Bellman-Ford and Dynamic
Programming on Graphs

Sides based on material by Kani, Erickson, Chekuri, et. al.

All mistakes are my own! - lvan Abraham (Fall 2024)

Image by ChatGPT (probably collaborated with DALL-E)

Why Dijkstra’s algorithm fails with negative
edges

What are the distances computed by Dijkstra’s algorithm?

What are the distances computed by Dijkstra’s algorithm?

o e
\ @//@1\@1—»@ X e

What are the distances computed by Dijkstra’s algorithm?

What are the distances computed by Dijkstra’s algorithm?

What are the distances computed by Dijkstra’s algorithm?

But that is not the shortest path!

o (;) (;) @/,1/@1—@

1

What are the distances computed by Dijkstra’s algorithm?

But that is not the shortest path!

a—a, &
o (z) (;) @/,1/@1—@

1

What are the distances computed by Dijkstra’s algorithm?

But that is not the shortest path!
5

| O O
Q7 2 B

1

What are the distances computed by Dijkstra’s algorithm?

But that is not the shortest path!

What are the distances computed by Dijkstra’s algorithm?

But that is not the shortest path!

o5 &

1
Problem: thatits — vy — vi = v,... — v, Is a shortest path from s to v,

then dist(s, v;) < dist(s, v, ;) for O < i < k. Holds true only for non-negative edge lengths.

4

Shortest paths with negative lengths

Lemma: Let G be a directed graph with arbitrary edge lengths and let
S=V0_>V1_)V2...—>Vk:t
be a shortest path from sto f thenfor | <1 < k:

¢« S =V, —> V; = V, = ...V s ashortest path from s to v

Shortest paths with negative lengths

Lemma: Let G be a directed graph with arbitrary edge lengths and let
S=Vg—=> V| 2> V... >V, =1
be a shortest path from sto f thenfor | <1 < k:
¢ §=Vy— V| > V, = ...V;Is ashortest path from s to v,

» dist(s, v;) < dist(s,v,) for 1 <i <k

Shortest paths with negative lengths

Lemma: Let G be a directed graph with arbitrary edge lengths and let
S=Vg—=> V| 2> V... >V, =1
be a shortest path from sto f thenfor | <1 < k:
* §=Vy— Vi = V, = ...V;Is ashortest pathfromstovi/

e dist(s, v,) < dist(s,v,) for 1 <1 < k. =Falsel
-_— ~—

Why can’t we just re-normalize the edge lengths?

Instinctual thought

Shortest Path:
S > ad—>C—1t

Why can’t we just re-normalize the edge lengths?

Instinctual thought

Shortest Path:
S > ad—>C—1t

Why can’t we simply add
a weight to each edge
so that the shortest
length is O (or positive)?

Why can’t we just re-normalize the edge lengths?

Instinctual thought

Shortest Path:
S —>d—>C—t

Why can’t we simply add
a weight to each edge
so that the shortest
length is O (or positive)?

Why can’t we just re-normalize the edge lengths?

Instinctual thought

Shortest Path:
S —>d—>C—t

Why can’t we simply add
a weight to each edge
so that the shortest
length is O (or positive)?

s—>b—>t

Why can’t we just re-normalize the edge lengths?

Instinctual thought
Adding weights to edges penalizes paths with more edges, gives wrong path

on original grapnh.

Shortest Path:
S —>d—>C—t

Why can’t we simply add
a weight to each edge
so that the shortest
length is O (or positive)?

s—>b—>t

Negative length cycles

Definition

What is the shortest path distance
between s and 1 ?

Negative length cycles

Definition

What is the shortest path distance
between s and 1 ?

Negative length cycles

Definition

What is the shortest path distance
between s and 1 ?

What about adding red path?

15

Negative length cycles

Definition

What is the shortest path distance
between s and 1 ?

What about adding red path?

15

6

Negative length cycles

Definition

What is the shortest path distance
between s and 1 ?

What about adding red path?

15

Fix: Restrcit paths to be simple ...

Vzo—«%;;ﬂ-esz

Negative length cycles

Definition

A cycle C is a negative length cycle if the sum of the edge lengths of C is negative.

What is the shortest path distance
between s and 1 ?

What about adding red path?

15

Fix: Restrcit paths to be simple ...

