
Bellman-Ford and Dynamic
Programming on Graphs

All mistakes are my own! - Ivan Abraham (Fall 2024)

Sides based on material by Kani, Erickson, Chekuri, et. al.

Why Dijkstra’s algorithm fails with negative
edges

￼2

What are the distances computed by Dijkstra’s algorithm?

￼3

￼ ￼

￼
￼ ￼

￼ ￼

￼
￼ ￼

 are the distances computed by Dijkstra’s algorithm?

With negative length edges, Dijkstra’s algorithm can fail!

￼4

￼ ￼

￼
￼ ￼

￼ ￼

￼
￼ ￼

￼ is a shortest path from ￼ to ￼ then
￼ for ￼ . Holds true only for non-negative edge lengths.

s → v0 → v1 → v2 . . . → vk s vk
dist(s, vi) ≤ dist(s, vi+1) 0 ≤ i < k

Shortest paths with negative lengths

Lemma: Let ￼ be a directed graph with arbitrary edge lengths and let

￼

be a shortest path from ￼ to ￼ then for ￼ :

• ￼ is a shortest path from ￼ to ￼

• False: ￼ for ￼ .

G

s = v0 → v1 → v2 . . . → vk = t

s t 1 ≤ i < k

s = v0 → v1 → v2 → . . . vi s vi

dist(s, vi) ≤ dist(s, vk) 1 ≤ i < k

￼5

Why can’t we just re-normalize the edge lengths?
Instinctual thought

Why can’t we simply add a weight
to each edge so that the shortest
length is 0 (or positive)?

￼6

s a

b c

t

-3

5 1

10

-2 3 Shortest Path:

 ￼s → a → c → t

Why can’t we just re-normalize the edge lengths?
Instinctual thought

￼7

s a

b c

t

-3

5 1

10

-2 3 Shortest Path:

 ￼s → a → c → t

s a

b c

t

0

8 4

16

1 6 Shortest Path:

 ￼s → b → t

Adding weights to edges penalizes paths with more edges, gives wrong path
on original graph.

Negative length cycles
Definition

A cycle ￼ is a negative length cycle if the sum of the edge lengths of ￼ is negativeC C

￼8

s

b

f

c

d

9

e

tg

10

18

6

15 -8

44

6

3

1911

-16
30

20
16

Definition

A cycle ￼ is a negative length cycle if the sum of the edge lengths of ￼ is negativeC C

￼9

s

b

f

c

d

9

e

tg

10

18

6

15 -8

44

6

3

1911

-16
30

20
16

What is the shortest path distance
between ￼ and ￼ ?

Reminder: Paths have to be simple...

s t

Negative length cycles

Shortest paths and negative cycles

Given ￼ with edge lengths and ￼ . Suppose

• ￼ has a negative length cycle ￼ , and ￼ can reach ￼ and ￼ can reach ￼.

Question: What is the shortest distance from ￼ to ￼ ?

Possible answers:

• undefined, that is ￼ , OR

• the length of a shortest simple path from ￼ to ￼.

G = (V, E) s, t

G C s C C t

s t

−∞

s t

￼10

Restating problem of shortest path with negative edges
Alternatively: Finding shortest walks

Recall that given a graph ￼ :

• A path is a sequence of distinct vertices ￼ such that ￼ for
￼ .

• A walk is a sequence of vertices ￼ such that ￼ for
￼ .

Define ￼ to be the length of a shortest walk from ￼ to ￼

• If there is a walk from ￼ to ￼ that contains negative length cycle then ￼

• Else, there is a path with at most ￼ edges whose length is equal to the length of a
shortest walk and ￼ is finite

G = (V, E)

v1, v2, . . . , vk (vi, vi+1) ∈ E
1 ≤ i ≤ k − 1

v1, v2, . . . , vk (vi, vi+1) ∈ E
1 ≤ i ≤ k − 1

dist(u, v) u v

u v dist(u, v) = − ∞

n − 1
dist(u, v)

￼11

Shortest paths with negative edges
Algorithmic problems

￼12

Input: A directed graph ￼ with edge lengths (could be negative). For
edge ￼ , ￼ is its length.

