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Why Dijkstra’s algorithm fails with negative 
edges
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What are the distances computed by Dijkstra’s algorithm?
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 are the distances computed by Dijkstra’s algorithm?

With negative length edges, Dijkstra’s algorithm can fail!
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￼  is a shortest path from ￼  to ￼ then 
￼  for ￼ . Holds true only for non-negative edge lengths.

s → v0 → v1 → v2 . . . → vk s vk
dist(s, vi) ≤ dist(s, vi+1) 0 ≤ i < k



Shortest paths with negative lengths

Lemma:  Let ￼  be a directed graph with arbitrary edge lengths and let 


￼  


be a shortest path from ￼  to ￼ then for ￼ : 


• ￼  is a shortest path from ￼  to ￼ 


• False: ￼  for ￼ .

G

s = v0 → v1 → v2 . . . → vk = t

s t 1 ≤ i < k

s = v0 → v1 → v2 → . . . vi s vi

dist(s, vi) ≤ dist(s, vk) 1 ≤ i < k
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Why can’t we just re-normalize the edge  lengths?
Instinctual thought

Why can’t we simply add a weight 
to each edge so that the shortest 
length is 0 (or positive)?
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Why can’t we just re-normalize the edge  lengths?
Instinctual thought
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Adding weights to edges penalizes paths with more edges, gives wrong path 
on original graph.



Negative length cycles
Definition

A cycle ￼  is a negative length cycle if the sum of the edge lengths of ￼  is negativeC C
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Definition

A cycle ￼  is a negative length cycle if the sum of the edge lengths of ￼  is negativeC C
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What is the shortest path distance 
between ￼  and ￼ ? 


Reminder: Paths have to be simple...

s t

Negative length cycles



Shortest paths and negative cycles

Given ￼  with edge lengths and ￼ . Suppose  


• ￼  has a negative length cycle ￼ , and ￼  can reach ￼  and ￼  can reach ￼.


Question: What is the shortest distance from ￼  to ￼ ? 


Possible answers:


• undefined, that is ￼ , OR 


• the length of a shortest simple path from ￼  to ￼.

G = (V, E) s, t

G C s C C t

s t

−∞

s t
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Restating problem of shortest path with negative edges
Alternatively: Finding shortest walks

Recall that given a graph ￼ : 


• A path is a sequence of distinct vertices ￼  such that ￼  for 
￼ . 


• A walk is a sequence of vertices ￼  such that ￼  for 
￼ .


Define ￼  to be the length of a shortest walk from ￼  to ￼ 


• If there is a walk from ￼  to ￼  that contains negative length cycle then ￼ 


• Else, there is a path with at most ￼  edges whose length is equal to the length of a 
shortest walk and ￼  is finite 

G = (V, E)

v1, v2, . . . , vk (vi, vi+1) ∈ E
1 ≤ i ≤ k − 1

v1, v2, . . . , vk (vi, vi+1) ∈ E
1 ≤ i ≤ k − 1

dist(u, v) u v

u v dist(u, v) = − ∞

n − 1
dist(u, v)
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Shortest paths with negative edges
Algorithmic problems
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Input: A directed graph ￼  with edge lengths (could be negative). For 
edge ￼ , ￼  is its length.


Questions: 


• Given nodes ￼  either find a negative length cycle ￼  that ￼  can reach or find 
a shortest path from ￼  to ￼. 


• Given node ￼ , either find a negative length cycle ￼  that ￼  can reach or find 
shortest path distances from ￼  to all reachable nodes. 


• Check if ￼  has a negative length cycle or not.

G = (V, E)
e = (u, v) l(e) = l(u, v)

s, t C s
s t

s C s
s

G



Bellman Ford Algorithm 
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Shortest paths and recursion
• Is it possible to compute the shortest path distance from ￼  to ￼ recursively? 


• What are the smaller sub-problems?


Lemma: Let ￼  be a directed graph with arbitrary edge lengths. If 
￼  


is a shortest path from ￼  to ￼  then for ￼ : 


 ￼  is a shortest path from ￼  to ￼ 


Sub-problem idea: paths of fewer hops/edges

s t

G
s = v0 → v1 → v2 → . . . → vk

s vk 1 ≤ i < k

s = v0 → v1 → v2 → . . . → vi s vi

￼14



Hop-based recursion
Bellman-Ford Algorithm

Single-source problem: Fix source ￼ . 


