Bellman-Ford and Dynamic
Programming on Graphs

Sides based on material by Kani, Erickson, Chekuri, et. al.

All mistakes are my own! - lvan Abraham (Fall 2024)

Image by ChatGPT (probably collaborated with DALL-E)

Why Dijkstra’s algorithm fails with negative
edges

What are the distances computed by Dijkstra’s algorithm?

e e

1

What are the distances computed by Dijkstra’s algorithm?

With negative length edges, Dijkstra’s algorithm can fail!

QG
"% &

1

Ifs — vy — vy = v,... = v, is ashortest path from s to v,then
dist(s, v;) < dist(s,v;, ;) for 0 < i < k. Holds true only for non-negative edge lengths.

4

Shortest paths with negative lengths

Lemma: Let G be a directed graph with arbitrary edge lengths and let
S=Vg—=> V| 2> V... >V, =1
be a shortest path from sto f thenfor | <1 < k:
¢ §=Vy— V| > V, = ...V;Is ashortest path from s to v,

e False: dist(s, v;) < dist(s,v) for 1 <1 <k

Why can’t we just re-normalize the edge lengths?
Instinctual thought

Why can’t we simply add a weight
to each edge so that the shortest
length is O (or positive)?

Shortest Path:
S > ad—>C—1t

Why can’t we just re-normalize the edge lengths?

Instinctual thought
Adding weights to edges penalizes paths with more edges, gives wrong path

on original grapnh.

Shortest Path: Shortest Path:
S—=>ad—>Cc—t s—=> b >t

Negative length cycles

Definition

A cycle C is a negative length cycle if the sum of the edge lengths of C is negative

Negative length cycles

Definition

A cycle C is a negative length cycle if the sum of the edge lengths of C is negative

What is the shortest path distance S 6
between s and 1 ?

15
Reminder: Paths have to be simple...

Shortest paths and negative cycles

Given G = (V, E) with edge lengths and s, . Suppose
» (5 has a negative length cycle C, and s can reach C and C can reach .

Question: What is the shortest distance from s to 7 ?

Possible answers:
 undefined, that is — oo, OR

* the length of a shortest simple path from s to 7.

10

Restating problem of shortest path with negative edges
Alternatively: FiInding shortest walks

Recall that given a graph G = (V, E):

¢ A is a sequence of distinct vertices v, v, ..., v, such that (v, v,) € E for
1 <i<k-1.

e A is a sequence of vertices v, V,, ...,V such that (v, v;,) € E for
1 <i<k-1.

Define dist(u, v) to be the length of a shortest walk from © to v
* If there is a walk from u to v that contains negative length cycle then dist(u, v) = — o

 Else, there is a path with at most 7 — 1 edges whose length is equal to the length of a
shortest walk and dist(u, v) is finite

11

Shortest paths with negative edges

Algorithmic problems

Input: A directed graph G = (V, E) with edge lengths (could be negative). For
edge ¢ = (u,v), l(e) = l(u,v) is its length.

Questions:

» Given nodes s, f either find a negative length cycle C that s can reach or find
a shortest path from s to 7.

» Given node s, either find a negative length cycle C that s can reach or find
shortest path distances from s to all reachable nodes.

« Check if G has a negative length cycle or not.

12

Bellman Ford Algorithm

Shortest paths and recursion

e |s it possible to compute the shortest path distance from s to 7 recursively?

 What are the smaller sub-problems?

Lemma: Let G be a directed graph with arbitrary edge lengths. If
S:VO_)Vl_)Vz—)...—)Vk

is a shortest path from s to v, then for | <1 < k:

S =Vy— VvV, = V, > ... — v:Is ashortest path from s to v,

Sub-problem idea: paths of fewer hops/edges

14

Hop-based recursion
Bellman-Ford Algorithm

Single-source problem: Fix source .

Assumptions: All nodes can be reached from s in G. Assume (G has no
negative-length cycle (for now).

Define, as the shortest walk length from s to v using at most k edges.
Then note, dist(s,v) = d(v,n — 1). Recursion for d(v, k):

j — 1
oo = min J D (d(u, k — 1) + l(u,v))
dv,k—1)

