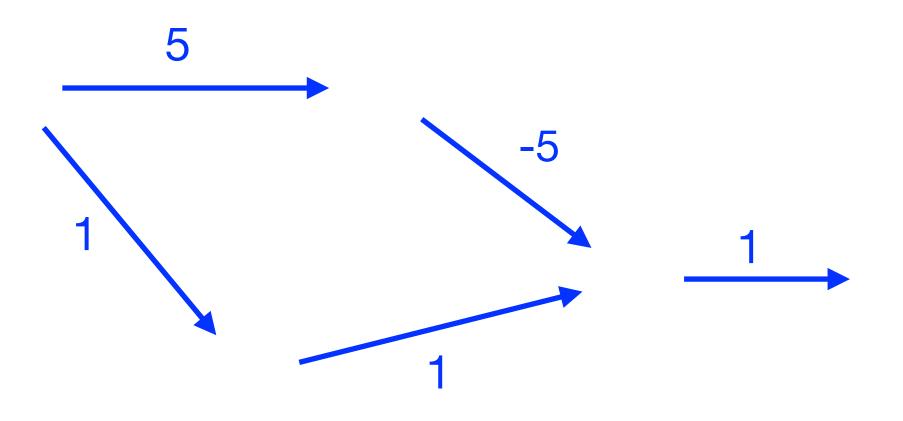
Bellman-Ford and Dynamic Programming on Graphs Sides based on material by Kani, Erickson, Chekuri, et. al.

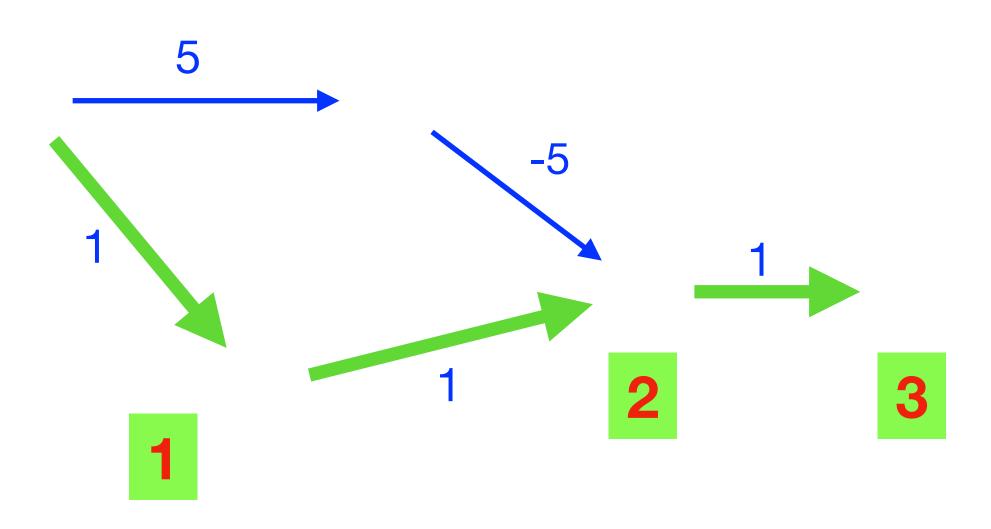
All mistakes are my own! - Ivan Abraham (Fall 2024)

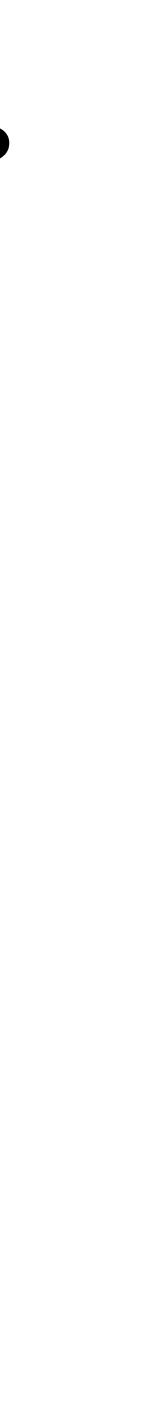
Image by ChatGPT (probably collaborated with DALL-E)

Why Dijkstra's algorithm fails with negative edges

What are the distances computed by Dijkstra's algorithm?

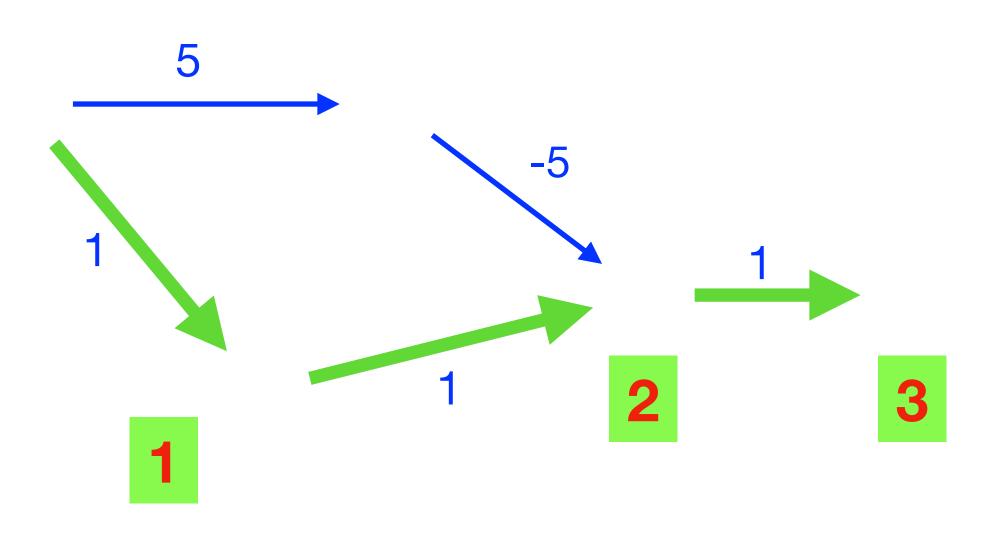


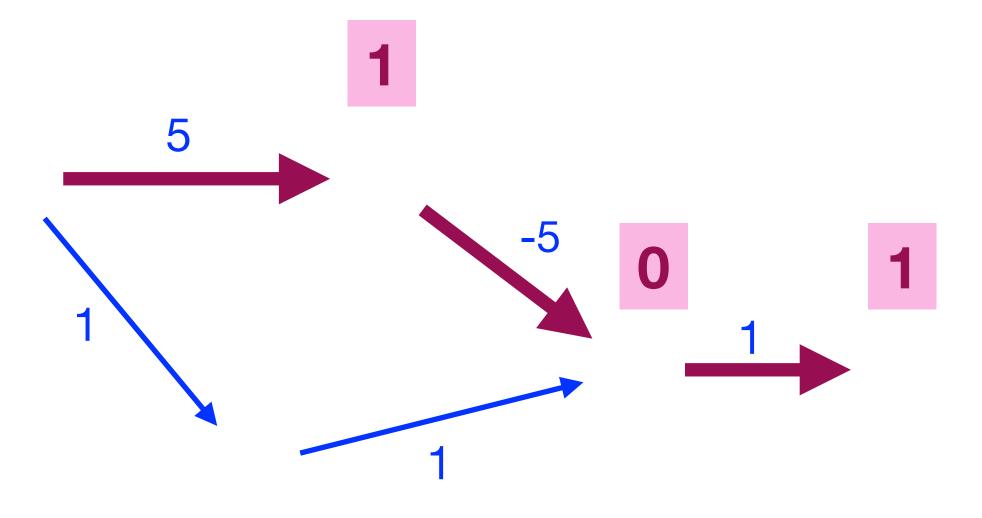




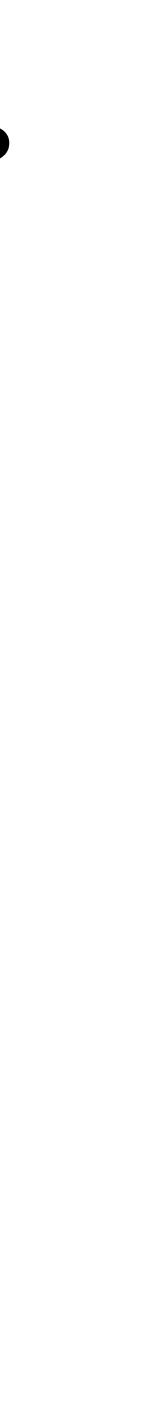
What are the distances computed by Dijkstra's algorithm?

With negative length edges, Dijkstra's algorithm can fail!





False assumption: If $s \to v_0 \to v_1 \to v_2 \dots \to v_k$ is a shortest path from s to v_k then $dist(s, v_i) \leq dist(s, v_{i+1})$ for $0 \leq i < k$. Holds true only for non-negative edge lengths.



Shortest paths with negative lengths

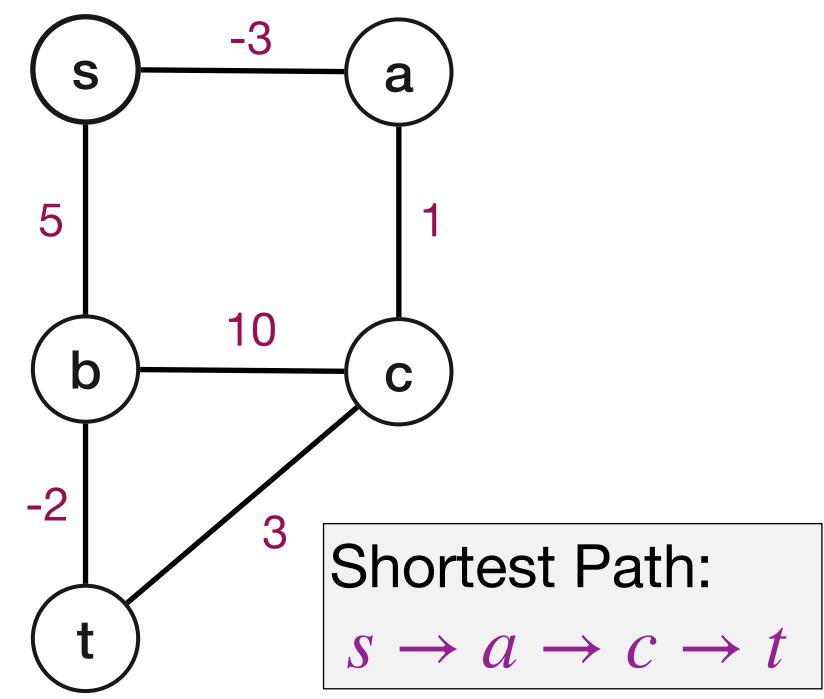
Lemma: Let G be a directed graph with *arbitrary* edge lengths and let $s = v_0 \rightarrow v_1 \rightarrow v_2 \dots \rightarrow v_k = t$

be a shortest path from s to t then for $1 \leq i < k$:

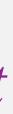
• $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \dots v_i$ is a shortest path from s to v_i

• False: dist $(s, v_i) \leq dist(s, v_k)$ for $1 \leq i < k$.