Shortest paths and negative cycles

Given G = (V, E) with edge lengths and s, . Suppose
» (5 has a negative length cycle C, and s can reach C and C can reach .

Question: What is the shortest distance from s to 7 ?

10

Shortest paths and negative cycles

Given G = (V, E) with edge lengths and s, . Suppose
» (5 has a negative length cycle C, and s can reach C and C can reach .

Question: What is the shortest distance from s to 7 ?

Possible answers:

10

Shortest paths and negative cycles

Given G = (V, E) with edge lengths and s, . Suppose
» (5 has a negative length cycle C, and s can reach C and C can reach .

Question: What is the shortest distance from s to 7 ?

Possible answers:

 undefined, that is — oo, OR

10

Shortest paths and negative cycles

Given G = (V, E) with edge lengths and s, . Suppose
» (5 has a negative length cycle C, and s can reach C and C can reach .

Question: What is the shortest distance from s to 7 ?

Possible answers:

 undefined, that is — é—\

* the length of a shortest simple path from s to 7.

10

Restating problem of shortest path with negative edges
Alternatively: FiInding shortest walks

Recall that given a graph G = (V, E):

« A (simple) is a sequence of distinct vertices v, v5, ..., v, such that (v,,v,) € E
forl <1< k—1.
« A is a sequence of vertices v, V,, ...,V such that (v, v;,) € E for

1<i<k-1 ‘

11

Restating problem of shortest path with negative edges
Alternatively: FiInding shortest walks

Recall that given a graph G = (V, E):

« A (simple) is a sequence of distinct vertices v, v5, ..., v, such that (v,,v,) € E
for| <i<k-—1.

e A is a sequence of vertices v, V,, ...,V such that (v, v;,) € E for
1 <i<k-1.

Define dist(u, v) to be the length of a shortest walk from u to v.

11

Restating problem of shortest path with negative edges
Alternatively: FiInding shortest walks

Recall that given a graph G = (V, E):

« A (simple) is a sequence of distinct vertices v, v5, ..., v, such that (v,,v,) € E
for| <i<k-—1.

e A is a sequence of vertices v, V,, ...,V such that (v, v;,) € E for
1 <i<k-1.

Define dist(u, v) to be the length of a shortest walk from u to v. V/

* If there is a walk from u to v that contains negative length cycle then dist(u, v) = — o
AR it A

11

Restating problem of shortest path with negative edges
Alternatively: FiInding shortest walks

Recall that given a graph G = (V, E):

« A (simple) is a sequence of distinct vertices v, v5, ..., v, such that (v,,v,) € E
for| <i<k-—1.

e A is a sequence of vertices v, V,, ...,V such that (v, v;,) € E for
1 <i<k-1.

Define dist(u, v) to be the length of a shortest walk from u to v.
* If there is a walk from u to v that contains negative length cycle then dist(u, v) = — o

 Else, there is a path with at most 7 — 1 edges whose length is equal to the length of a
shortest walk and dist(u, v) is finite

11

Shortest paths with negative edges

Algorithmic problems

Input: A directed graph G = (V, E) with edge lengths (could be negative). For
edge ¢ = (u,v), l(e) = l(u,v) is its length.

Questions:

Shortest paths with negative edges

Algorithmic problems

Input: A directed graph G = (V, E) with edge lengths (could be negative). For
edge ¢ = (u,v), l(e) = l(u,Vv) is its length.
Jzea»&.w@)%

ol eoked_

Questions: /[7

» Given nodes s, f either find a negative length cycle C tha@an reach or find
a shortest path fromstoz. —

12

Shortest paths with negative edges

Algorithmic problems

Input: A directed graph G = (V, E) with edge lengths (could be negative). For
edge ¢ = (u,v), l(e) = l(u,v) is its length.

Questions:

» Given nodes s, f either find a negative length cycle C that s can reach or find

a shortest path from s to 7. 4—-&
» Given node s, either find a negative length cycle C that s can reach or find
shortest path distances from s to all reachable nodes. ¢ = 44 ,{%o,eq

r

12

Shortest paths with negative edges

Algorithmic problems

Input: A directed graph G = (V, E) with edge lengths (could be negative). For
edge ¢ = (u,v), l(e) = l(u,v) is its length.