Questions:

• Given nodes ￼ either find a negative length cycle ￼ that ￼ can reach or find
a shortest path from ￼ to ￼.

• Given node ￼ , either find a negative length cycle ￼ that ￼ can reach or find
shortest path distances from ￼ to all reachable nodes.

• Check if ￼ has a negative length cycle or not.

G = (V, E)
e = (u, v) l(e) = l(u, v)

s, t C s
s t

s C s
s

G

Bellman Ford Algorithm

￼13

Shortest paths and recursion
• Is it possible to compute the shortest path distance from ￼ to ￼ recursively?

• What are the smaller sub-problems?

Lemma: Let ￼ be a directed graph with arbitrary edge lengths. If
￼

is a shortest path from ￼ to ￼ then for ￼ :

 ￼ is a shortest path from ￼ to ￼

Sub-problem idea: paths of fewer hops/edges

s t

G
s = v0 → v1 → v2 → . . . → vk

s vk 1 ≤ i < k

s = v0 → v1 → v2 → . . . → vi s vi

￼14

Hop-based recursion
Bellman-Ford Algorithm

Single-source problem: Fix source ￼ .

Assumptions: All nodes can be reached from ￼ in ￼ . Assume ￼ has no
negative-length cycle (for now).

Define, ￼ as the shortest walk length from ￼ to ￼ using at most ￼ edges.
Then note, ￼ . Recursion for ￼ :

￼

Base case: ￼ and ￼ for all ￼

s

s G G

d(v, k) s v k
dist(s, v) = d(v, n − 1) d(v, k)

d(v, k) = min {
min
u∈V (d(u, k − 1) + l(u, v))
d(v, k − 1)

d(s,0) = 0 d(v,0) = ∞ v ≠ s
￼15

Bellman-Ford Algorithm
Example

￼16

∞

∞

∞

∞

∞

0

∞

2-8

1

-3 -3

0 5

8

4

-1

36

E

FD

A C

B

S

Round S A B C D E F

0 0 ∞ ∞ ∞ ∞ ∞ ∞
1

2

3

4

5

6

∞

∞

∞

4

6

0

3

Bellman-Ford Algorithm
Example

￼17

2-8

1

-3 -3

0 5

8

4

-1

36

E

FD

A C

B

S

Round S A B C D E F

0 0 ∞ ∞ ∞ ∞ ∞ ∞
1 0 6 4 3 ∞ ∞ ∞
2

3

4

5

6

4

∞

9

2

6

0

3

Bellman-Ford Algorithm
Example

￼18

2-8

1

-3 -3

0 5

8

4

-1

36

E

FD

A C

B

S

Round S A B C D E F

0 0 ∞ ∞ ∞ ∞ ∞ ∞
1 0 6 4 3 ∞ ∞ ∞
2 0 6 2 3 4 ∞ 9
3

4

5

6

2

11

7

2

1

0

3

Bellman-Ford Algorithm
Example

￼19

2-8

1

-3 -3

0 5

8

4

-1

36

E

FD

A C

B

S

Round S A B C D E F

0 0 ∞ ∞ ∞ ∞ ∞ ∞
1 0 6 4 3 ∞ ∞ ∞
2 0 6 2 3 4 ∞ 9
3 0 1 2 3 2 11 7
4

5

6

2

9

7

2

-1

0

3

Bellman-Ford Algorithm
Example

￼20

2-8

1

-3 -3

0 5

8

4

-1

36

E

FD

A C

B

S

Round S A B C D E F

0 0 ∞ ∞ ∞ ∞ ∞ ∞
1 0 6 4 3 ∞ ∞ ∞
2 0 6 2 3 4 ∞ 9
3 0 1 2 3 2 11 7
4 0 -1 2 3 2 9 7
5