Why can't we just re-normalize the edge lengths? Instinctual thought

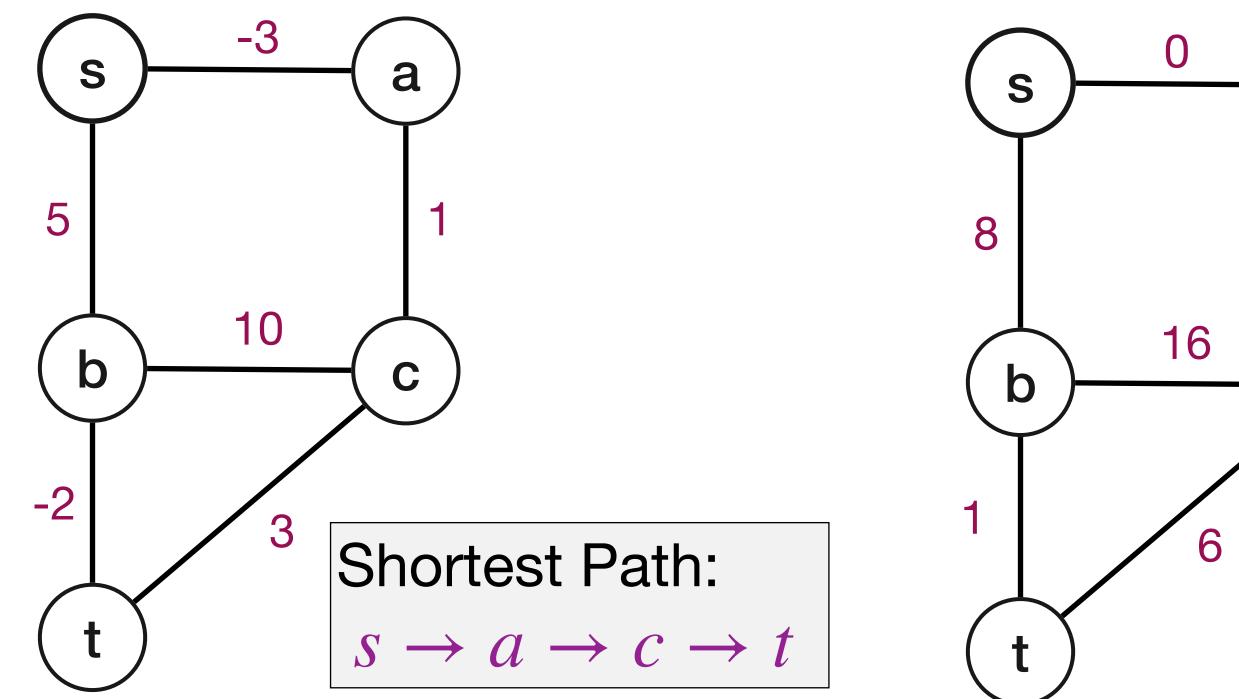


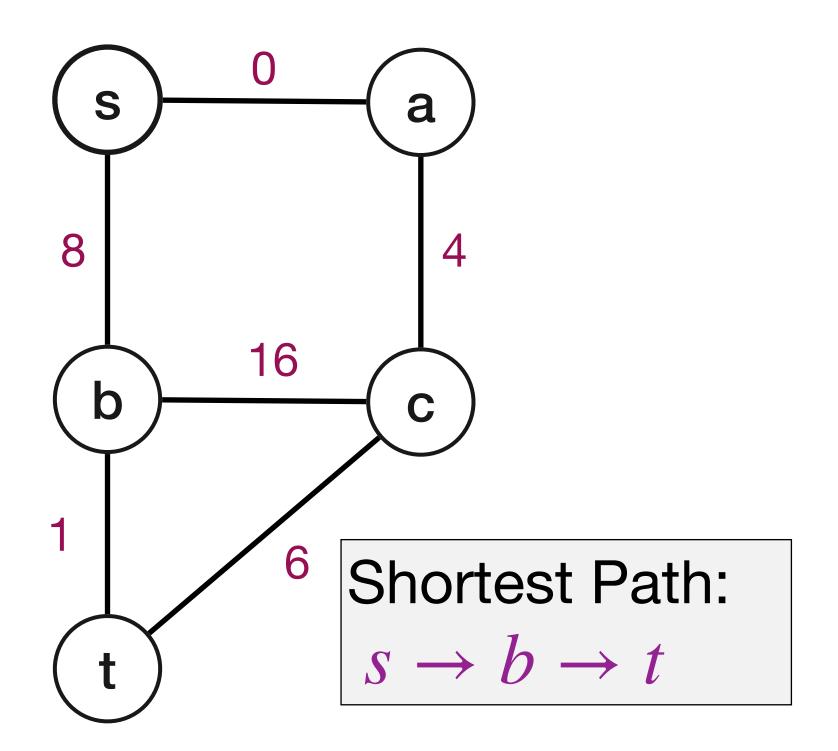
Why can't we simply add a weight to each edge so that the shortest length is 0 (or positive)?



Why can't we just re-normalize the edge lengths? Instinctual thought

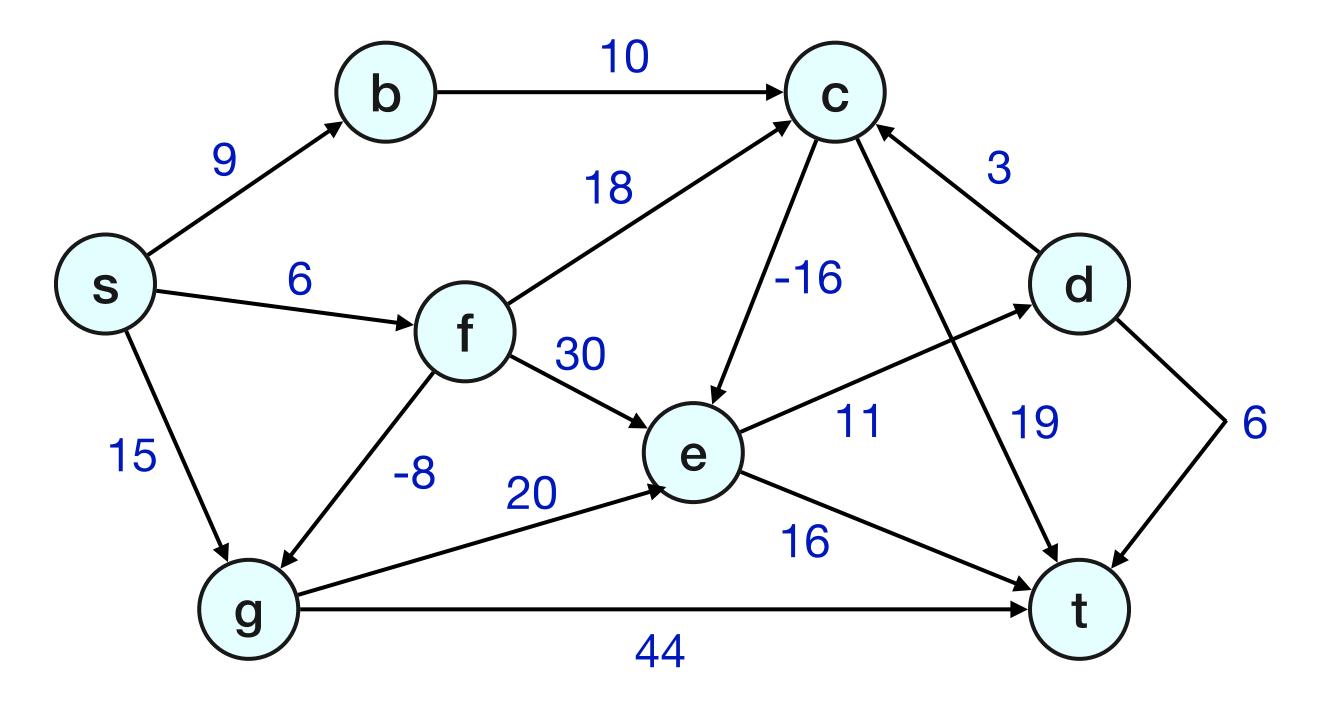
Adding weights to edges penalizes paths with more edges, gives wrong path on original graph.





Negative length cycles Definition

A cycle C is a negative length cycle if the sum of the edge lengths of C is negative

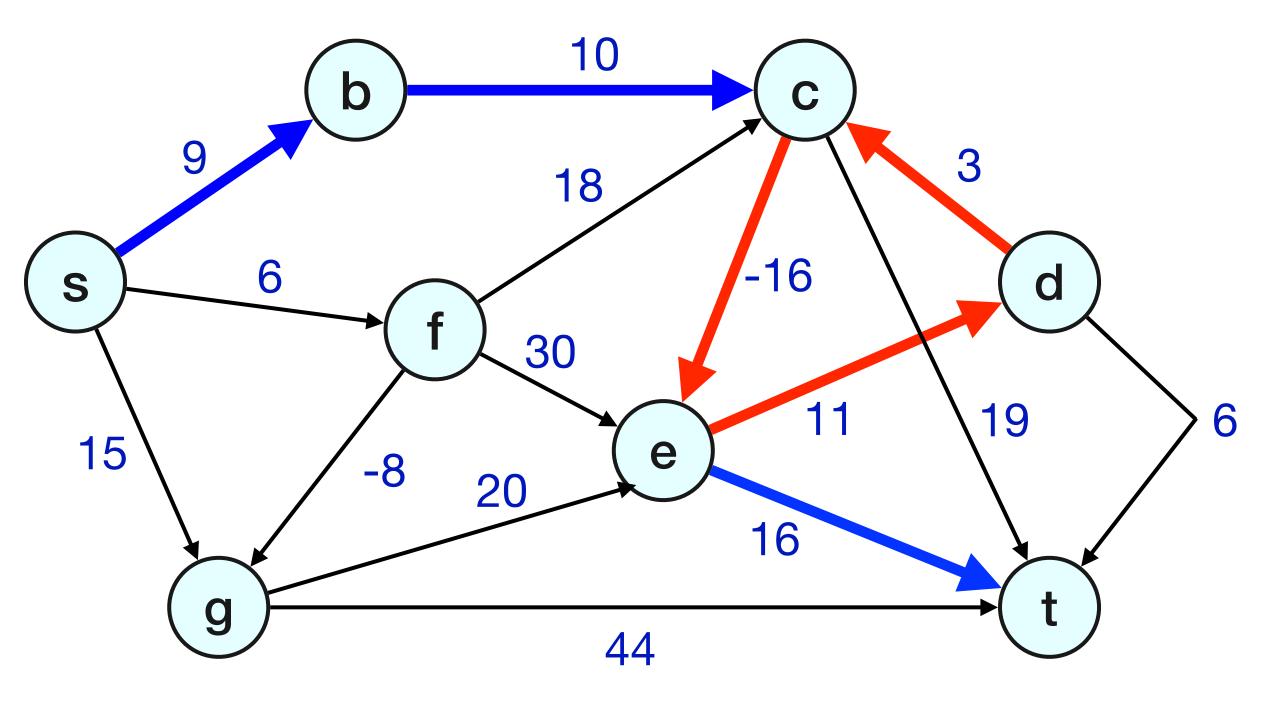


Negative length cycles Definition

What is the shortest path distance between *s* and *t*?

Reminder: Paths have to be simple...

A cycle C is a negative length cycle if the sum of the edge lengths of C is negative



Shortest paths and negative cycles

- Given G = (V, E) with edge lengths and s, t. Suppose
 - G has a negative length cycle C, and s can reach C and C can reach t.

Question: What is the shortest distance from s to t? Possible answers:

- undefined, that is $-\infty$, OR
- the length of a shortest **simple** path from s to t.

Restating problem of shortest path with negative edges **Alternatively: Finding shortest walks**

Recall that given a graph G = (V, E):

- 1 < i < k 1.
- A walk is a sequence of vertices v_1, v_2, \ldots, v_k such that $(v_i, v_{i+1}) \in E$ for 1 < i < k - 1.

Define dist(u, v) to be the length of a shortest walk from u to v

- If there is a walk from u to v that contains negative length cycle then $dist(u, v) = -\infty$
- Else, there is a path with at most n 1 edges whose length is equal to the length of a shortest walk and dist(u, v) is finite

• A path is a sequence of distinct vertices v_1, v_2, \ldots, v_k such that $(v_i, v_{i+1}) \in E$ for

Shortest paths with negative edges **Algorithmic problems**

edge e = (u, v), l(e) = l(u, v) is its length.

Questions:

- Given nodes s, t either find a negative length cycle C that s can reach or find a shortest path from *s* to *t*.
- Given node s, either find a negative length cycle C that s can reach or find shortest path distances from *s* to all reachable nodes.
- Check if G has a negative length cycle or not.

<u>Input</u>: A directed graph G = (V, E) with edge lengths (could be negative). For

Bellman Ford Algorithm

Shortest paths and recursion

- Is it possible to compute the shortest path distance from s to t recursively?
- What are the *smaller* sub-problems?
 - **Lemma:** Let G be a directed graph with arbitrary edge lengths. If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$
 - is a shortest path from s to v_k then for $1 \leq i < k$:

Sub-problem idea: paths of fewer hops/edges

 $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_i$ is a shortest path from s to v_i

Hop-based recursion Bellman-Ford Algorithm

Single-source problem: Fix source **S**.