Questions:

» Given nodes s, f either find a negative length cycle C that s can reach or find
a shortest path from s to 7.

» Given node s, either find a negative length cycle C that s can reach or find
shortest path distances from s to all reachable nodes.
P AodL Paa& ShﬁuQQAC"

« Check if G has a negative length cycle or not. < (’CdZL ﬂ“@&
— ll
N> L

12

Bellman Ford Algorithm

Shortest paths and recursion

* |s it possible to compute the shortest path distance from s to 7 recursively?

* If yes, what are the smaller sub-problems?
ST s

14

Shortest paths and recursion

e |s it possible to compute the shortest path distance from s to 7 recursively?

* If yes, what are the smaller sub-problems?

Lemma: Let G be a directed graph with arbitrary edge lengths. If
S:VO_)Vl_)Vz—)...—)Vk

14

Shortest paths and recursion

e |s it possible to compute the shortest path distance from s to 7 recursively?

* If yes, what are the smaller sub-problems?

Lemma: Let G be a directed graph with arbitrary edge lengths. If
S:VO_)Vl_)Vz—)...—)Vk

is a shortest path from s to v, then for | <1 < k:

14

Shortest paths and recursion

e |s it possible to compute the shortest path distance from s to 7 recursively?

* If yes, what are the smaller sub-problems?

Lemma: Let G be a directed graph with arbitrary edge lengths. If
S:VO_)Vl_)Vz—)...—)Vk

is a shortest path from s to v, then for | <1 < k:

S =Vy— Vi = V, = ... — V. is ashortest path from St@

14

Shortest paths and recursion

e |s it possible to compute the shortest path distance from s to 7 recursively?

* If yes, what are the smaller sub-problems?

Lemma: Let G be a directed graph with arbitrary edge lengths. If
S:VO_)Vl_)Vz—)...—)Vk

is a shortest path from s to v, then for | <1 < k:

S =Vy— VvV, = V, > ... — v:Is ashortest path from s to v,

Sub-problem idea: paths of fewer hops/edges

=

14

Hop-based recursion
Bellman-Ford Algorithm

Single-source problem: Fix source .

Assumptions: All nodes can be reached from s in G. Assume (G has no
negative-length cycle (for now).

15

Hop-based recursion
Bellman-Ford Algorithm

Single-source problem: Fix source .

Assumptions: All nodes can be reached from s in G. Assume (G has no
negative-length cycle (for now).

Defi@s the shortest walk length from s to v using at most k edges.
Then —dist(s, v) =(d(»v,n — 1). Recursion for d(v, k):

%W.\

15

Hop-based recursion
Bellman-Ford Algorithm

Single-source problem: Fix source .

Assumptions: All nodes can be reached from s in G. Assume (G has no
negative-length cycle (for now).

Define, as the shortest walk length from s to v using at most k edges.
Then note, dist(s,v) = d(v,n — 1). Recursion for d(v, k):

min (d@)k — 1) + i(u, v))

— mi ueV
d(v, k) = min o my

d(v,k —1) ¢ — ude o -

15

Hop-based recursion
Bellman-Ford Algorithm

Single-source problem: Fix source .

Assumptions: All nodes can be reached from s in G. Assume (G has no
negative-length cycle (for now).

Define, as the shortest walk length from s to v using at most k edges.
Then note, dist(s,v) = d(v,n — 1). Recursion for d(v, k):

j — 1
oo = min J D (d(u, k — 1) + l(u,v))
dv,k—1)

Base case: d(s5,0) = 0 and d(v,0) = co forall v # s

15

Bellman-Ford Algorithm

Example W °

Bellman-Ford Algorithm

Example E °
Oww
Round S A B C D E F
-3
Al © w 4

/

J

-1
3

2
O
-3

3

) C

-8
0
8
5

(o> S NI I V> B\ B

S

Bellman-Ford Algorithm

Example

Round

olo|o|w
o o8 >
N Q|
W w8 |O
> 8 8|0
8§ |8 |3 |m
©| 8 |8 |m

(o> S NI I V> B\ B

Bellman-
Example

Ford Algorithm

11

S

Round

19

Bellman-

Example

Ford Algorithm

11

S

Round

20

(9

11

S

Bellman-Ford Algorithm

Example

Round

/3
(&

21

Bellman-

Example

Ford Algorithm

11

S

Round

22

Bellman-

Example

Ford Algorithm

S

Round

23

Bellman-Ford Algorithm
Algorithm a‘rQ‘/ZI f:\rp)’egy
, O e

Create In(G) list from adj(G)
Running time: O(n(n + m))
for each u€V do

d(u,0) < oo : 2
s0) 0 Space: O(m + n~)