Assumptions: All nodes can be reached from ￼  in ￼ .  Assume ￼  has no 
negative-length cycle (for now).


Define, ￼  as the shortest walk length from ￼  to ￼  using at most ￼  edges. 
Then note,  ￼ . Recursion for ￼ :


￼ 


Base case: ￼  and ￼  for all ￼

s

s G G

d(v, k) s v k
dist(s, v) = d(v, n − 1) d(v, k)

d(v, k) = min {
min
u∈V (d(u, k − 1) + l(u, v))
d(v, k − 1)

d(s,0) = 0 d(v,0) = ∞ v ≠ s
￼15



Bellman-Ford Algorithm
Example
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Bellman-Ford Algorithm
Example
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Bellman-Ford Algorithm
Example
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Bellman-Ford Algorithm
Algorithm
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Create ￼  list from ￼

for each ￼  do 
￼  

￼  

for k = 1 to n − 1 do 
   for each ￼  do 

d(v, k) ￼  d(v, k − 1) 
 for each edge ￼  do 

d(v, k) = min{d(v, k), d(u, k − 1) + l(u, v)} 

for each ￼  do 
dist(s, v) ￼  d(v, n − 1)

In(G) adj(G)

u ∈ V
d(u,0) ← ∞

d(s,0) ← 0

v ∈ V
←

(u, v) ∈ In(v)

v ∈ V
←

Running time: ￼ 


Space: ￼ 


Space can be reduced to 
￼

O(n(n + m))

O(m + n2)

O(m + n)



Bellman-Ford Algorithm
Algorithm - cleaner version
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for each ￼  do 
￼  

￼  

for k = 1 to n − 1 do 
   for each ￼  do 

for each edge ￼  do 
    d(v) = min{d(v), d(u) + l(u, v)} 

for each ￼  do 
dist(s, v) ￼  d(v, n − 1)

u ∈ V
d(u,0) ← ∞

d(s,0) ← 0

v ∈ V
(u, v) ∈ In(v)

v ∈ V
←

Running time: ￼ 


Space: ￼ 


Do we need the ￼  list?

O(mn)

O(m + n)

In(V)



Bellman-Ford Algorithm
Algorithm - cleaner version
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for each ￼  do 
￼  

￼  

for k = 1 to n − 1 do  
for each edge ￼  do 
    d(v) = min{d(v), d(u) + l(u, v)} 

for each ￼  do 
dist(s, v) ￼  d(v, n − 1)

u ∈ V
d(u,0) ← ∞

d(s,0) ← 0

(u, v) ∈ G

v ∈ V
←

Running time: ￼ 


Space: ￼ 


O(mn)

O(n)



Bellman-Ford Algorithm
Negative cycles

What happens if we run this on a graph with negative cycles?
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Correctness: detecting negative length cycle

Lemma: Suppose ￼  has a negative cycle ￼  reachable from ￼ . Then there is some 
node ￼  such that ￼ .


Proof: Suppose not. Let ￼  be negative length cycle 
reachable from ￼ . Then ￼  is finite for ￼  since ￼  is reachable from ￼ . 


By assumption ￼  for all ￼ ; implies no change in ￼  iteration; 
￼  for ￼ . 


This means  ￼  for ￼  and 
￼ . 


Summing/telescoping these inequalities results in ￼  which contradicts the 
assumption that ￼  !

G C s
v ∈ C d(v, n) < d(v, n − 1)

C = v1 → v2 → . . . → vh → v1
s d(vi, n − 1) 1 ≤ i ≤ h C s

d(v, n) ≥ d(v, n − 1) v ∈ C nth

d(vi, n − 1) = d(vi, n) 1 ≤ i ≤ h

d(vi, n − 1) ≤ d(vi−1, n − 1) + l(vi−1, vi) 2 ≤ i ≤ h
d(v1, n − 1) ≤ d(vn, n − 1) + l(vn, v1)

0 ≤ l(C)
l(C) < 0

￼28



Proof of lemma …

￼ 


￼  


. . . 


￼ 


. . . 