Base case: d(s5,0) = 0and d(v,0) = co forall v # s

15

Bellman-Ford Algorithm

Example

Bellman-Ford Algorithm

Example

Round S A B C D E F
0 0 oo oo oo oo fove) Ve,
1 0 6 4 3 0o 00 00
2
3
4
5
6

3

Bellman-

Example

Ford Algorithm

S

Round

18

Bellman-
Example

Ford Algorithm

11

S

Round

19

Bellman-

Example

Ford Algorithm

11

S

Round

20

(9

11

S

Bellman-Ford Algorithm

Example

Round

3
(&

21

Bellman-

Example

Ford Algorithm

11

S

Round

22

Bellman-

Example

Ford Algorithm

11

S

Round

23

Bellman-Ford Algorithm
Algorithm

Create In(G) list from adj(G)

for each ue€eV do
d(u,0) <« oo

d(s.0) < 0 O(n(n + m))
for Kk =1 ton - 1 do 0(m—|—n2)
for each ve V do
d(v, k) < d(v, k(‘)1) o Space can be reduced to
for each edge (u,v) € In(v) do
d(v, k) = min{d(v, k), d(u, k - 1) + 1(u, v)} O(m + n)

for each veV do
dist(s, v) <« d(v, n — 1)

24

Bellman-Ford Algorithm

Algorithm - cleaner version

for each ueV do

d(u,0) « oo
d(s,0) < O O(mn)
for Kk =1 ton - 1 do
for each veV do O(m + n)
for each edge (u,v) € In(v) do
d(v) = min{d(v), d(u) + 1l(u, v)}

Do we need the In(V) list?

for each ve V do
dist(s, v) «< d(v, n — 1)

25

Bellman-Ford Algorithm

Algorithm - cleaner version

for each ueV do
d(u,0) « o

d(s,0) < 0 O(mn)

for k =1 ton — 1 do
for each edge (u,v) € G do
d(v) = min{d(v), d(u) + 1(u, v)}

O(n)

for each veV do
dist(s, v) «< d(v, n — 1)

26

Bellman-Ford Algorithm

Negative cycles

What happens if we run this on a graph with negative cycles?

Round

O | | O NN | =

Ll LAl L o|lo|lo]|ew

@) @) —L —k —k 8

Correctness: detecting negative length cycle

Lemma: Suppose G has a negative cycle C reachable from s. Then there is some
node v € C suchthatd(v,n) < d(v,n —1).

Proof: Suppose not. Let C = v, —- v, — ... — v, — v, be negative length cycle
reachable from s. Then d(v,,n — 1) is finite for 1| <1 < /i since C is reachable from s.

By assumption d(v,n) > d(v,n — 1) for all v € C; implies no change in n'" iteration;
dv,n—1)=d(v,n)forl <i < h.

Thismeans d(v,n—1) <d(v,_,n—1)+(v,_;,v)for2 <1 < hand
dv,n—1) <dv,n—1)+1v,,v).

Summing/telescoping these inequalities results in 0 < [(C) which contradicts the
assumption that [(C) < 0!

28

Proof of lemma....

dvi,n) <d(vy,n—1)+ l(vy, v;)

Vi W
Vo \ d(vy,n) <dWv,n—1)+ (v, v,)
¢ / V3

l‘-~~
O :
S
2
\) ~

Vs V4 d(vl’, n) S d(Vi_l, n — 1) + l(vi_l, Vl)

d(Vk, n) S d(vk—l’ nn — 1) —+ Z(Vk—la Vk)

dvy,n) <d(v,n—1)+ (v, vy)

Proof of lemma....

V1 Vh
k k X
\ D dym) < 0 m) + Y10, v) + 0 w0
e - - -
g \ /Vg

k
-— 0 <) 1(v;_1v) + 1y, vp) = len(C)

G i=1

C is a not a negative cycle. Contradiction!

30

Negative cycles can not hide

Lemma restated: If G does not has a negative length cycle reachable from
s=>Vv:dv,n)=dv,n—1).

Also, d(v,n — 1) is the length of the shortest path between s and v.

Put together are the following:

Lemma: If G has a negative length cycle reachable from s < there is some
node v such that d(v,n) < d(v,n — 1).

31

Bellman-Ford: negative cycle detection

Final version

for each u€V do
d(u) <« oo
d(s) < 0
for Kk = 1 ton — 1 do
for each ve V do
for each edge (u,v) € In(v) do
d(v) = min{d(v), d(u) + 1l(u, v)}

(* One more iteration to check i1f distances change *)

for each veV do
for each edge (u,v) € In(v) do
if (d(v) > d(u) + 1(u, v))
Output “Negative Cycle”
for each ve V do
dist(s, v) « d(v)

32

Variants on Bellman-Ford

Finding the Paths and a Shortest Path Tree

How do we find a shortest path tree in addition to distances?

» For each v the d(v) can only get smaller as the algorithm proceeds.

 If d(v) becomes smaller it is because we found a vertex 1 such that

d(v) > d(u) + l(u, v) and we update d(v) = d(u) + [(u,v). That is, we found a
shorter path to v through u.

» For each v have a prev(v) pointer and update it to point to u if v finds a shorter
path via u.