Assumptions: All nodes can be reached from s in G. Assume G has no negative-length cycle (for now).

Then note, dist(s, v) = d(v, n - 1). Recursion for d(v, k):

 $d(v,k) = \min \begin{cases} \min_{u \in V} \\ d(v, k) \end{cases}$

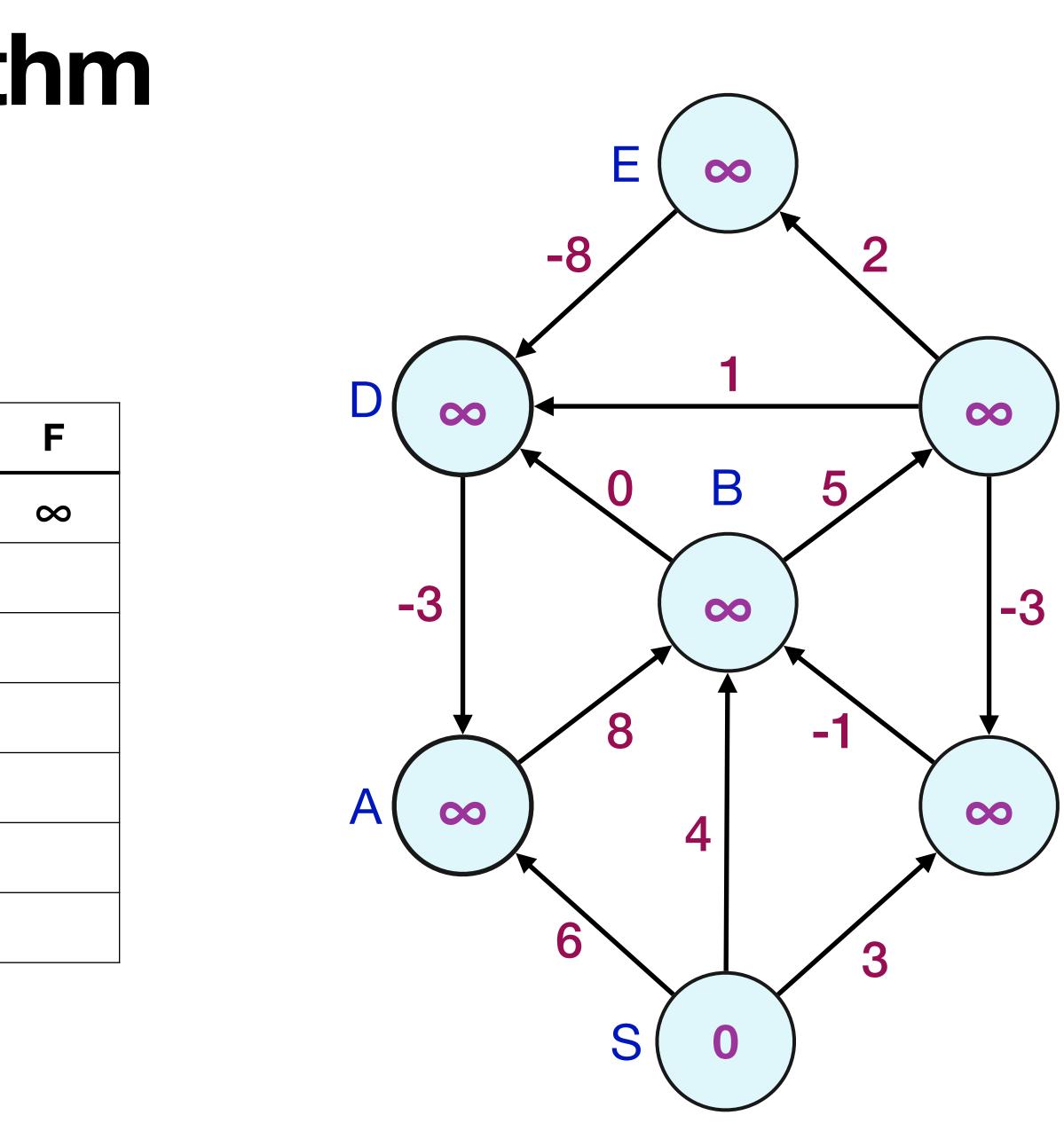
Base case: d(s,0) = 0 and $d(v,0) = \infty$ for all $v \neq s$

Define, d(v, k) as the shortest walk length from s to v using at most k edges.

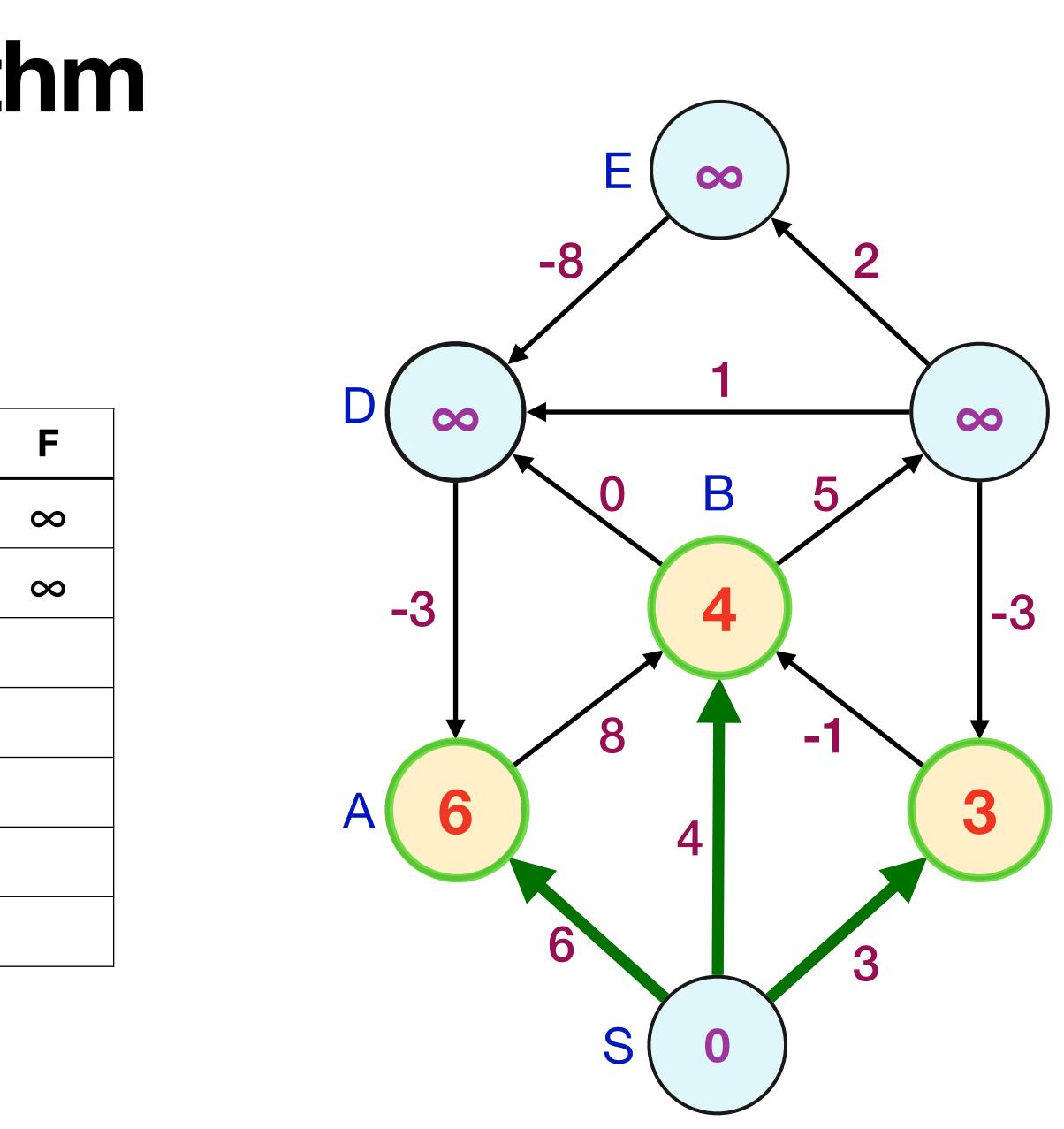
$$\inf_{V} \left(d(u, k-1) + l(u, v) \right)$$

$$v, k-1)$$

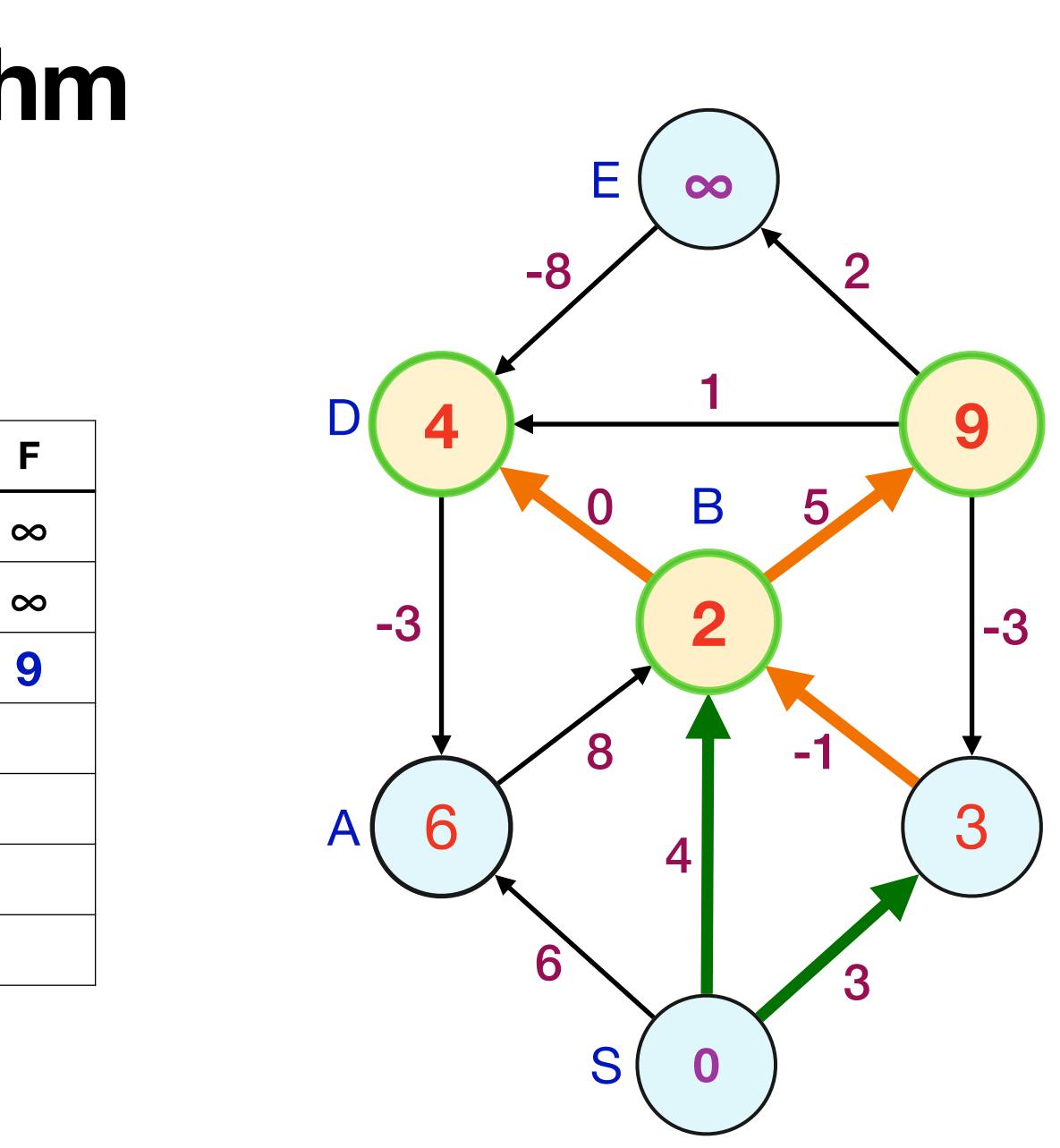
Round	S	Α	В	С	D	E
0	0	∞	∞	∞	∞	∞
1						
2						
3						
4						
5						
6						