￼ 


￼

d(v1, n) ≤ d(v0, n − 1) + l(v0, v1)

d(v2, n) ≤ d(v1, n − 1) + l(v1, v2)

d(vi, n) ≤ d(vi−1, n − 1) + l(vi−1, vi)

d(vk, n) ≤ d(vk−1, n − 1) + l(vk−1, vk)

d(v0, n) ≤ d(vk, n − 1) + l(vk, v0)
￼29

￼v0

￼v1 ￼v2

￼v3

￼v4￼v5

￼s
￼C
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￼v0

￼v1 ￼v2

￼v3

￼v4￼v5

￼s
￼C

￼ 


￼ 


￼  is a not a negative cycle. Contradiction!

k

∑
i=0

d(vi, n) ≤
k

∑
i=0

d(vi, n) +
k

∑
i=1

l(vi+1, vi) + l(vk, v0)

0 ≤
k

∑
i=1

l(vi−1, vi) + l(vk, v0) = len(C)

C

Proof of lemma …



Negative cycles can not hide

Lemma restated: If ￼  does not has a negative length cycle reachable from 
￼ . 


Also, ￼  is the length of the shortest path between ￼  and ￼ . 


Put together are the following:


Lemma: If ￼  has a negative length cycle reachable from ￼  there is some 
node ￼  such that ￼ .

G
s ⇒ ∀v : d(v, n) = d(v, n − 1)

d(v, n − 1) s v

G s ⟺
v d(v, n) < d(v, n − 1)

￼31



Bellman-Ford: negative cycle detection
Final version
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for each ￼  do 
￼  

￼  
for k = 1 to n − 1 do 

for each ￼  do 
for each edge ￼  do 
d(v) = min{d(v), d(u) + l(u, v)} 

(* One more iteration to check if distances change *) 

for each ￼  do 
for each edge ￼  do 

if (d(v) > d(u) + l(u, v)) 
Output “Negative Cycle” 

for each ￼  do 
dist(s, v) ← d(v)

u ∈ V
d(u) ← ∞

d(s) ← 0

v ∈ V
(u, v) ∈ In(v)

v ∈ V
(u, v) ∈ In(v)

v ∈ V



Variants on Bellman-Ford
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Finding the Paths and a Shortest Path Tree

How do we find a shortest path tree in addition to distances? 


• For each ￼  the ￼  can only get smaller as the algorithm proceeds. 


• If ￼  becomes smaller it is because we found a vertex ￼  such that 
￼  and we update ￼ . That is, we found a 
shorter path to ￼  through ￼ . 


• For each ￼  have a ￼  pointer and update it to point to ￼  if ￼  finds a shorter 
path via ￼ . 


• At the end of the algorithm ￼  pointers give a shortest path tree oriented 
towards the source ￼ .

v d(v)

d(v) u
d(v) > d(u) + l(u, v) d(v) = d(u) + l(u, v)

v u

v prev(v) u v
u

prev(v)
s

￼34



Negative Cycle Detection

Negative Cycle Detection 


Given directed graph ￼  with arbitrary edge lengths, does it have a negative length cycle? 


• Bellman-Ford checks whether there is a negative cycle ￼  that is reachable from a 
specific vertex ￼ . There may negative cycles not reachable from ￼ . 


• Run Bellman-Ford ￼  times, once from each node ￼ ?


• Add a new node ￼  and connect it to all nodes of ￼  with zero length edges. Bellman-
Ford from ￼  will fill find a negative length cycle if there is one. Exercise: why does 
this work? 


• Negative cycle detection can be done with one Bellman-Ford invocation.

G

C
s s

|V | u

s′￼ G
s′￼

￼35



Shortest paths in a DAG
Single-Source Shortest Path Problems 

Input: A directed acyclic graph ￼  with arbitrary (including negative) edge 
lengths. For edge ￼  is its length. 


• Given nodes ￼  find shortest path from ￼  to ￼. 


• Given node ￼  find shortest path from ￼  to all other nodes.


Simplification of algorithms for DAGs  


• No cycles and hence no negative length cycles! Hence can find shortest paths 
even for negative length edges 


• Can order nodes using topological sort

G = (V, E)
e = (u, v), l(e) = l(u, v)

s, t s t

s s

￼36



Algorithm for DAGs

• Want to find shortest paths from ￼ . Ignore nodes not reachable from ￼ . 


• Let ￼  be a topological sort of ￼ .