6

Bellman-Ford Algorithm
Example

￼21

Round S A B C D E F

0 0 ∞ ∞ ∞ ∞ ∞ ∞
1 0 6 4 3 ∞ ∞ ∞
2 0 6 2 3 4 ∞ 9
3 0 1 2 3 2 11 7
4 0 -1 2 3 2 9 7
5 0 -1 2 3 1 9 7
6

1

9

7

2

-1

0

3

2-8

1

-3 -3

0 5

8

4

-1

36

E

FD

A C

B

S

Bellman-Ford Algorithm
Example

￼22

Round S A B C D E F

0 0 ∞ ∞ ∞ ∞ ∞ ∞
1 0 6 4 3 ∞ ∞ ∞
2 0 6 2 3 4 ∞ 9
3 0 1 2 3 2 11 7
4 0 -1 2 3 2 9 7
5 0 -1 2 3 1 9 7
6 0 -2 2 3 1 9 7

1

9

7

2

-2

0

3

2-8

1

-3 -3

0 5

8

4

-1

36

E

FD

A C

B

S

1

9

7

2

-2

0

3

Bellman-Ford Algorithm
Example

￼23

2-8

1

-3 -3

0 5

8

4

-1

36

E

FD

A C

B

S

Round S A B C D E F

0 0 ∞ ∞ ∞ ∞ ∞ ∞
1 0 6 4 3 ∞ ∞ ∞
2 0 6 2 3 4 ∞ 9
3 0 1 2 3 2 11 7
4 0 -1 2 3 2 9 7
5 0 -1 2 3 1 9 7
6 0 -2 2 3 1 9 7

Bellman-Ford Algorithm
Algorithm

￼24

Create ￼ list from ￼

for each ￼ do
￼

￼

for k = 1 to n − 1 do
 for each ￼ do

d(v, k) ￼ d(v, k − 1)
 for each edge ￼ do

d(v, k) = min{d(v, k), d(u, k − 1) + l(u, v)}

for each ￼ do
dist(s, v) ￼ d(v, n − 1)

In(G) adj(G)

u ∈ V
d(u,0) ← ∞

d(s,0) ← 0

v ∈ V
←

(u, v) ∈ In(v)

v ∈ V
←

Running time: ￼

Space: ￼

Space can be reduced to
￼

O(n(n + m))

O(m + n2)

O(m + n)

Bellman-Ford Algorithm
Algorithm - cleaner version

￼25

for each ￼ do
￼

￼

for k = 1 to n − 1 do
 for each ￼ do

for each edge ￼ do
 d(v) = min{d(v), d(u) + l(u, v)}

for each ￼ do
dist(s, v) ￼ d(v, n − 1)

u ∈ V
d(u,0) ← ∞

d(s,0) ← 0

v ∈ V
(u, v) ∈ In(v)

v ∈ V
←

Running time: ￼

Space: ￼

Do we need the ￼ list?

O(mn)

O(m + n)

In(V)

Bellman-Ford Algorithm
Algorithm - cleaner version

￼26

for each ￼ do
￼

￼

for k = 1 to n − 1 do
for each edge ￼ do
 d(v) = min{d(v), d(u) + l(u, v)}

for each ￼ do
dist(s, v) ￼ d(v, n − 1)

u ∈ V
d(u,0) ← ∞

d(s,0) ← 0

(u, v) ∈ G

v ∈ V
←

Running time: ￼

Space: ￼

O(mn)

O(n)

Bellman-Ford Algorithm
Negative cycles

What happens if we run this on a graph with negative cycles?

￼27

s

a

b

-11

-1

Round s a b

0 0 ∞ ∞
1 0 1 ∞
2 0 1 0

3 -1 1 0

4 -1 0 0

5 -1 0 -1

Correctness: detecting negative length cycle

Lemma: Suppose ￼ has a negative cycle ￼ reachable from ￼ . Then there is some
node ￼ such that ￼ .