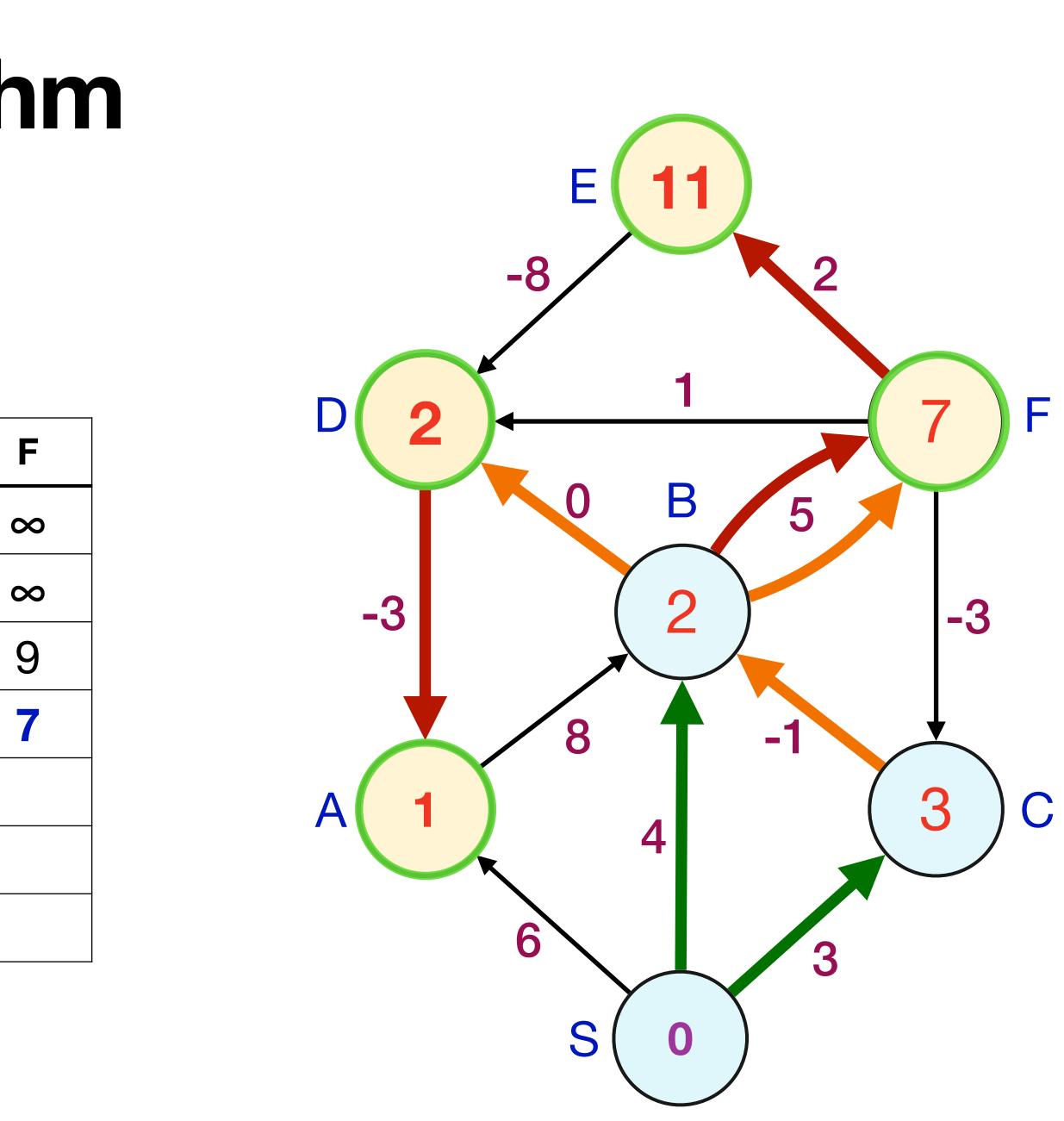
Round	S	Α	В	С	D	Ε
0	0	∞	∞	∞	∞	∞
1	0	6	4	3	∞	∞
2						
3						
4						
5						
6						



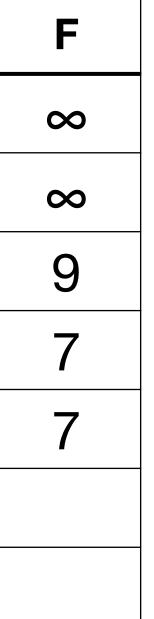
Round	S	Α	В	С	D	Ε
0	0	∞	∞	∞	∞	∞
1	0	6	4	3	∞	∞
2	0	6	2	3	4	∞
3						
4						
5						
6						

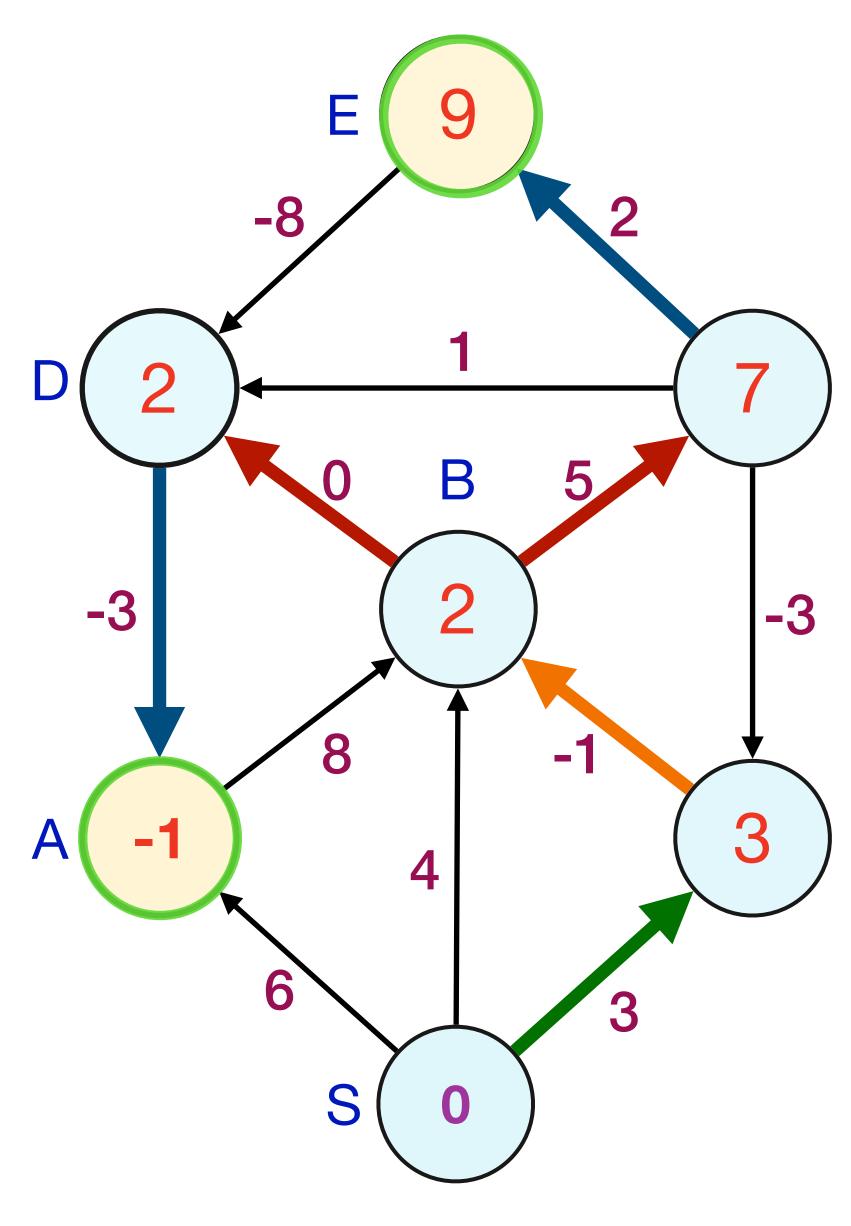


Round	S	Α	В	С	D	E	
0	0	∞	∞	∞	∞	∞	
1	0	6	4	3	∞	∞	
2	0	6	2	3	4	∞	
3	0	1	2	3	2	11	
4							
5							
6							

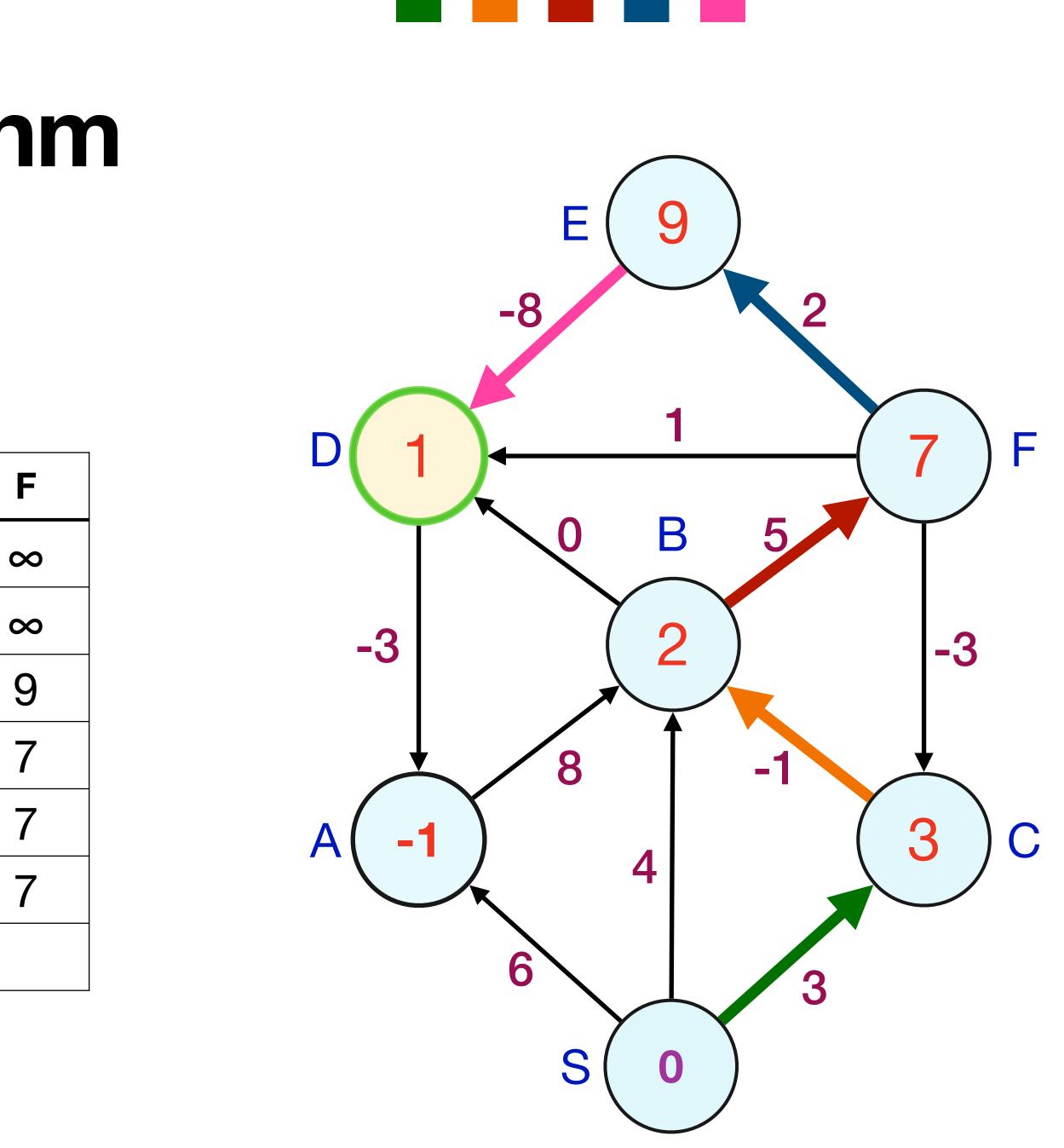


Round	S	Α	В	С	D	Ε	
0	0	∞	∞	∞	∞	∞	
1	0	6	4	3	∞	8	
2	0	6	2	3	4	∞	
3	0	1	2	3	2	11	
4	0	-1	2	3	2	9	
5							
6							