» At the end of the algorithm prev(v) pointers give a shortest path tree oriented
towards the source .

34

Negative Cycle Detection

Negative Cycle Detection
Given directed graph G with arbitrary edge lengths, does it have a negative length cycle?

« Bellman-Ford checks whether there is a negative cycle C that is reachable from a
specific vertex 5. There may negative cycles not reachable from s.

» Run Bellman-Ford | V| times, once from each node ©?

» Add a new node s’ and connect it to all nodes of G with zero length edges. Bellman-

Ford from s’ will fill find a negative length cycle if there is one. why does
this work?

* Negative cycle detection can be done with one Bellman-Ford invocation.

35

Shortest paths in a DAG

Single-Source Shortest Path Problems

Input: A directed graph G = (V, E) with arbitrary (including negative) edge
lengths. For edge ¢ = (i, v), [(e) = [(u, V) is its length.

e Given nodes s, 1 find shortest path from s to 7.

* Given node s find shortest path from s to all other nodes.
Simplification of algorithms for S

* No cycles and hence no negative length cycles! Hence can find shortest paths
even for negative length edges

* Can order nodes using topological sort

36

Algorithm for DAGs

e Want to find shortest paths from s. Ignore nodes not reachable from s.

e Lets =v,v,,Vv..(,...,V, be atopological sort of G.

Observation:

o shortest path from s to v; cannot use any node fromv, {, ..., v,

* can find shortest paths in topological sort order

37

Shortest Paths for DAGs

Example
A B C
5 X 1
D ; -4
/\
. ° A B C

Shortest Paths for DAGs

Example
()
5 4| -
: -4
/\
O O

Algorithm for DAGs

for i = 1 to n do
d(s, vi) = ®

d(s, s) =0

for 1 = 1 to n - 1 do

for each edge (vi , v5) in Adj(vi) do

d(s,v;) = min{d(s, v;),d(s,v;) + {(v;, V) }

return d(s, °*) values computed

Induction on 1 and observations in previous slide.

O(m + n) time algorithm! Works for negative edge lengths and
hence can find longest paths in a DAG.

40

All pairs shortest paths

Shortest Path Problems

Input: A (undirected or directed) graph G = (V, E) with edge lengths (or costs).
Foredge ¢ = (u,v), l(e) = [(u,Vv) is its length.

 Given nodes s, 7 find shortest path from s to 7.

* Given node s find shortest path from s to all other nodes.

* Find shortest paths for all pairs of nodes.

41

SSSP: Single-Source Shortest Paths

Input: A (undirected or directed) graph G = (V, E) with edge lengths. For edge
e = (u,v), l(e) = l(u,v) is its length.

e Given nodes s, 7 find shortest path from s to 7.

e Given node s find shortest path from s to all other nodes

for non-negative edge lengths.

Running time: O((m + n) log n) with heaps and O(m + nlog n) with advanced
priority queues.

for arbitrary edge lengths. Running time: O(nm).

42

All-Pairs Shortest Paths - Using known algorithms...
All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V, E') with edge lengths. For edge
e = (u,v),l(e) = l(u,v) is its length.

Find shortest paths for all pairs of hodes.

Apply single-source algorithms 7 times, once for each vertex.

- Non-negative lengths. O(nm log 1) with heaps and O(nm + n” log n) using advanced
priority queues.

. Arbitrary edge lengths: O(n°m).
Ot ifm = Q(n?)

Can we do better?

43

All Pairs Shortest Paths: A
recursive solution

All-Pairs: Recursion on index of intermediate nodes

» Number vertices arbitrarily as v, v,,..., v,

. . length of shortest walk from v; to v; among all walks in which the largest

index of an intermediate node is at most k (could be — o if there is a negative length

cycle).
dist(z, 7,0) =

1
1 > 3
1
/ \\\; dist(z,7,1) =
2]
i * : % dist(, 7,2) =
\ 100 dist(7, 7,3) =

45

All-Pairs: Recursion on index of intermediate nodes

» Number vertices arbitrarily as v, v,,..., v,

. length of shortest walk from v; to v; among all walks in which the largest

index of an intermediate node is at most k (could be — o if there is a negative length
cycle).