Proof: Suppose not. Let ￼ be negative length cycle
reachable from ￼ . Then ￼ is finite for ￼ since ￼ is reachable from ￼ .

By assumption ￼ for all ￼ ; implies no change in ￼ iteration;
￼ for ￼ .

This means ￼ for ￼ and
￼ .

Summing/telescoping these inequalities results in ￼ which contradicts the
assumption that ￼ !

G C s
v ∈ C d(v, n) < d(v, n − 1)

C = v1 → v2 → . . . → vh → v1
s d(vi, n − 1) 1 ≤ i ≤ h C s

d(v, n) ≥ d(v, n − 1) v ∈ C nth

d(vi, n − 1) = d(vi, n) 1 ≤ i ≤ h

d(vi, n − 1) ≤ d(vi−1, n − 1) + l(vi−1, vi) 2 ≤ i ≤ h
d(v1, n − 1) ≤ d(vn, n − 1) + l(vn, v1)

0 ≤ l(C)
l(C) < 0

￼28

Proof of lemma …

￼

￼

. . .

￼

. . .

￼

￼

d(v1, n) ≤ d(v0, n − 1) + l(v0, v1)

d(v2, n) ≤ d(v1, n − 1) + l(v1, v2)

d(vi, n) ≤ d(vi−1, n − 1) + l(vi−1, vi)

d(vk, n) ≤ d(vk−1, n − 1) + l(vk−1, vk)

d(v0, n) ≤ d(vk, n − 1) + l(vk, v0)
￼29

￼v0

￼v1 ￼v2

￼v3

￼v4￼v5

￼s
￼C

￼30

￼v0

￼v1 ￼v2

￼v3

￼v4￼v5

￼s
￼C

￼

￼

￼ is a not a negative cycle. Contradiction!

k

∑
i=0

d(vi, n) ≤
k

∑
i=0

d(vi, n) +
k

∑
i=1

l(vi+1, vi) + l(vk, v0)

0 ≤
k

∑
i=1

l(vi−1, vi) + l(vk, v0) = len(C)

C

Proof of lemma …

Negative cycles can not hide

Lemma restated: If ￼ does not has a negative length cycle reachable from
￼ .

Also, ￼ is the length of the shortest path between ￼ and ￼ .

Put together are the following:

Lemma: If ￼ has a negative length cycle reachable from ￼ there is some
node ￼ such that ￼ .

G
s ⇒ ∀v : d(v, n) = d(v, n − 1)

d(v, n − 1) s v

G s ⟺
v d(v, n) < d(v, n − 1)

￼31

Bellman-Ford: negative cycle detection
Final version

￼32

for each ￼ do
￼

￼
for k = 1 to n − 1 do

for each ￼ do
for each edge ￼ do
d(v) = min{d(v), d(u) + l(u, v)}

(* One more iteration to check if distances change *)

for each ￼ do
for each edge ￼ do

if (d(v) > d(u) + l(u, v))
Output “Negative Cycle”

for each ￼ do
dist(s, v) ← d(v)

u ∈ V
d(u) ← ∞

d(s) ← 0

v ∈ V
(u, v) ∈ In(v)

v ∈ V
(u, v) ∈ In(v)

v ∈ V

Variants on Bellman-Ford

￼33

Finding the Paths and a Shortest Path Tree

How do we find a shortest path tree in addition to distances?

• For each ￼ the ￼ can only get smaller as the algorithm proceeds.

• If ￼ becomes smaller it is because we found a vertex ￼ such that
￼ and we update ￼ . That is, we found a
shorter path to ￼ through ￼ .

• For each ￼ have a ￼ pointer and update it to point to ￼ if ￼ finds a shorter
path via ￼ .