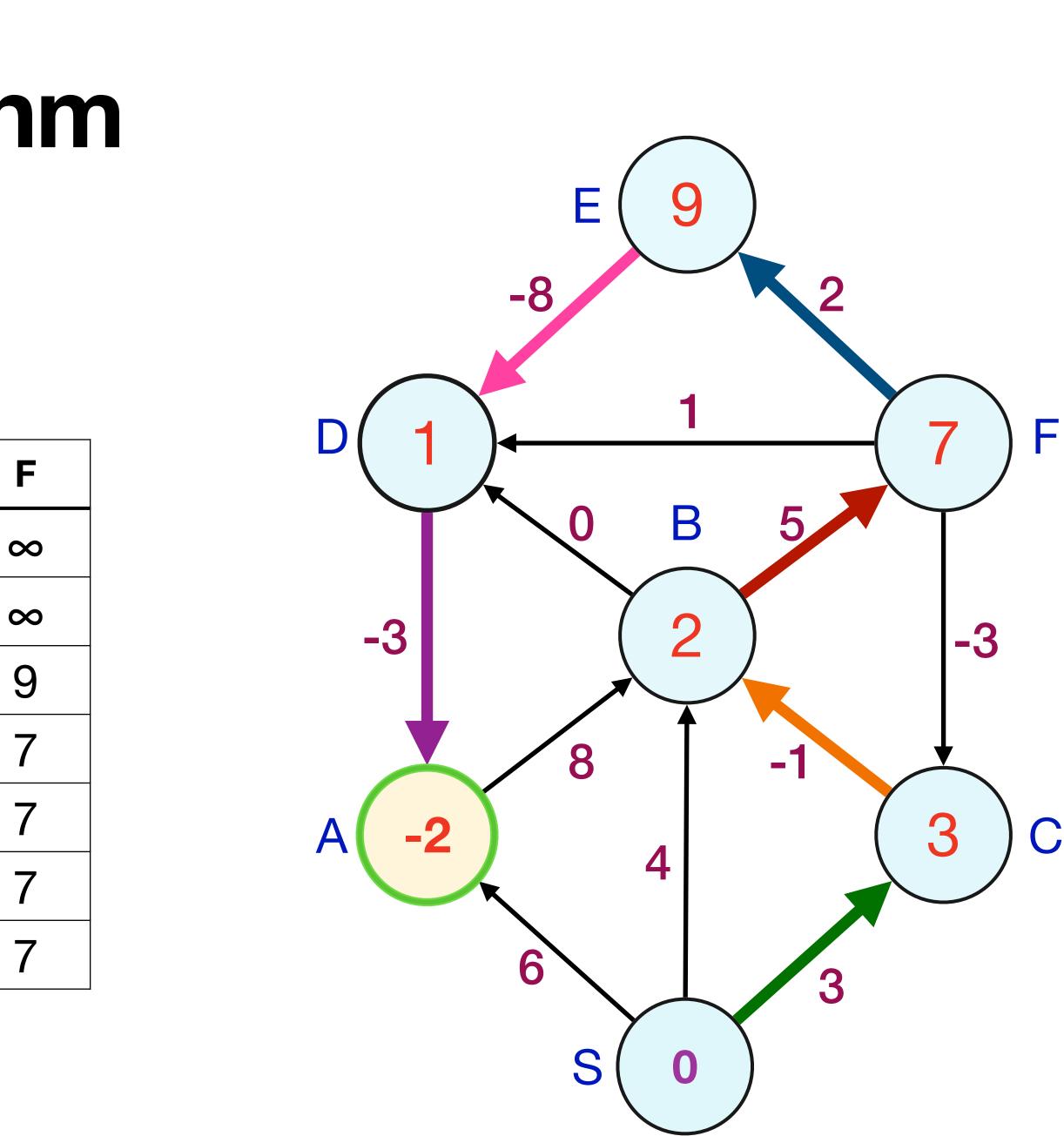




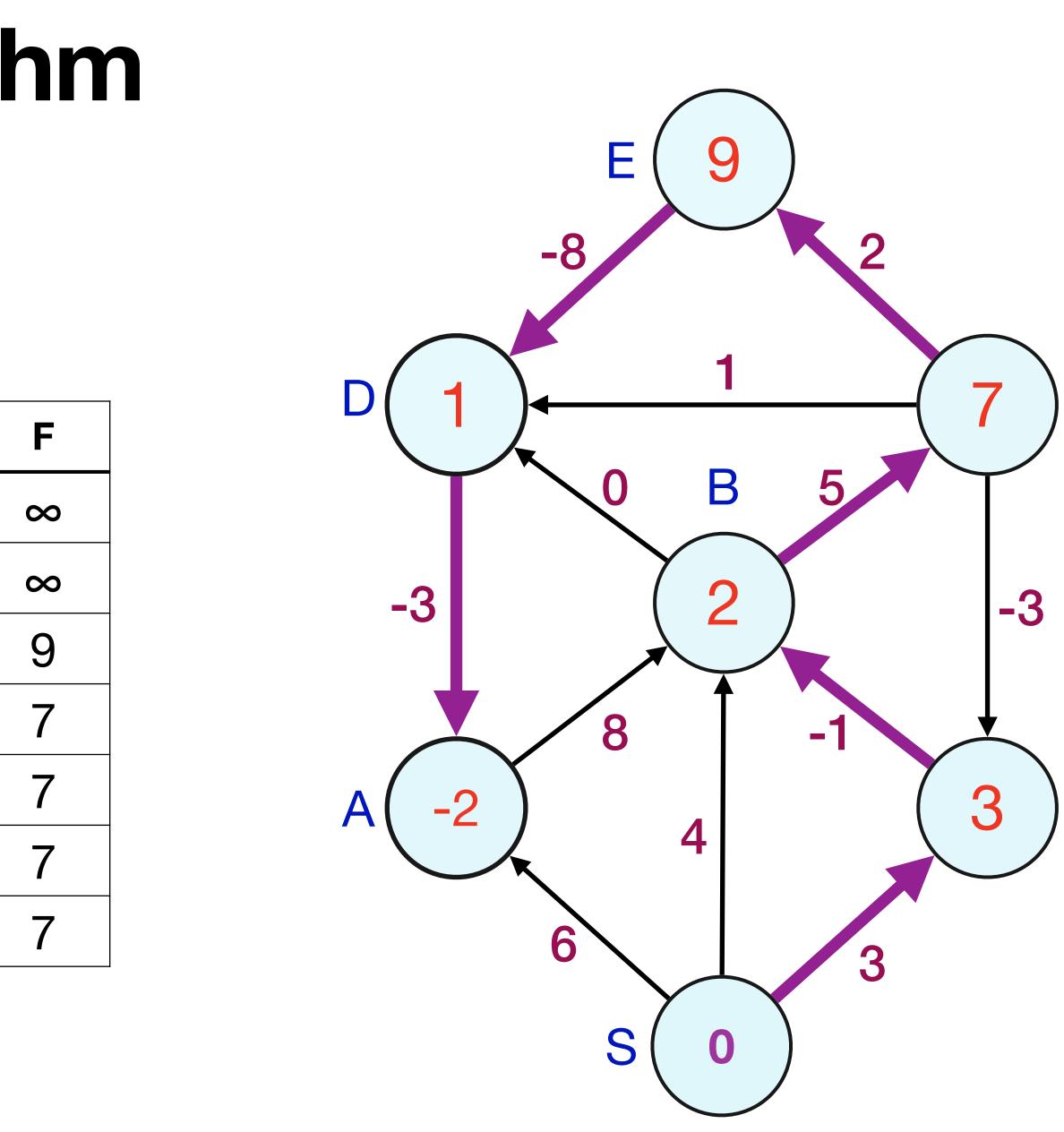
Round	S	Α	В	С	D	E	
0	0	∞	∞	∞	∞	∞	
1	0	6	4	3	∞	∞	
2	0	6	2	3	4	∞	
3	0	1	2	3	2	11	
4	0	-1	2	3	2	9	
5	0	-1	2	3	1	9	
6							



Round	S	Α	В	С	D	Ε	
0	0	∞	∞	∞	∞	∞	
1	0	6	4	3	∞	∞	
2	0	6	2	3	4	∞	
3	0	1	2	3	2	11	
4	0	-1	2	3	2	9	
5	0	-1	2	3	1	9	
6	0	-2	2	3	1	9	



Round	S	Α	В	С	D	Ε
0	0	∞	∞	∞	∞	∞
1	0	6	4	3	∞	∞
2	0	6	2	3	4	∞
3	0	1	2	3	2	11
4	0	-1	2	3	2	9
5	0	-1	2	3	1	9
6	0	-2	2	3	1	9



Bellman-Ford Algorithm Algorithm

Create In(G) list from adj(G)

for each $u \in V$ do $d(u,0) \leftarrow \infty$ $d(s,0) \leftarrow 0$

for k = 1 to n - 1 do for each $v \in V$ do $d(v, k) \leftarrow d(v, k - 1)$ for each edge $(u, v) \in In(v)$ do $d(v, k) = min\{d(v, k), d(u, k - 1) + l(u, v)\}$

for each $v \in V$ do dist(s, v) \leftarrow d(v, n - 1)

Running time: O(n(n + m))Space: $O(m + n^2)$ Space can be reduced to O(m+n)

Bellman-Ford Algorithm Algorithm - cleaner version

```
for each u \in V do
      d(u,0) \leftarrow \infty
d(s,0) \leftarrow 0
```

for k = 1 to n - 1 do for each $v \in V$ do for each edge $(u, v) \in In(v)$ do $d(v) = min\{d(v), d(u) + l(u, v)\}$

```
for each v \in V do
    dist(s, v) \leftarrow d(v, n - 1)
```

Running time: *O(mn)* Space: O(m + n)Do we need the $\ln(V)$ list?

Bellman-Ford Algorithm Algorithm - cleaner version

for each $u \in V$ do $d(u,0) \leftarrow \infty$ $d(s,0) \leftarrow 0$

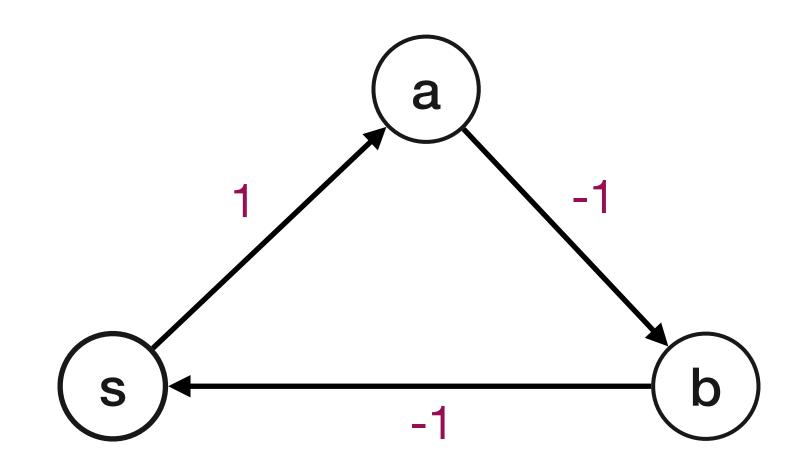
for k = 1 to n - 1 do for each edge $(u, v) \in G$ do $d(v) = min\{d(v), d(u) + l(u, v)\}$

for each $v \in V$ do dist(s, v) \leftarrow d(v, n - 1)

Running time: *O(mn)* Space: O(n)

Bellman-Ford Algorithm Negative cycles

What happens if we run this on a graph with negative cycles?



