x € R, d(x) = 0(x)
e Yu e V\{s}setd(u) = o While X £ V
e Setd(s)=0,X=1{} e Pick u = arg min d(x) over
x&X
Update(u,v) « V (u,v) € E such that
e Ifd(v) > d(u) + w(u,v) v & X do Update(u, v)
.+ Setd(v) = d(u) + w(u,) * SetX = XU {u}

UNIVERSITY OF
1L ILLINOIS
UEKEAMAE THAMPFA 2

G = (V, E, w) with source vertex s, distance estimate d(v) and settled list X

Dijkstra’s - proof of validity

Proof: By induction on the size of X

UNIVERSITY OF
1L ILLINOIS
UEKEAMAE THAMPFA 2

G = (V, E, w) with source vertex s, distance estimate d(v) and settled list X

Dijkstra’s - proof of validity

Proof: By induction on the size of X

e Basecase: |X| =1

UNIVERSITY OF
1L ILLINOIS
UEKEAMAE THAMPFA 2

G = (V, E, w) with source vertex s, distance estimate d(v) and settled list X

Dijkstra’s - proof of validity

Proof: By induction on the size of X

e Basecase: |X| =1

By initialization, when | X| =1, X = {s} and d(s) = 0 = o(s)

UNIVERSITY OF
1L ILLINOIS
UEKEAMAE THAMPFA 2

G = (V, E, w) with source vertex s, distance estimate d(v) and settled list X

Dijkstra’s - proof of validity

Proof: By induction on the size of X

e Basecase: |X| =1

By initialization, when | X| =1, X = {s} and d(s) = 0 = o(s)

» Let u be a vertex just added to X and denote X = X' U {u}.

UNIVERSITY OF
E ILLINOIS
VERAMNAN ErAMPA B

G = (V, E, w) with source vertex s, distance estimate d(v) and settled list X

Dijkstra’s - proof of validity

Proof: By induction on the size of X

e Basecase: |X| =1

By initialization, when | X| =1, X = {s} and d(s) = 0 = o(s)
» Let u be a vertex just added to X and denote X = X' U {u}.

e This implies u = argmin d(v) over v € V\ X’

UNIVERSITY OF
E ILLINOIS
VERAMNAN ErAMPA B

G = (V, E, w) with source vertex s, distance estimate d(v) and settled list X

Dijkstra’s - proof of validity

Proof: By induction on the size of X

e Basecase: |X| =1

By initialization, when | X| =1, X = {s} and d(s) = 0 = o(s)
» Let u be a vertex just added to X and denote X = X' U {u}.
e This implies u = argmin d(v) over v € V\ X’

 Inductive hypothesis: Vx € X', d(x) = o6(x)

UNIVERSITY OF
E ILLINOIS
VERAMNAN ErAMPA B

G = (V, E, w) with source vertex s, distance estimate d(v) and settled list X

Dijkstra’s - proof of validity

Proof: By induction on the size of X

e Basecase: |X| =1

By initialization, when | X| =1, X = {s} and d(s) = 0 = o(s)
» Let u be a vertex just added to X and denote X = X' U {u}.
e This implies u = argmin d(v) over v € V\ X’

 Inductive hypothesis: Vx € X', d(x) = o6(x)

« Need to show: d(u) = o(u)

UNIVERSITY OF
E ILLINOIS
VERAMNAN ErAMPA B

Have u = argmin d(v) over v € V\X'. Need to show: d(u) = o(u).

Dijkstra’s - proof of validity

Proof:

Have u = argmin d(v) over v € V\X'. Need to show: d(u) = o(u).

Dijkstra’s - proof of validity

Proof:

Suppose dapathQ : s > u
such that,

Have u = argmin d(v) over v € V\X'. Need to show: d(u) = o(u).

Dijkstra’s - proof of validity

Proof:

Suppose dapathQ : s > u
such that,

o(u) = 1(Q) < d(u)

JL ILLINOIS

Have u = argmin d(v) over v € V\X'. Need to show: d(u) = o(u).

Dijkstra’s - proof of validity

Proof:

Suppose dapathQ : s > u
such that,

o(u) = 1(Q) < d(u)

Then QO must leave X' to get to u.

JL ILLINOIS

Have u = argmin d(v) over v € V\X'. Need to show: d(u) = o(u).

Dijkstra’s - proof of validity

Proof:

Suppose dapathQ : s > u
such that,

o(u) = 1(Q) < d(u)

Then QO must leave X' to get to u.

Let x-y be the edge by which O
leaves X' the first time and O,

the subpath of O until x.

JL ILLINOIS

Have u = argmin d(v) over v € V\X'. Need to show: d(u) = o(u).

Dijkstra’s - proof of validity

Proof:

Suppose dapathQ : s > u
such that,

o(u) = 1(Q) < d(u)

Then QO must leave X' to get to u.