for k =1 ton — 1 do

for each veV do 7 CC"PDVG WWM

d(v, k) «< d(v, k — 1) 0\
for each edge (#,v) € In(v) do
d(v, k) = min{d(v, k), d(u, k - 1) + 1(u, v)}

for each veV do
dist(s, v) «< d(v, n — 1)

24

Bellman-Ford Algorithm

Algorithm
Create In(G) list from adj(G) 0(())
nn-—+m
for each ueV do
d(u,0) < oo O(Wl + n2)

d(s,0) «< 0

for k = 1 to n - 1 do Space can be reduced to

for each veV do O(m - n)
d(v, k) «< d(v, k — 1)
for each edge (#,v) € In(v) do
d(v, k) = min{d(v, k), d(u, k - 1) + 1l(u, v)}

for each veV do
dist(s, v) «< d(v, n — 1)

24

Bellman-Ford Algorithm

Algorithm
Do we need the In(G) list?
\r-
Create In(G) list from adj(G) L—
O(n(n + m))
for each ueV do
d(u,0) « oo O(m n n2)

d(s,0) «< 0

for k = 1 to n - 1 do Space can be reduced to

for each veV do O(m - n)
d(v, k) < d(v, k - 1)5' B
for each edge (#,v) € In(v) do
d(v, k) = min{d(v, k), d(u, k - 1) + 1l(u, v)}

for each veV do
dist(s, v) «< d(v, n — 1)

24

Bellman-Ford Algorithm

Algorithm - cleaner version
Do we need the In(G) list?

for each ueV do
d(u,0) <« oo
d(s,0) «< 0

for k =1 ton - 1 do
for each veV do
/ for each edge (u,v) € In(v) do
d(v) = min{d(v), d(u) + 1l(u, v)}

for each ve V do
dist(s, v) «< d(v, n — 1)

25

Bellman-Ford Algorithm

Algorithm - cleaner version

Do we need the In(G) list?

for each u€V do O(mn)
d(u,0) « oo
d(5,0) < 0 O(m + n)

for k =1 ton - 1 do
for each veV do
for each edge (u,v) € In(v) do
d(v) = min{d(v), d(u) + 1l(u, v)}

for each ve V do
dist(s, v) «< d(v, n — 1)

25

Bellman-Ford Algorithm

Algorithm - cleaner version

Do we need the In(v) list?

for each u€V do O(mn)
d(u,0) « oo
d(5,0) < 0 O(m + n)

for k =1 ton — 1 do
for each veV do

for each edge

d(v) = min{d(v), d(u) + 1(u, v)}

for each ve V do
dist(s, v) «< d(v, n — 1)

25

Bellman-Ford Algorithm

Algorithm - optimized

Do we need the In(v) list?

for each ue€eV do

d(u,0) « oo
d(s,0) < 0 O (n)é/

for k =1 ton — 1 do
for each edge (u,v) € G do
d(v) = min{d(v), d(u) + 1(u, v)}

for each ve V do
dist(s, v) «< d(v, n — 1)

26

Bellman-Ford Algorithm

Negative cycles

What happens if we run this on a graph with negative cycles?

Round S

Bellman-Ford Algorithm

Negative cycles

What happens if we run this on a graph with negative cycles?

Round S

Bellman-Ford Algorithm

Negative cycles

What happens if we run this on a graph with negative cycles?

Bellman-Ford Algorithm

Negative cycles

What happens if we run this on a graph with negative cycles?

i
o o - hn

|8 |8

Bellman-Ford Algorithm

Negative cycles

What happens if we run this on a graph with negative cycles?

o o o hn

o|o |8 |8

Bellman-Ford Algorithm

Negative cycles

What happens if we run this on a graph with negative cycles?

Round

W N -

LA olo|lo]|lw

Bellman-Ford Algorithm

Negative cycles

What happens if we run this on a graph with negative cycles?