Round	S	а	b
0	0	∞	∞
1	0	1	∞
2	0	1	0
3	-1	1	0
4	-1	0	0
5	-1	0	-1

Correctness: detecting negative length cycle

Lemma: Suppose G has a negative cycle C reachable from s. Then there is some node $v \in C$ such that d(v, n) < d(v, n-1).

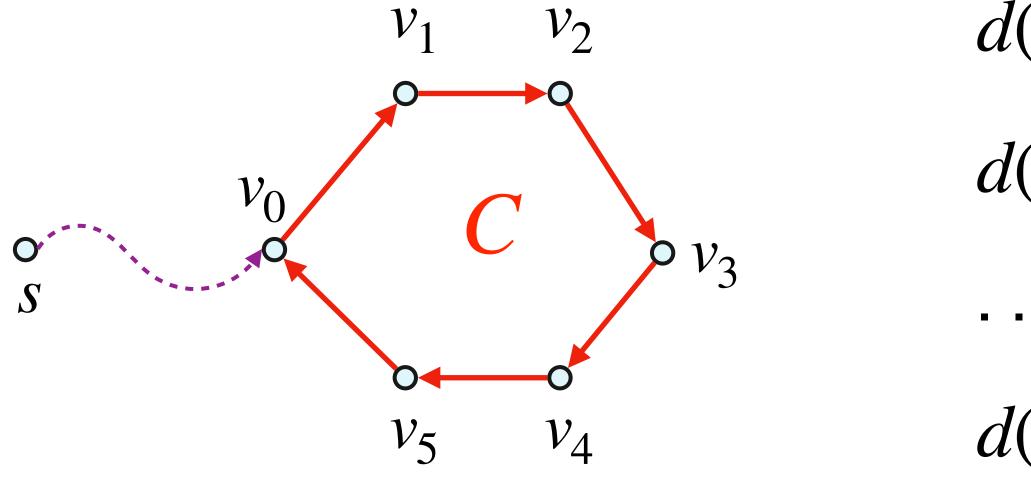
 $d(v_i, n - 1) = d(v_i, n)$ for $1 \le i \le h$.

This means $d(v_i, n-1) \le d(v_{i-1}, n-1) + l(v_{i-1}, v_i)$ for $2 \le i \le h$ and $d(v_1, n-1) \le d(v_n, n-1) + l(v_n, v_1).$

Summing/telescoping these inequalities results in $0 \leq l(C)$ which contradicts the assumption that l(C) < 0!

- **Proof:** Suppose not. Let $C = v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_h \rightarrow v_1$ be negative length cycle reachable from s. Then $d(v_i, n-1)$ is finite for $1 \le i \le h$ since C is reachable from s.
- By assumption $d(v, n) \ge d(v, n 1)$ for all $v \in C$; implies no change in n^{th} iteration;

Proof of lemma ...

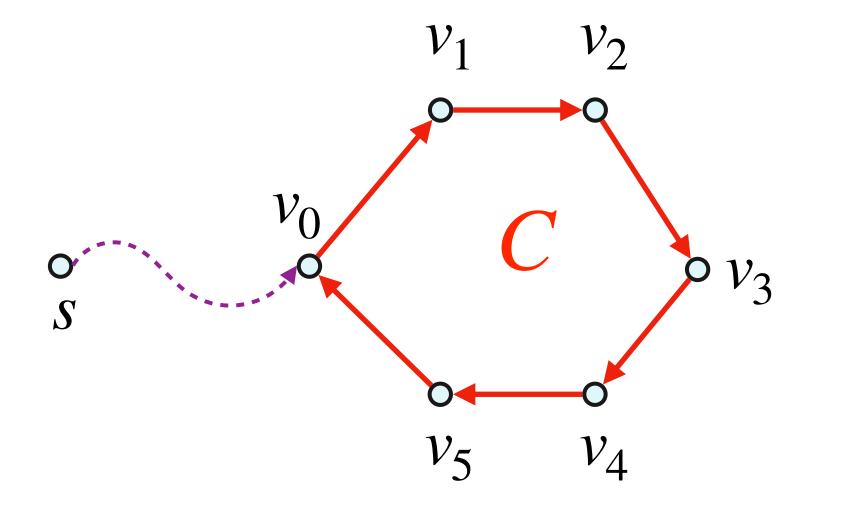


 $d(v_0, n) \le d(v_k, n - 1) + l(v_k, v_0)$

$$\begin{aligned} d(v_1, n) &\leq d(v_0, n - 1) + l(v_0, v_1) \\ d(v_2, n) &\leq d(v_1, n - 1) + l(v_1, v_2) \\ \cdots \\ d(v_i, n) &\leq d(v_{i-1}, n - 1) + l(v_{i-1}, v_i) \\ \cdots \\ d(v_k, n) &\leq d(v_{k-1}, n - 1) + l(v_{k-1}, v_k) \end{aligned}$$

a

Proof of lemma ...



$$\sum_{i=0}^{k} d(v_i, n) \le \sum_{i=0}^{k} d(v_i, n) + \sum_{i=1}^{k} l(v_{i+1}, v_i) + l(v_k, v_0)$$
$$0 \le \sum_{i=1}^{k} l(v_{i-1}, v_i) + l(v_k, v_0) = \operatorname{len}(C)$$

C is a not a negative cycle. Contradiction!

K

()

Negative cycles can not hide

 $s \Rightarrow \forall v : d(v, n) = d(v, n-1).$

Also, d(v, n - 1) is the length of the shortest path between s and v.

Put together are the following:

node v such that d(v, n) < d(v, n-1).

Lemma restated: If G does *not* has a negative length cycle reachable from

Lemma: If G has a negative length cycle reachable from $s \iff there$ is some

Bellman-Ford: negative cycle detection Final version

for each $u \in V$ do $d(u) \leftarrow \infty$ $d(s) \leftarrow 0$ for k = 1 to n - 1 do for each $v \in V$ do for each edge $(u, v) \in In(v)$ do $d(v) = min\{d(v), d(u) + l(u, v)\}$ (* One more iteration to check if distances change *) for each $v \in V$ do for each edge $(u, v) \in In(v)$ do if (d(v) > d(u) + l(u, v))Output "Negative Cycle" for each $v \in V$ do $dist(s, v) \leftarrow d(v)$

Variants on Bellman-Ford

Finding the Paths and a Shortest Path Tree

How do we find a shortest path tree in addition to distances?

- For each v the d(v) can only get smaller as the algorithm proceeds.
- If d(v) becomes smaller it is because we found a vertex u such that d(v) > d(u) + l(u, v) and we update d(v) = d(u) + l(u, v). That is, we found a shorter path to v through u.
- For each v have a prev(v) pointer and update it to point to u if v finds a shorter path via *u*.
- At the end of the algorithm prev(v) pointers give a shortest path tree oriented towards the source **S**.

Negative Cycle Detection

Negative Cycle Detection

Given directed graph G with arbitrary edge lengths, does it have a negative length cycle?

- specific vertex s. There may negative cycles not reachable from s.
- Run Bellman-Ford V times, once from each node u?
- this work?
- Negative cycle detection can be done with one Bellman-Ford invocation.

• Bellman-Ford checks whether there is a negative cycle C that is reachable from a

• Add a new node s' and connect it to all nodes of G with zero length edges. Bellman-Ford from s' will fill find a negative length cycle if there is one. Exercise: why does

Shortest paths in a DAG **Single-Source Shortest Path Problems**

Input: A directed acyclic graph G = (V, E) with arbitrary (including negative) edge lengths. For edge e = (u, v), l(e) = l(u, v) is its length.

- Given nodes s, t find shortest path from s to t.
- Given node *s* find shortest path from *s* to all other nodes.

Simplification of algorithms for DAGs

- even for negative length edges
- Can order nodes using topological sort

• No cycles and hence no negative length cycles! Hence can find shortest paths

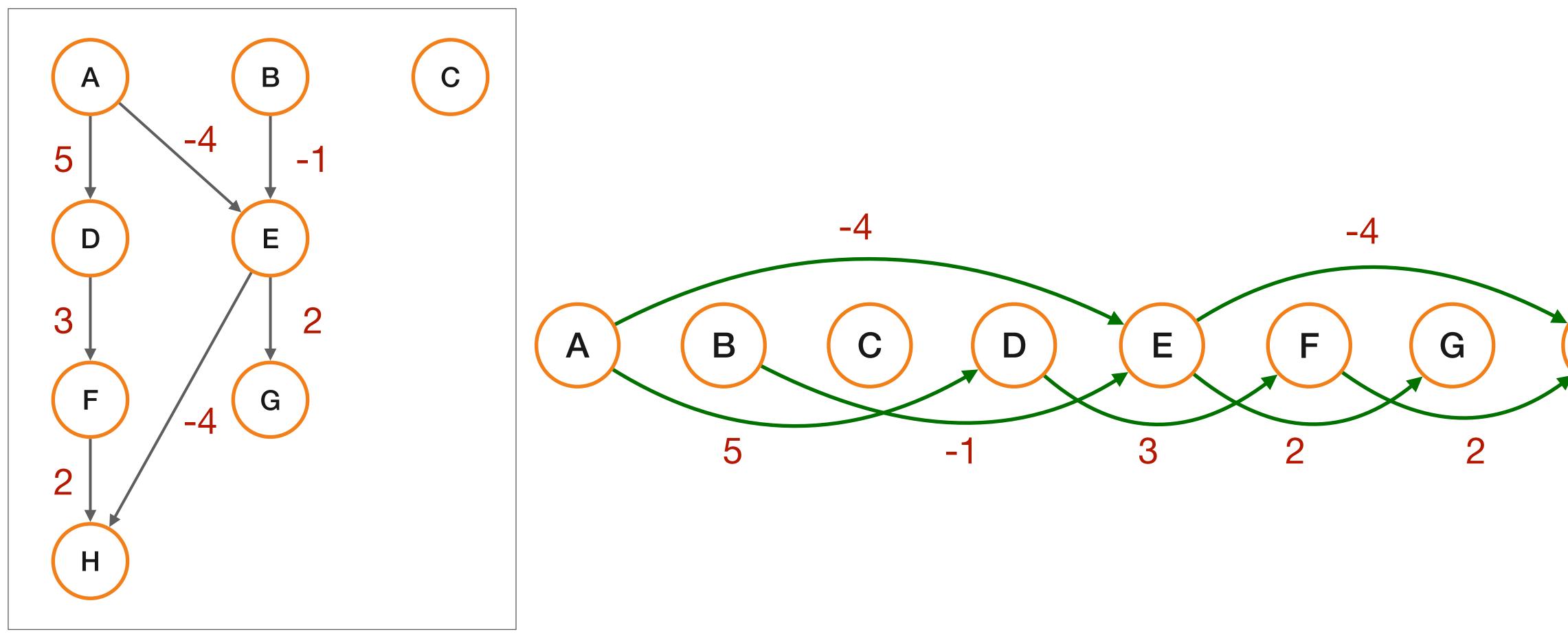
Algorithm for DAGs

- Want to find shortest paths from *s*. Ignore nodes not reachable from *s*.
- Let $s = v_1, v_2, v_{i+1}, \ldots, v_n$ be a topological sort of G.