• At the end of the algorithm ￼ pointers give a shortest path tree oriented
towards the source ￼ .

v d(v)

d(v) u
d(v) > d(u) + l(u, v) d(v) = d(u) + l(u, v)

v u

v prev(v) u v
u

prev(v)
s

￼34

Negative Cycle Detection

Negative Cycle Detection

Given directed graph ￼ with arbitrary edge lengths, does it have a negative length cycle?

• Bellman-Ford checks whether there is a negative cycle ￼ that is reachable from a
specific vertex ￼ . There may negative cycles not reachable from ￼ .

• Run Bellman-Ford ￼ times, once from each node ￼ ?

• Add a new node ￼ and connect it to all nodes of ￼ with zero length edges. Bellman-
Ford from ￼ will fill find a negative length cycle if there is one. Exercise: why does
this work?

• Negative cycle detection can be done with one Bellman-Ford invocation.

G

C
s s

|V | u

s′￼ G
s′￼

￼35

Shortest paths in a DAG
Single-Source Shortest Path Problems

Input: A directed acyclic graph ￼ with arbitrary (including negative) edge
lengths. For edge ￼ is its length.

• Given nodes ￼ find shortest path from ￼ to ￼.

• Given node ￼ find shortest path from ￼ to all other nodes.

Simplification of algorithms for DAGs

• No cycles and hence no negative length cycles! Hence can find shortest paths
even for negative length edges

• Can order nodes using topological sort

G = (V, E)
e = (u, v), l(e) = l(u, v)

s, t s t

s s

￼36

Algorithm for DAGs

• Want to find shortest paths from ￼ . Ignore nodes not reachable from ￼ .

• Let ￼ be a topological sort of ￼ .

Observation:

• shortest path from ￼ to ￼ cannot use any node from ￼

• can find shortest paths in topological sort order

s s

s = v1, v2, vi+1, . . . , vn G

s vi vi+1, …, vn

￼37

Shortest Paths for DAGs
Example

￼38

A B

D

C

F

E

H

G

5 -4 -1

23

-4
2

A B C D E F G H

-4

5 -1 3

-4

2 2

Shortest Paths for DAGs
Example

￼39

A B

D

C

F

E

H

G

5 -4 -1

23

-4
2

0 ∞ ∞ 5 -4 8 -2 -8

-4

5 -1 3

-4

2 2

Algorithm for DAGs

Correctness: Induction on ￼ and observations in previous slide.
Running time: ￼ time algorithm! Works for negative edge lengths and
hence can find longest paths in a DAG.

i
O(m + n)

￼40

for i = 1 to n do
 d(s, vi) = ∞

d(s, s) = 0
for i = 1 to n − 1 do

for each edge (vi , vj) in Adj(vi) do
￼

return d(s, ·) values computed

d(s, vj) = min{d(s, vj), d(s, vi) + l(vi, vj)}

All pairs shortest paths
Shortest Path Problems

Input: A (undirected or directed) graph ￼ with edge lengths (or costs).
For edge ￼ , ￼ is its length.

• Given nodes ￼ find shortest path from ￼ to ￼.

• Given node ￼ find shortest path from ￼ to all other nodes.

• Find shortest paths for all pairs of nodes.

G = (V, E)
e = (u, v) l(e) = l(u, v)

s, t s t

s s

￼41

SSSP: Single-Source Shortest Paths

Input: A (undirected or directed) graph ￼ with edge lengths. For edge
￼ , ￼ is its length.

• Given nodes ￼ find shortest path from ￼ to ￼.

• Given node ￼ find shortest path from ￼ to all other nodes

Dijkstra’s algorithm for non-negative edge lengths.
Running time: ￼ with heaps and ￼ with advanced
priority queues.

Bellman-Ford algorithm for arbitrary edge lengths. Running time: ￼ .

G = (V, E)
e = (u, v) l(e) = l(u, v)

s, t s t

s s

O((m + n) log n) O(m + n log n)

O(nm)
￼42

All-Pairs Shortest Paths - Using known algorithms...
All-Pairs Shortest Path Problem

Input A (undirected or directed) graph ￼ with edge lengths. For edge
￼ ,￼ is its length.