Let x-y be the edge by which O
leaves X' the first time and O,

the subpath of O until x.

Q) +wlx,y) < I(Q)

JL ILLINOIS

Have u = argmin d(v) over v € V\R'. Need to show: d(u) = 6(u). Assumed o(u) = [(Q) < d(u).

Dijkstra’s - proof of validity

3

Q) +wlx,y) < I(Q)

Have u = argmin d(v) over v € V\R'. Need to show: d(u) = 6(u). Assumed o(u) = [(Q) < d(u).

Dijkstra’s - proof of validity

... by inductive hypothesis

d(x) < I(Q,)

3

Q) +wlx,y) < I(Q)

JL ILLINOIS

Have u = argmin d(v) over v € V\R'. Need to show: d(u) = 6(u). Assumed o(u) = [(Q) < d(u).

Dijkstra’s - proof of validity

... by inductive hypothesis

d(x) < I(Q,)

3

d(x) + w(x,y) < I(Q)

JL ILLINOIS

Have u = argmin d(v) over v € V\R'. Need to show: d(u) = 6(u). Assumed o(u) = [(Q) < d(u).

Dijkstra’s - proof of validity

... by inductive hypothesis
d(x) < I(Q))
Since (x,y) € Fandx € X’

3

d(x) + w(x,y) < I(Q)

JL ILLINOIS

Have u = argmin d(v) over v € V\R'. Need to show: d(u) = 6(u). Assumed o(u) = [(Q) < d(u).

Dijkstra’s - proof of validity

... by inductive hypothesis
d(x) < I(Q))
Since (x,y) € Fandx € X’

d(y) < d(x) + w(x, y) Y

d(x) + w(x,y) < I(Q)

JL ILLINOIS

Have u = argmin d(v) over v € V\R'. Need to show: d(u) = 6(u). Assumed o(u) = [(Q) < d(u).

Dijkstra’s - proof of validity

... by inductive hypothesis
d(x) < I(Q))
Since (x,y) € Fandx € X’

d(y) < d(x) + w(x, y) Y

d(y) < I(Q)

JL ILLINOIS

Have u = argmin d(v) over v € V\R'. Need to show: d(u) = 6(u). Assumed o(u) = [(Q) < d(u).

Dijkstra’s - proof of validity

... by inductive hypothesis
d(x) < I(Q))
Since (x,y) € Fandx € X’

d(y) < d(x) + w(x,y) Y
But 1 was picked via arg min d(v) “
over vertices not in X’

d(u) < d@y) d(y) < I(Q)

JL ILLINOIS

Have u = argmin d(v) over v € V\R'. Need to show: d(u) = 6(u). Assumed o(u) = [(Q) < d(u).

Dijkstra’s - proof of validity

... by inductive hypothesis
d(x) < I(Q))
Since (x,y) € Fandx € X’

d(y) < d(x) + w(x,y) Y
But 1 was picked via arg min d(v) “
over vertices not in X’

= d(w) < 1(Q)
u) =

JL ILLINOIS

Have u = argmin d(v) over v € V\R'. Need to show: d(u) = 6(u). Assumed o(u) = [(Q) < d(u).

Dijkstra’s - proof of validity

... by inductive hypothesis
d(x) < I(Q))
Since (x,y) € Fandx € X’

d(y) < d(x) + w(x,y) Y
But 1 was picked via arg min d(v) “
over vertices not in X’

d(u) < d(y)

Contradicts our assumption!

d(u) < I(Q)

JL ILLINOIS

Improved algorithm

» Main work is to compute the d’(s, 1) values in each iteration

» d'(s, u) changes from iteration i to i + | only because of the node v that is added to X in
iteration 1 (previous step)

Initialize for each node v: dist(s,v) =d'(s,v) = o©
Initialize X=@, d(s,s)=0
for i=1 to |V| do

Let v be node realizing d'(s,v) = min d'(s, u)
ueV\X

dist(s, v) = d'(s, v)

X=XU{v}

Update d'(s,u) for each u in V—X as follows:
d'(s,u) = mmn(d'(s, u), dist(s,v) + (v, u))

36

Improved algorithm

O(m+n?) time.

e 1 outer iterations and in each iteration following steps take place:

37

Improved algorithm

O(m+n?) time.

e 1 outer iterations and in each iteration following steps take place:

. updatir v is added takes O(deg(v)) time so total work is

O(m) since a node enters X at most once

=

37

Improved algorithm

O(m+n?) time.
e 1 outer iterations and in each iteration following steps take place:

» updating d'(s, u) after v is added takes O(deg(v)) time so total work is
O(m) since a node enters X at most once