Observation: 

• shortest path from ￼  to ￼  cannot use any node from ￼ 


• can find shortest paths in topological sort order

s s

s = v1, v2, vi+1, . . . , vn G

s vi vi+1, …, vn

￼37



Shortest Paths for DAGs
Example
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Shortest Paths for DAGs
Example
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Algorithm for DAGs

Correctness: Induction on ￼ and observations in previous slide.                        
Running time: ￼  time algorithm! Works for negative edge lengths and 
hence can find longest paths in a DAG.

i
O(m + n)

￼40

for i = 1 to n do 
    d(s, vi) = ∞

d(s, s) = 0 
for i = 1 to n − 1 do 

for each edge (vi , vj) in Adj(vi) do 
￼  

return d(s, ·) values computed

d(s, vj) = min{d(s, vj), d(s, vi) + l(vi, vj)}



All pairs shortest paths
Shortest Path Problems

Input: A (undirected or directed) graph ￼  with edge lengths (or costs). 
For edge ￼ , ￼  is its length. 


• Given nodes ￼  find shortest path from ￼  to ￼. 


• Given node ￼  find shortest path from ￼  to all other nodes. 


• Find shortest paths for all pairs of nodes.

G = (V, E)
e = (u, v) l(e) = l(u, v)

s, t s t

s s

￼41



SSSP: Single-Source Shortest Paths

Input: A (undirected or directed) graph ￼  with edge lengths. For edge 
￼ , ￼  is its length.


• Given nodes ￼  find shortest path from ￼  to ￼.  


• Given node ￼  find shortest path from ￼  to all other nodes


Dijkstra’s algorithm for non-negative edge lengths.                                         
Running time: ￼  with heaps and ￼  with advanced 
priority queues. 


Bellman-Ford algorithm for arbitrary edge lengths. Running time: ￼ .

G = (V, E)
e = (u, v) l(e) = l(u, v)

s, t s t

s s

O((m + n) log n) O(m + n log n)

O(nm)
￼42



All-Pairs Shortest Paths - Using known algorithms...
All-Pairs Shortest Path Problem

Input A (undirected or directed) graph ￼  with edge lengths. For edge 
￼ ,￼  is its length.


Find shortest paths for all pairs of nodes.


Apply single-source algorithms ￼  times, once for each vertex. 


• Non-negative lengths. ￼  with heaps and ￼  using advanced 
priority queues. 


• Arbitrary edge lengths: ￼ .                                                                                    
￼   if ￼ 


Can we do better? 

G = (V, E)
e = (u, v) l(e) = l(u, v)

n

O(nm log n) O(nm + n2 log n)

O(n2m)
Θ(n4) m = Ω(n2)

￼43



All Pairs Shortest Paths: A 
recursive solution

￼44



All-Pairs: Recursion on index of intermediate nodes

• Number vertices arbitrarily as ￼ 


• ￼ : length of shortest walk from ￼  to ￼  among all walks in which the largest 
index of an intermediate node is at most ￼  (could be ￼  if there is a negative length 
cycle).

v1, v2, . . . , vn

dist(i, j, k) vi vj
k −∞
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All-Pairs: Recursion on index of intermediate nodes

• Number vertices arbitrarily as ￼ 


• ￼ : length of shortest walk from ￼  to ￼  among all walks in which the largest 
index of an intermediate node is at most ￼  (could be ￼  if there is a negative length 
cycle).

v1, v2, . . . , vn

dist(i, j, k) vi vj
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￼46

i

1 3

j

2

10
5

2

1
1

1

4

100

￼dist(i, j,0) = 100

￼dist(i, j,1) =

￼dist(i, j,2) =

￼dist(i, j,3) =



All-Pairs: Recursion on index of intermediate nodes

• Number vertices arbitrarily as ￼ 


• ￼ : length of shortest walk from ￼  to ￼  among all walks in which the largest 
index of an intermediate node is at most ￼  (could be ￼  if there is a negative length 
cycle).

v1, v2, . . . , vn

dist(i, j, k) vi vj
k −∞
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All-Pairs: Recursion on index of intermediate nodes

• Number vertices arbitrarily as ￼ 


• ￼ : length of shortest walk from ￼  to ￼  among all walks in which the largest 
index of an intermediate node is at most ￼  (could be ￼  if there is a negative length 
cycle).

v1, v2, . . . , vn

dist(i, j, k) vi vj
k −∞
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All-Pairs: Recursion on index of intermediate nodes

• Number vertices arbitrarily as ￼ 


• ￼ : length of shortest walk from ￼  to ￼  among all walks in which the largest 
index of an intermediate node is at most ￼  (could be ￼  if there is a negative length 
cycle).

v1, v2, . . . , vn

dist(i, j, k) vi vj
k −∞
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￼dist(i, j,0) = 100