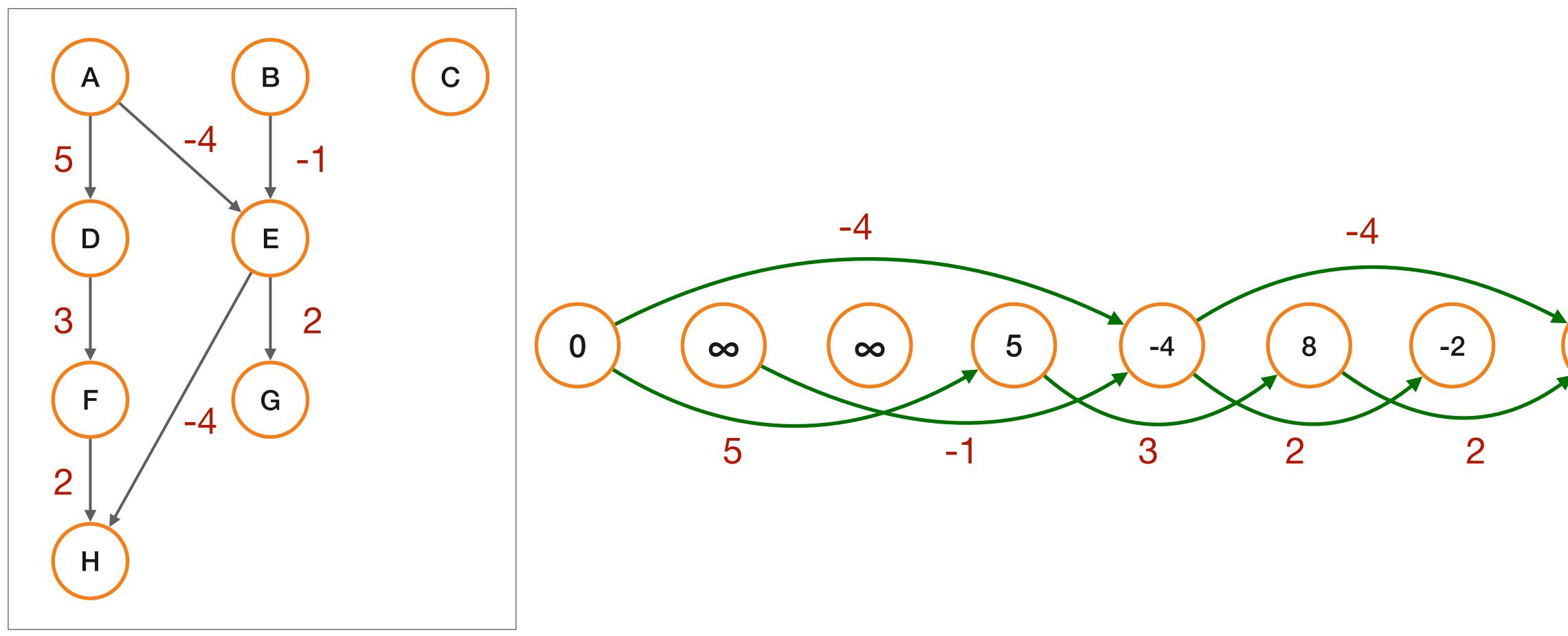
Observation:

- shortest path from s to v_i cannot use any node from v_{i+1}, \ldots, v_n
- can find shortest paths in topological sort order

Shortest Paths for DAGs Example



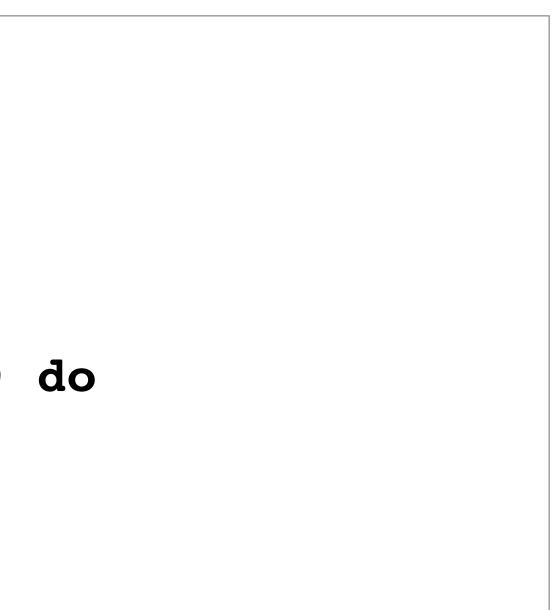
Shortest Paths for DAGs Example



Algorithm for DAGs

for i = 1 to n do $d(s, v_i) = \infty$ d(s, s) = 0for i = 1 to n - 1 do for each edge (v_i, v_j) in $Adj(v_i)$ do $d(s, v_i) = \min\{d(s, v_i), d(s, v_i) + l(v_i, v_i)\}$ **return** d(s, ·) values computed

Correctness: Induction on *i* and observations in previous slide. hence can find longest paths in a DAG.



Running time: O(m + n) time algorithm! Works for negative edge lengths and

All pairs shortest paths **Shortest Path Problems**

For edge e = (u, v), l(e) = l(u, v) is its length.

- Given nodes *s*, *t* find shortest path from *s* to *t*.
- Given node *s* find shortest path from *s* to all other nodes.
- Find shortest paths for all pairs of nodes.

Input: A (undirected or directed) graph G = (V, E) with edge lengths (or costs).

SSSP: Single-Source Shortest Paths

e = (u, v), l(e) = l(u, v) is its length.

- Given nodes s, t find shortest path from s to t.
- Given node *s* find shortest path from *s* to all other nodes

Dijkstra's algorithm for non-negative edge lengths. priority queues.

Bellman-Ford algorithm for arbitrary edge lengths. Running time: O(nm).

Input: A (undirected or directed) graph G = (V, E) with edge lengths. For edge

- Running time: $O((m + n) \log n)$ with heaps and $O(m + n \log n)$ with advanced

All-Pairs Shortest Paths - Using known algorithms... **All-Pairs Shortest Path Problem**

Input A (undirected or directed) graph G = (V, E) with edge lengths. For edge e = (u, v), l(e) = l(u, v) is its length.

Find shortest paths for all pairs of nodes.

Apply single-source algorithms *n* times, once for each vertex.

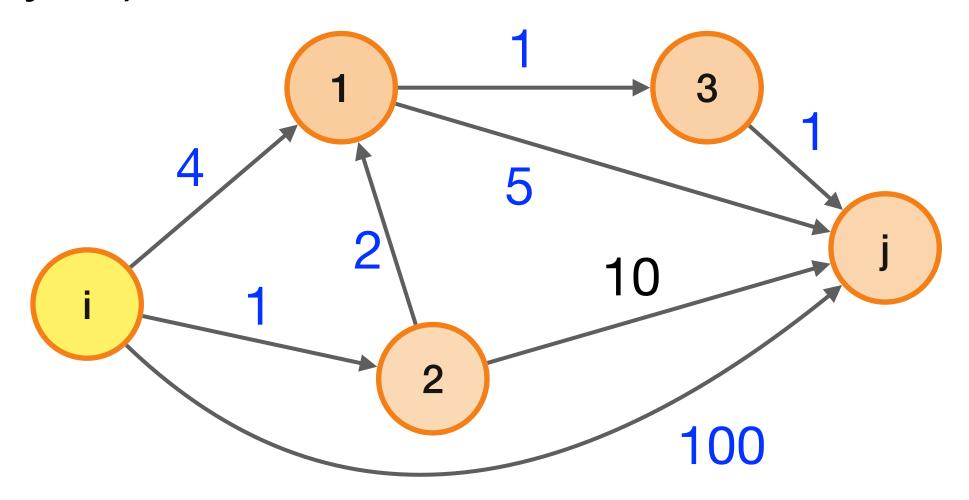
- priority queues.
- Arbitrary edge lengths: $O(n^2m)$. $\Theta(n^4)$ if $m = \Omega(n^2)$

Can we do better?

• Non-negative lengths. $O(nm \log n)$ with heaps and $O(nm + n^2 \log n)$ using advanced

All Pairs Shortest Paths: A recursive solution

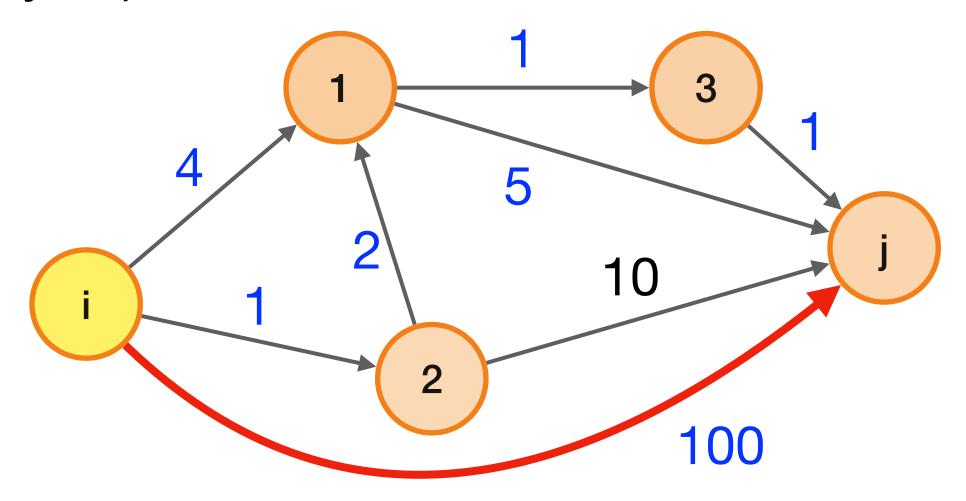
- Number vertices arbitrarily as v_1, v_2, \ldots, v_n
- cycle).



• dist(i, j, k): length of shortest walk from v_i to v_j among all walks in which the largest index of an intermediate node is at most k (could be $-\infty$ if there is a negative length

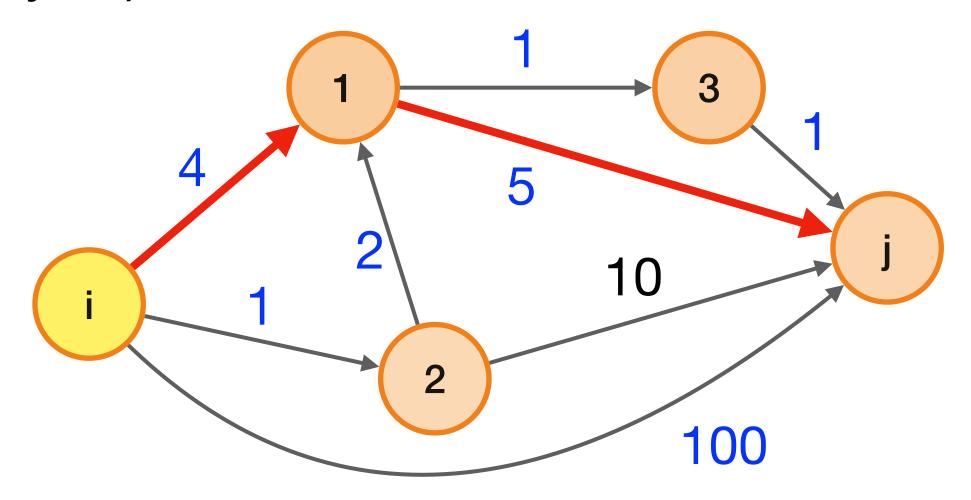
> dist(i, j, 0) =dist(i, j, 1) =dist(i, j, 2) =dist(i, j, 3) =

- Number vertices arbitrarily as v_1, v_2, \ldots, v_n
- cycle).



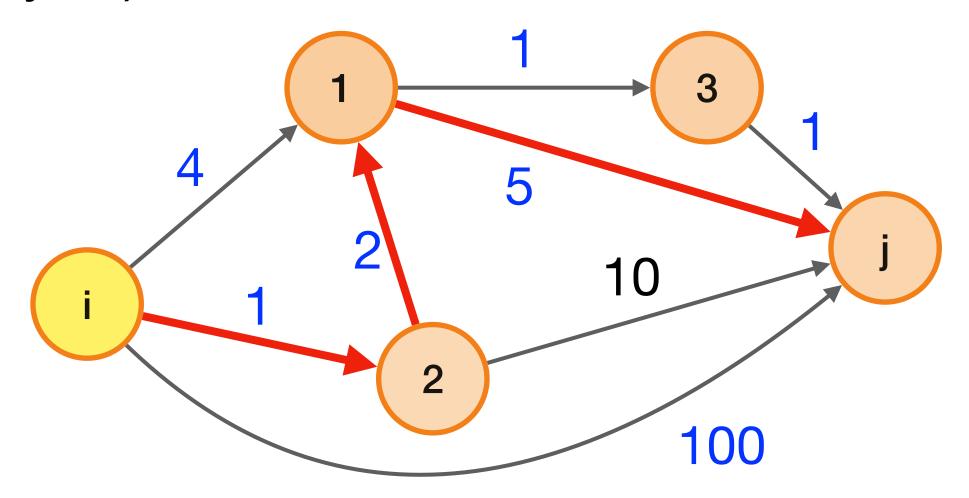
$$dist(i, j, 0) = 100$$
$$dist(i, j, 1) =$$
$$dist(i, j, 2) =$$
$$dist(i, j, 3) =$$

- Number vertices arbitrarily as v_1, v_2, \ldots, v_n
- cycle).