» Finding v from d’(s, u) values takes O(n) time

A

37

Dijkstra’s Algorithm

 Eliminate d'(s, 1) and let dist(s, #) maintain it

e Update dist values after adding v by scanning edges out of v

Initialize for each node v: dist(s,v) =
Initialize X=@, d(s,s) =0
for i=1 to |V]| do

X=XU{v}
for each u in Adj(v) do
dist(s, #) = min(dist(s, u), dist(s,v) + (v, u))

Can use to maintain dist values for even faster running time

38

Dijkstra’s Algorithm

 Eliminate d'(s, 1) and let dist(s, #) maintain it

e Update dist values after adding v by scanning edges out of v

Initialize for each node v: dist(s,v) =
Initialize X=@, d(s,s) =0
for i=1 to |V]| do

X=XU{v}
for each u in Adj(v) do
dist(s, #) = min(dist(s, u), dist(s,v) + (v, u))

Can use to maintain dist values for even faster running time

. Usin%aps and standard priority queues: O((m + n)

Q>

38

Dijkstra’s Algorithm

 Eliminate d'(s, 1) and let dist(s, #) maintain it

e Update dist values after adding v by scanning edges out of v

Initialize for each node v: dist(s,v) =
Initialize X=@, d(s,s) =0
for i=1 to |V]| do

X=XU{v}
for each u in Adj(v) do
dist(s, #) = min(dist(s, u), dist(s,v) + (v, u))

Can use to maintain dist values for even faster running time

 Using heaps and standard priority queues: O((m + n) logn)

o Using Fibonacci heaps: O(m +y

Dijkstra using Priority Queues

Priority Queues

Data structure to store a set S of n elements where each element v € § has an
associated real/integer key k(v) alongwith that the following operations:

* makePQ: create an empty queue. » delete(): Remove element v from S.

e findMin: find the minimum key in S. . decreaseKey(v, k'(v)): decrease key

« extractMin: Remove v € § with of v from k(v) (current key) to k'(v)
smallest key and return it. }(n(e‘\}/\)/ ke3]’c(Sssumptlon

) ingert(v, k(v)): Add new element v meld: merge two separate priority
with key k(v) to S. qgueues At one.

All operations can be performed in O(log n) time - decreaseKey is implemented
via delete and insert. —

39

Dijkstra’s algorithm using priority queues

Q <« makePQ()
insert(Q, (s, 0))
for each node—

/ or each u in Adj(v) do 'é
i decreaseKey (Q, (u, min (dist(s, u), dist(s, v) + UV, 1))))

PQ operations: O(n) extractMin operations
« O(n) insert operations

« O(m) decreaseKey operations

40

Shortest Path Tree

Dijkstra’s alg. finds the shortest path distances from s to V.
Question: How do we find the paths themselves?

Q <« makePQ()

s, 0))

for each node u #s do

insert(Q, (u, o))
X<
for i=1 to |V| do
(v, dist(s, v)) = extractMin(Q)
X=XU{v}
for each u in Adj(v) do
if (dist(s,v)+ (v, u) < dist(s,u)) then

decreaseKey (0, (u, dist(s, u) + I(v, u)) >

— 41

Shortest Path Tree

Lemma: The edge set (i, prev(u)) is the reverse of a shortest path tree rooted a
s. For each u, the reverse of the path from u« to s in the tree is a shortest path fro

S 1O U.

Proof Sketch:

42

Shortest Path Tree

Lemma: The edge set (i, prev(u)) is the reverse of a shortest path tree rooted at
s. For each u, the reverse of the path from i to s in the tree is a shortest path from
s 10 u.

Proof Sketch:

» The edge set {(u, prev(u)) |u € V} induces a directed in-tree rooted at s
(Why?)

42

Shortest Path Tree

Lemma: The edge set (i, prev(u)) is the reverse of a shortest path tree rooted at
s. For each u, the reverse of the path from i to s in the tree is a shortest path from
s 10 u.

Proof Sketch:

» The edge set {(u, prev(u)) |u € V} induces a directed in-tree rooted at s
(Why?)

» Use induction on | X| to argue that the obtained tree is a shortest path tree for
nodes in V.

42

Shortest paths to s?

Dijkstra’s alg. gives shortest paths fror@o all nodes in V.

How do we find shortest paths from aI 57 -

43

Shortest paths to s?

Dijkstra’s alg. gives shortest paths from s to all nodes in V.
How do we find shortest paths from all of V' to §?

e |n undirected graphs shortest path from s to u« is a shortest path from u to s
so there Is no need to distinguish.

e —

43

Shortest paths to s?

Dijkstra’s alg. gives shortest paths from s to all nodes in V.
How do we find shortest paths from all of V' to §?

e |n undirected graphs shortest path from s to u« is a shortest path from u to s
so there Is no need to distinguish.

. In directed graphs, use Dijkstra’s algori@

B —

43