Find shortest paths for all pairs of nodes.

Apply single-source algorithms ￼ times, once for each vertex.

• Non-negative lengths. ￼ with heaps and ￼ using advanced
priority queues.

• Arbitrary edge lengths: ￼ .
￼ if ￼

Can we do better?

G = (V, E)
e = (u, v) l(e) = l(u, v)

n

O(nm log n) O(nm + n2 log n)

O(n2m)
Θ(n4) m = Ω(n2)

￼43

All Pairs Shortest Paths: A
recursive solution

￼44

All-Pairs: Recursion on index of intermediate nodes

• Number vertices arbitrarily as ￼

• ￼ : length of shortest walk from ￼ to ￼ among all walks in which the largest
index of an intermediate node is at most ￼ (could be ￼ if there is a negative length
cycle).

v1, v2, . . . , vn

dist(i, j, k) vi vj
k −∞

￼45

i

1 3

j

2

10
5

2

1
1

1

4

100

￼dist(i, j,0) =

￼dist(i, j,1) =

￼dist(i, j,2) =

￼dist(i, j,3) =

All-Pairs: Recursion on index of intermediate nodes

• Number vertices arbitrarily as ￼

• ￼ : length of shortest walk from ￼ to ￼ among all walks in which the largest
index of an intermediate node is at most ￼ (could be ￼ if there is a negative length
cycle).

v1, v2, . . . , vn

dist(i, j, k) vi vj
k −∞

￼46

i

1 3

j

2

10
5

2

1
1

1

4

100

￼dist(i, j,0) = 100

￼dist(i, j,1) =

￼dist(i, j,2) =

￼dist(i, j,3) =

All-Pairs: Recursion on index of intermediate nodes

• Number vertices arbitrarily as ￼

• ￼ : length of shortest walk from ￼ to ￼ among all walks in which the largest
index of an intermediate node is at most ￼ (could be ￼ if there is a negative length
cycle).

v1, v2, . . . , vn

dist(i, j, k) vi vj
k −∞

￼47

i

1 3

j

2

10
5

2

1
1

1

4

100

￼dist(i, j,0) = 100

￼dist(i, j,1) = 9

￼dist(i, j,2) =

￼dist(i, j,3) =

All-Pairs: Recursion on index of intermediate nodes

• Number vertices arbitrarily as ￼

• ￼ : length of shortest walk from ￼ to ￼ among all walks in which the largest
index of an intermediate node is at most ￼ (could be ￼ if there is a negative length
cycle).

v1, v2, . . . , vn

dist(i, j, k) vi vj
k −∞

￼48

i

1 3

j

2

10
5

2

1
1

1

4

100

￼dist(i, j,0) = 100

￼dist(i, j,1) = 9

￼dist(i, j,2) = 8

￼dist(i, j,3) =

All-Pairs: Recursion on index of intermediate nodes

• Number vertices arbitrarily as ￼

• ￼ : length of shortest walk from ￼ to ￼ among all walks in which the largest
index of an intermediate node is at most ￼ (could be ￼ if there is a negative length
cycle).

v1, v2, . . . , vn

dist(i, j, k) vi vj
k −∞

￼49

i

1 3

j

2

10
5

2

1
1

1

4

100

￼dist(i, j,0) = 100

￼dist(i, j,1) = 9

￼dist(i, j,2) = 8

￼dist(i, j,3) = 5

For the following graph, ￼ is …dist(i, j,2)

￼50

i

1

3

j

2

10

5

2

1

1

5

8

200

1. 9

2. 10

3. 11

4. 12

5. 15

2

Review

All-Pairs: Recursion on index of intermediate nodes

• Base case: ￼ , otherwise ￼

• Correctness: If ￼ shortest walk goes through ￼ then ￼ occurs only once on the path
— otherwise there is a negative length cycle

dist(i, j,0) = l(i, j) if (i, j) ∈ E ∞

i → j k k

￼51

i

k￼dist(i, k, k − 1)

j

￼dist(k, j, k − 1)

￼dist(i, j, k − 1)

￼dist(i, j, k) = min {dist(i, j, k − 1)
dist(i, k, k − 1) + dist(k, j, k − 1)

All-Pairs: Recursion on index of intermediate nodes

If ￼ can reach ￼ and ￼ can reach ￼ and ￼ then ￼ has a
negative length cycle containing ￼ and ￼ .