1 dist(, j,0) = 100

/ 2\\\1“ | dist(i, 7,1) =
i * y | dist(, 7,2) =

100 dist(7, 7,3) =

46

All-Pairs: Recursion on index of intermediate nodes

» Number vertices arbitrarily as v, v,,..., v,

. length of shortest walk from v; to v; among all walks in which the largest

index of an intermediate node is at most k (could be — o if there is a negative length

cycle).
dist(i, j,0) = 100

1
1 > 3
1
pd \N dist(i, j,1) = 9
2]
i * : % dist(, 7,2) =
\ 100 dist(7, 7,3) =

47

All-Pairs: Recursion on index of intermediate nodes

» Number vertices arbitrarily as v, v,,..., v,

. length of shortest walk from v; to v; among all walks in which the largest

index of an intermediate node is at most k (could be — o if there is a negative length
cycle).

dist(i, j,0) = 100

/ \\\‘ dist(i,7,1) = 9

2
\1‘ / dist(7,7,2) = 8
\ dist(i,7,3) =

48

All-Pairs: Recursion on index of intermediate nodes

» Number vertices arbitrarily as v, v,,..., v,

. length of shortest walk from v; to v; among all walks in which the largest

index of an intermediate node is at most k (could be — o if there is a negative length
cycle).

1 dist(, j,0) = 100

10
1

3
1
J
i t‘ ° / dist(1,),2) = 8
00 dist(7,7,3) = 5

49

For the following graph, dist(7, 7,2) is ...

Review
1. 9
\\ 2. 10
\\ .
/ 4. 12
5. 15

All-Pairs: Recursion on index of intermediate nodes

k w(\k,j,k— 1)

—

dist(i, k,k — 1)

dist(i,7,k— 1)

dist(i,j, k— 1)
dist(i, k,k— 1) + dist(k,j, kK — 1)

dist(Z, j, k) = min {

« Base case: dist(7,7,0) = [(1,)) if (i,]) € E, otherwise co

. If i — j shortest walk goes through k then k occurs only once on the path
— otherwise there Is a negative length cycle

51

All-Pairs: Recursion on index of intermediate nodes

If i can reach k and k can reach j and dist(k, K,k — 1) < 0 then G has a
negative length cycle containing k and dist(z, j, k) = — 0.

Recursion below is valid only if dist(k, k, k — 1) > (. We can detect this during
the algorithm or wait till the end.

dist(z,j,k— 1)

dist(i,j, k) =minq§ . . ist(k, 7
18t(i, J, k) mm{dwt(l,kak_ 1) + dist(k, j, k — 1)

52

Floyd-Warshall Algorithm

Floyd - Warshall Algorithm

For All-Pairs Shortest Paths

for i = 1 to n do
for 7 = 1 to n do

d(i, j,0) = (i,))

3
(* 1(i, j) = o if (i, j) & B, 0 if i = j *) On°)
for Kk = 1 to n do 3
for 1 = 1 to n do ®(n)
for 7 = 1 to n do
dist(i, j, k— 1) via iInduction

dist(i, j, k) = min o , , . C oy
6.0, {dlst(z,k,k— 1) + dist(k, j, k— 1) and recursive definition
for 1 = 1 to n do
if (dist(i,i,n) < 0) then
Output d negative cycle in G

54

Floyd - Warshall Algorithm

Finding the Paths

Question: Can we find the paths in addition to the distances?

 Create an X n array Next that stores the next vertex on shortest path for
each pair of vertices

« With array Next, for any pair of given vertices 1,] can compute a shortest
path in O(n) time.

55

Floyd - Warshall Algorithm

Finding the Paths

for 1 = 1 to n do
for 7 = 1 to n do

d(i, j,0) = I(i, J)

(* 1(i, j) = o if (i, j) € E, 0 if i = j *)

Next(i, 7) = —1
for Kk = 1 to n do .
for i = 1 to n do Given Next array and any two

for 7 = 1 to n do vertices i,] describe an O(n)
if (dG,j,k—1)>dG,kk—1)+dk,j,k—1)) then . . .
Ak = dikk— 1)+ dek. ik — 1) algorithm to find a 1 — J shortest
Next(i, j) = k path.

for 1 = 1 to n do
if (dist(i,i,n) < 0) then
Output d negative cycle in G

56

Summary of shortest path
algorithms

Summary of results on shortest paths

Single source

No negative edges Dijkstra O(n log n + m)

Edge lengths can be negative | Bellman Ford O(nm)

All Pairs Shortest Paths

No negative edges n * Dijkstra O(n2log n + nm)
No negative cycles n * Bellman Ford O(n2m) = O(n%
No negative cycles Johnson’s | O(hm + n2log n)
No negative cycles Floyd-Warsh O(n3)
Unweighted Matrix multiplication 2 | O(n2-38), O(n2-58)

58

Summary of results on shortest paths

(1) The algorithm for the case that there are no negative cycles, and doing all
shortest paths, works by computing a potential function using Bellman-Ford
and then doing Dijkstra. It is mentioned for the sake of completeness, but it
outside the scope of the class.

(2) https://resources.mpi-inf.mpg.de/ departments/d1/teaching/ss12/
AdvancedGraphAlgorithms/Slides14.pdf

59