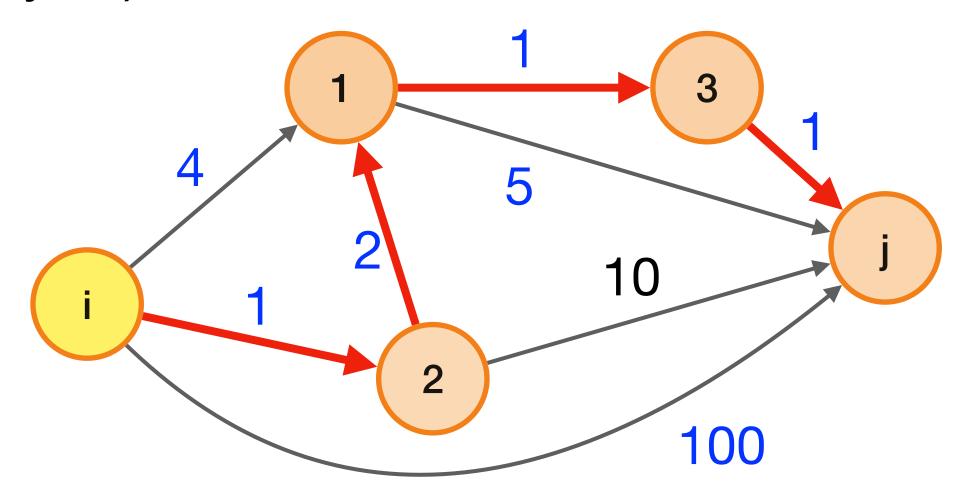
$$dist(i, j, 0) = 100$$
$$dist(i, j, 1) = 9$$
$$dist(i, j, 2) =$$
$$dist(i, j, 3) =$$

- Number vertices arbitrarily as v_1, v_2, \ldots, v_n
- cycle).

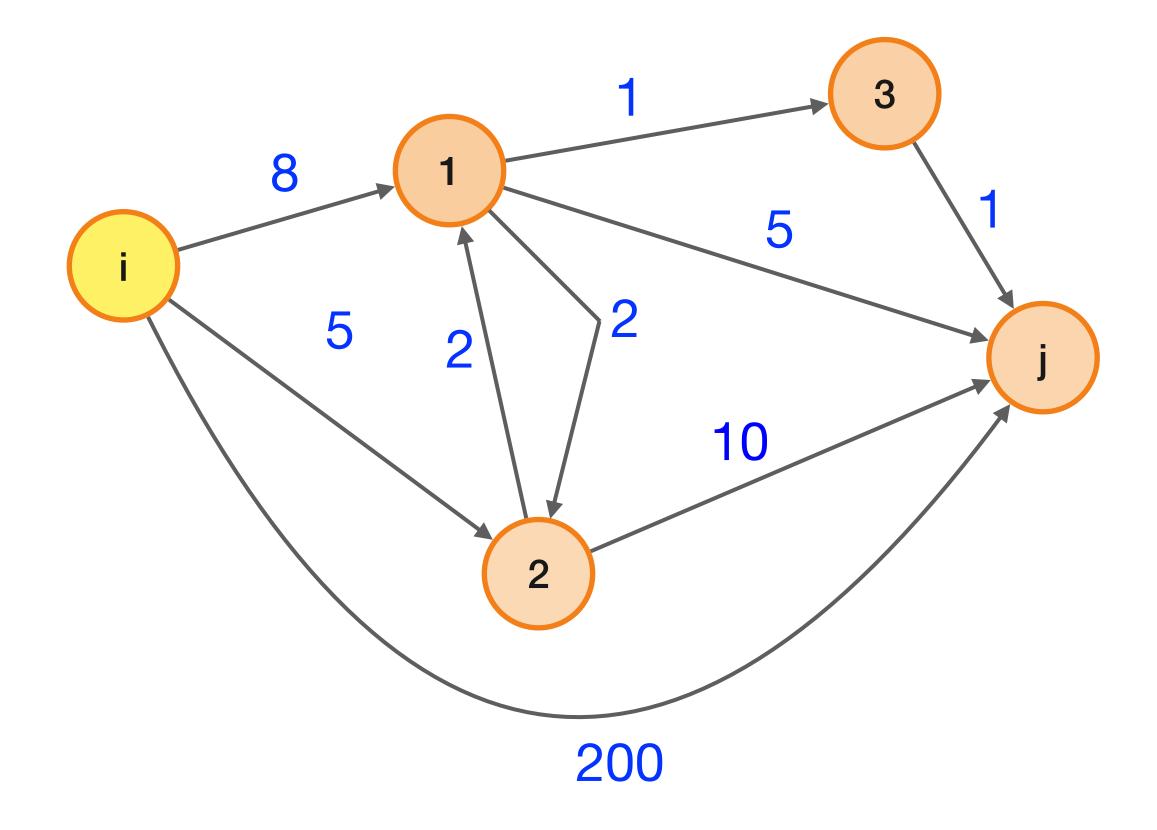


$$dist(i, j, 0) = 100$$
$$dist(i, j, 1) = 9$$
$$dist(i, j, 2) = 8$$
$$dist(i, j, 3) = 8$$

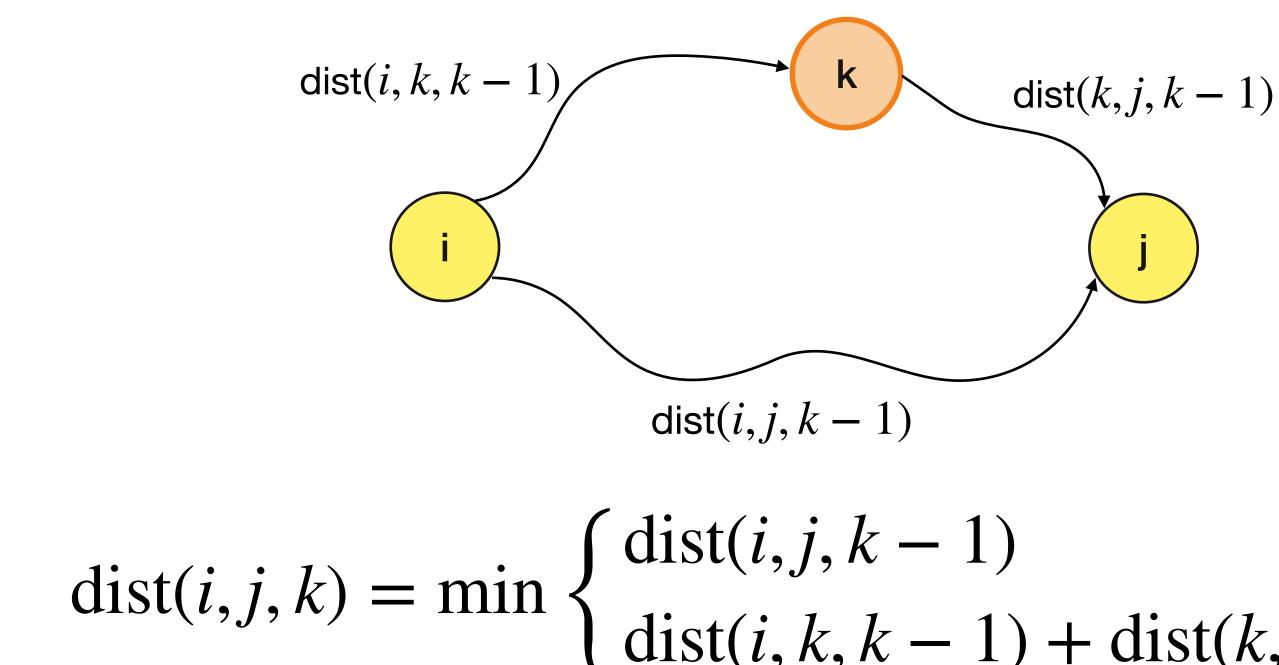
- Number vertices arbitrarily as v_1, v_2, \ldots, v_n
- cycle).



For the following graph, dist(i, j, 2) is ... Review



- 1. 9
- 2. 10
- 3. 11
- 4. 12
- 5. 15



- Base case: dist(i, j, 0) = l(i, j) if $(i, j) \in E$, otherwise ∞
- otherwise there is a negative length cycle

$$t(i, j, k - 1)$$

 $t(i, k, k - 1) + dist(k, j, k - 1)$

• Correctness: If $i \to j$ shortest walk goes through k then k occurs only once on the path

If *i* can reach k and k can reach *j* and dist(k, k, k - 1) < 0 then G has a negative length cycle containing k and $dist(i, j, k) = -\infty$.

the algorithm or wait till the end.

 $dist(i, j, k) = \min \begin{cases} d1st(i, j, k) = min \\ dist(i, j, k) \end{cases}$

Recursion below is valid only if $dist(k, k, k - 1) \ge 0$. We can detect this during

$$t(i, j, k - 1)$$

 $t(i, k, k - 1) + dist(k, j, k - 1)$

Floyd-Warshall Algorithm

Floyd - Warshall Algorithm **For All-Pairs Shortest Paths**

for i = 1 to n do for j = 1 to n do d(i, j, 0) = l(i, j) $(* \ l(i, j) = \infty \ if \ (i, j) \notin E, \ 0 \ if \ i = j \ *)$ for k = 1 to n do for i = 1 to n do for j = 1 to n do $dist(i, j, k) = \min \begin{cases} dist(i, j, k - 1) \\ dist(i, k, k - 1) + dist(k, j, k - 1) \end{cases}$ for i = 1 to n do

if (dist(i, i, n) < 0) then Output \exists negative cycle in G

Running time: $\Theta(n^3)$ Space: $\Theta(n^3)$

Correctness: via induction and recursive definition

Floyd - Warshall Algorithm Finding the Paths

Question: Can we find the paths in addition to the distances?

- Create a n × n array Next that each pair of vertices
- With array Next, for any pair of path in O(n) time.

• Create a $n \times n$ array Next that stores the next vertex on shortest path for

• With array Next, for any pair of given vertices *i*, *j* can compute a shortest

Floyd - Warshall Algorithm **Finding the Paths**

for i = 1 to n do for j = 1 to n do d(i, j, 0) = l(i, j) $(* \ l(i, j) = \infty \ if \ (i, j) \notin E, \ 0 \ if \ i = j \ *)$ Next(i, j) = -1for k = 1 to n do for i = 1 to n do for j = 1 to n do if (d(i, j, k-1) > d(i, k, k-1) + d(k, j, k-1)) then d(i, j, k) = d(i, k, k - 1) + d(k, j, k - 1)Next(i, j) = k

for i = 1 to n do if (dist(i, i, n) < 0) then Output \exists negative cycle in G

Exercise:

Given Next array and any two vertices *i*, *j* describe an O(n)algorithm to find a i - j shortest path.

Summary of shortest path algorithms

Summary of results on shortest paths

Single source		
No negative edges	Dijkstra	O(n log n + m)
Edge lengths can be negative	Bellman Ford	O(nm)

All Pairs Shortest Paths		
No negative edges	n * Dijkstra	O(n² log n + nm)
No negative cycles	n * Bellman Ford	$O(n^2m) = O(n^4)$
No negative cycles	Johnson's ¹	O(nm + n² log n)
No negative cycles	Floyd-Warsh	O(n ³)
Unweighted	Matrix multiplication ²	O(n ^{2.38}), O(n ^{2.58)}

Summary of results on shortest paths

- outside the scope of the class.
- (2) https://resources.mpi-inf.mpg.de/ departments/d1/teaching/ss12/ AdvancedGraphAlgorithms/Slides14.pdf

(1) The algorithm for the case that there are no negative cycles, and doing all shortest paths, works by computing a potential function using **Bellman-Ford** and then doing **Dijkstra**. It is mentioned for the sake of completeness, but it