Recursion below is valid only if ￼ . We can detect this during
the algorithm or wait till the end.

i k k j dist(k, k, k − 1) < 0 G
k dist(i, j, k) = − ∞

dist(k, k, k − 1) ≥ 0

￼52

￼dist(i, j, k) = min {dist(i, j, k − 1)
dist(i, k, k − 1) + dist(k, j, k − 1)

Floyd-Warshall Algorithm

￼53

Floyd - Warshall Algorithm
For All-Pairs Shortest Paths

￼54

for i = 1 to n do
 for j = 1 to n do

 ￼

(* l(i, j) = ∞ if (i, j) ￼ E, 0 if i = j *)
for k = 1 to n do

for i = 1 to n do
for j = 1 to n do

￼

for i = 1 to n do
if ￼ then

Output ∃ negative cycle in G

d(i, j,0) = l(i, j)

∉

dist(i, j, k) = min{dist(i, j, k − 1)
dist(i, k, k − 1) + dist(k, j, k − 1)

(dist(i, i, n) < 0)

Running time: ￼

Space: ￼

Correctness: via induction
and recursive definition

Θ(n3)

Θ(n3)

Floyd - Warshall Algorithm
Finding the Paths

￼55

Question: Can we find the paths in addition to the distances?

• Create a ￼ array Next that stores the next vertex on shortest path for
each pair of vertices

• With array Next, for any pair of given vertices ￼ can compute a shortest
path in ￼ time.

n × n

i, j
O(n)

Floyd - Warshall Algorithm
Finding the Paths

￼56

for i = 1 to n do
 for j = 1 to n do

 ￼

(* l(i, j) = ∞ if (i, j) ￼ E, 0 if i = j *)
Next(i, j) = −1

for k = 1 to n do
for i = 1 to n do

for j = 1 to n do
if ￼ then

￼
Next(i, j) = k

for i = 1 to n do
if ￼ then

Output ∃ negative cycle in G

d(i, j,0) = l(i, j)

∉

(d(i, j, k − 1) > d(i, k, k − 1) + d(k, j, k − 1))
d(i, j, k) = d(i, k, k − 1) + d(k, j, k − 1)

(dist(i, i, n) < 0)

Exercise:

Given Next array and any two
vertices ￼ describe an ￼
algorithm to find a ￼ shortest
path.

i, j O(n)
i − j

Summary of shortest path
algorithms

￼57

Summary of results on shortest paths

￼58

Single source

No negative edges Dijkstra O(n log n + m)

Edge lengths can be negative Bellman Ford O(nm)

All Pairs Shortest Paths

No negative edges n * Dijkstra O(n2 log n + nm)

No negative cycles n * Bellman Ford O(n2m) = O(n4)

No negative cycles Johnson’s 1 O(nm + n2 log n)

No negative cycles Floyd-Warsh O(n3)

Unweighted Matrix multiplication 2 O(n2.38), O(n2.58)

(1) The algorithm for the case that there are no negative cycles, and doing all
shortest paths, works by computing a potential function using Bellman-Ford
and then doing Dijkstra. It is mentioned for the sake of completeness, but it
outside the scope of the class.

(2) https://resources.mpi-inf.mpg.de/ departments/d1/teaching/ss12/
AdvancedGraphAlgorithms/Slides14.pdf

￼59

Summary of results on shortest paths