￼dist(i, j,1) = 9

￼dist(i, j,2) = 8

￼dist(i, j,3) = 5



For the following graph, ￼  is …dist(i, j,2)
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All-Pairs: Recursion on index of intermediate nodes

• Base case: ￼ , otherwise ￼ 


• Correctness: If ￼  shortest walk goes through ￼  then ￼  occurs only once on the path 
— otherwise there is a negative length cycle

dist(i, j,0) = l(i, j) if (i, j) ∈ E ∞

i → j k k
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i

k￼dist(i, k, k − 1)

j

￼dist(k, j, k − 1)

￼dist(i, j, k − 1)

￼dist(i, j, k) = min {dist(i, j, k − 1)
dist(i, k, k − 1) + dist(k, j, k − 1)



All-Pairs: Recursion on index of intermediate nodes

If ￼ can reach ￼  and ￼  can reach ￼ and ￼  then ￼  has a 
negative length cycle containing ￼  and ￼ . 


Recursion below is valid only if ￼ . We can detect this during 
the algorithm or wait till the end.

i k k j dist(k, k, k − 1) < 0 G
k dist(i, j, k) = − ∞

dist(k, k, k − 1) ≥ 0
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￼dist(i, j, k) = min {dist(i, j, k − 1)
dist(i, k, k − 1) + dist(k, j, k − 1)



Floyd-Warshall Algorithm
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Floyd - Warshall Algorithm
For All-Pairs Shortest Paths
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for i = 1 to n do 
    for j = 1 to n do

    ￼

(* l(i, j) = ∞ if (i, j) ￼ E, 0 if i = j *)
for k = 1 to n do 

for i = 1 to n do 
for j = 1 to n do 

￼

for i = 1 to n do 
if ￼  then 

Output ∃ negative cycle in G

d(i, j,0) = l(i, j)

∉

dist(i, j, k) = min{dist(i, j, k − 1)
dist(i, k, k − 1) + dist(k, j, k − 1)

(dist(i, i, n) < 0)

Running time: ￼ 


Space: ￼ 


Correctness: via induction 
and recursive definition

Θ(n3)

Θ(n3)



Floyd - Warshall Algorithm
Finding the Paths
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Question: Can we find the paths in addition to the distances?  


• Create a ￼  array Next that stores the next vertex on shortest path for 
each pair of vertices 


• With array Next, for any pair of given vertices ￼  can compute a shortest 
path in ￼  time.

n × n

i, j
O(n)



Floyd - Warshall Algorithm
Finding the Paths
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for i = 1 to n do 
    for j = 1 to n do

    ￼

(* l(i, j) = ∞ if (i, j) ￼ E, 0 if i = j *)
Next(i, j) = −1

for k = 1 to n do 
for i = 1 to n do 

for j = 1 to n do 
if ￼  then 

￼  
Next(i, j) = k

for i = 1 to n do 
if ￼  then 

Output ∃ negative cycle in G

d(i, j,0) = l(i, j)

∉

(d(i, j, k − 1) > d(i, k, k − 1) + d(k, j, k − 1))
d(i, j, k) = d(i, k, k − 1) + d(k, j, k − 1)

(dist(i, i, n) < 0)

Exercise: 


Given Next array and any two 
vertices ￼  describe an ￼  
algorithm to find a ￼  shortest 
path.

i, j O(n)
i − j



Summary of shortest path 
algorithms
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Summary of results on shortest paths
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Single source

No negative edges   Dijkstra O(n log n + m)

Edge lengths can be negative   Bellman Ford O(nm)

All Pairs Shortest Paths

No negative edges  n * Dijkstra O(n2 log n + nm)

No negative cycles  n * Bellman Ford O(n2m)  = O(n4)

No negative cycles  Johnson’s 1 O(nm + n2 log n)

No negative cycles  Floyd-Warsh O(n3)

Unweighted  Matrix multiplication 2 O(n2.38), O(n2.58)



(1) The algorithm for the case that there are no negative cycles, and doing all 
shortest paths, works by computing a potential function using Bellman-Ford 
and then doing Dijkstra. It is mentioned for the sake of completeness, but it 
outside the scope of the class.


(2) https://resources.mpi-inf.mpg.de/ departments/d1/teaching/ss12/ 
AdvancedGraphAlgorithms/Slides14.pdf
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Summary of results on shortest paths