Round

O | | O NN | =

Ll LAl L o|lo|o]|ew

@) @) —L —k —k 8

Correctness: detecting negative length cycle

Lemma: Suppose G has a negative cycle C reachable from s. Then there is some
node v € Csuchthatd(v,n) <d(v,n —1).

Correctness: detecting negative length cycle

Lemma: Suppose G has a negative cycle C reachable from s. Then there is som

e
node v € C such that d(v% dv,n—1). @& aane d C\'t "L"'F) & OQC\," K>

Proof: Suppose ncﬁt C=v,—>v,—> ... —>@—> v, be negative length cycle
reachable from s. Then d(v,,n — 1) is finite for | <1 < k since C is reachable from s.

28

Correctness: detecting negative length cycle

Lemma: Suppose G has a negative cycle C reachable from s. Then there is some
node v € C suchthatd(v,n) < d(v,n —1).

Proof: Suppose not. Let C = v, = v, — ... — v, = v, be negative length cycle
reachable from s. Then d(v,,n — 1) is finite for | <1 < k since C is reachable from s.

By assumption d(v,n) > d(v,n — 1) for all v € C; implies no change in n"" iteration:

dv,n—1)=dv,n)forTZi<k.

28

Correctness: detecting negative length cycle

Lemma: Suppose G has a negative cycle C reachable from s. Then there is some
node v € C suchthatd(v,n) < d(v,n —1).

Proof: Suppose not. Let C = v, = v, — ... = v, = v, be negative length cycle
reachable from s. Then d(v,,n — 1) is finite for | <1 < k since C is reachable from s.

By assumption d(v,n) > d(v,n — 1) for all v € C; implies no change in n"" iteration:
dv,n—1)=d(v,n)forl <i<k.

Thismeans d(v,n—1) <d(v._,n—1)+(v,_,,v)for2 <i < kand
dv,n—1) <dWv,n—1)+ (v, vy).

28

Correctness: detecting negative length cycle

Lemma: Suppose G has a negative cycle C reachable from s. Then there is some
node v € C suchthatd(v,n) < d(v,n —1).

Proof: Suppose not. Let C = v, = v, — ... = v, = v, be negative length cycle
reachable from s. Then d(v,,n — 1) is finite for | <1 < k since C is reachable from s.

By assumption d(v,n) > d(v,n — 1) for all v € C; implies no change in n"" iteration:
dv,n—1)=d(v,n)forl <i<k.

Thismeans d(v,n—1) <d(v._,n—1)+(v,_,,v)for2 <i < kand
dv,n—1) <dWv,n—1)+ (v, vy).

Summing/telescoping these inequalities results in 0 < [(C) which contradicts the
assumption that /(C) < 0!

28

o ’pm@ _«— Assumed that forall v, d(v,n) > d(v,n — 1)
M)\
Proof of lemma ...

Vi %)
@) @)
Vo
o © C O V),
S
@) O

29

Assumed that for all v, d(v,n) > d(v,n — 1)

Proof of lemma....

oo d(vi,n = 1) < d(vo,n = 1) + (v 1))

29

Assumed that for all v, d(v,n) > d(v,n — 1)

Proof of lemma....

TR dv,n—1) <dWvy,n—1)+ l(vy, V)
o \ dv,,n—1)<dv,n—=1)+ (v,)
c;C/ C b, N2

29

Assumed that for all v, d(v,n) > d(v,n — 1)

Proof of lemma....

v, dv,n—1) <dve,n— 1)+ l(vy, v,)
Vg / \ d(,n—l)Sd(Vl,n—l)‘Fl(Vp)
c; C % V3

Vi d(Vl', n — 1) S d(vi_l, n — 1) + Z(Vi—b Vl')

29

Assumed that for all v, d(v,n) > d(v,n — 1)

Proof of lemma....

oo d(vi,n = 1) < d(vo,n = 1)+ I(v,)

Vg \ d(,n—l)Sd(Vl,l’l—l)‘Fl(Vp)
o & C ey,

Vy é d(v,n—1) él(vi_l,n - D+ 1l(v._,v)

dv,,n—1) < d(n—1)+ [(, V)

dvo,n—1) <dWv,n—1)+ (v,)

29

Proof of lemma....

k k k
/ \ = 1)< doun =1k P 101.9) + 105
(=0 (=0 =1
k

\ 0< 2 [(v._,v) + [(v, vy) = len(C)

o—0"
=1

C is a not a negative cycle. Contradiction!

30

Proof of lemma....

Vi W k k K
‘/D—V\ Z d(Vl-, n — 1) S Z d(Vl', n — 1) + Z l(vi—la vi) T l(vk’ V())
| Vo C i=0 i=0 i=1
O LV k
\04—0”: 0 < 2 l(vi—l’ Vi) T l(vk’ VO) — len(C)
Vi i=1

C is a not a negative cycle. Contradiction!

Essence of the lemma: If G has a negative cycle reachable from s, then it can be
detected in n iterations of the Bellman-Ford algorithm.

30

Bellman-Ford: negative cycle detection

Final version for each u €V do
d(u) <« oo

d(s) <« 0O

for Kk =1 ton - 1 do
for each veV do
for each edge (u,v) € In(v) do
d(v) = min{d(v), d(u) + 1(u, v)}

(* One more iteration to check i1f distances change *)
for each ve V do
for each edge (u,v) € In(v) do
1if (d(v) > d(u) + 1(u, v))
Output “Negative Cycle”

for each veV do
dist(s, v) « d(v, n-1)

31

Bellman-Ford: negative cycle detection

Final version for each ue€V do
d(u) <« oo

d(s) <« 0O

for k =1 ton - 1 do
| _ for each ve V do
All lines colored In for each edge (u,v) € In(v) do
red d(v) = min{d(v), d(u) + 1l(u, v)}

where already

. (* One more iteration to check 1f distances change *)
present previously.

for each veV do
for each edge (u,v) € In(v) do
1if (d(v) > d(u) + 1(u, v))
Output “Negative Cycle”

for each veV do
dist(s, v) « d(v, n-1)

31

Variants on Bellman-Ford

Finding the shortest path tree

How do we find a shortest path tree in addition to distances?
O e ———

Finding the shortest path tree

How do we find a shortest path tree in addition to distances?

» For each v the d(v) can only get smaller as the algorithm proceeds.

33

Finding the shortest path tree

How do we find a shortest path tree in addition to distances?
» For each v the d(v) can only get smaller as the algorithm proceeds.

» If d(v) becomes smaller it is because we found a vertex i such that
d(v) > d(u) + l(u, v) and we update d(v) = d(u) + [(u,v). That is, we found a
shorter path to v through u.

33

Finding the shortest path tree

How do we find a shortest path tree in addition to distances?

» For each v the d(v) can only get smaller as the algorithm proceeds.

 If d(v) becomes smaller it is because we found a vertex 1 such that

d(v) > d(u) + l(u, v) and we update d(v) = d(u) + [(u,v). That is, we found a
shorter path to v through u.

» For each v have a prev(v) pointer and update it to point to u if v finds a shorter
path via u.

33

Finding the shortest path tree

How do we find a shortest path tree in addition to distances?

» For each v the d(v) can only get smaller as the algorithm proceeds.

 If d(v) becomes smaller it is because we found a vertex 1 such that

d(v) > d(u) + l(u, v) and we update d(v) = d(u) + [(u,v). That is, we found a
shorter path to v through u.

» For each v have a prev(v) pointer and update it to point to u if v finds a shorter
path via u.

» At the end of the algorithm prev(v) pointers give a shortest path tree oriented
towards the source . |

————————————
33

Negative cycle detection

Given directed graph G with arbitrary edge lengths, does it have a negative
length cycle?

» Bellman-Ford checks whether there is a negative cycle C that is reachable

from a specific vertex s. There may be negative cycles not reachable from s.
s

34

Negative cycle detection

Given directed graph G with arbitrary edge lengths, does it have a negative
length cycle?

» Bellman-Ford checks whether there is a negative cycle C that is reachable
from a specific vertex s. There may be negative cycles not reachable from s.

» Run Bellman-Ford | V| times, once from each node u?

34

Negative cycle detection ~.C

Given directed graph G with arbitrary edge lengths, does it have a negative
length cycle?

» Bellman-Ford checks whether there is a negative cycle C that is reachable
from a specific vertex s. There may be negative cycles not reachable from s.

» Run Bellman-Ford | V| times, once from each node u?

» Add a new node s’ and connect it to all nodes of G with zero length edges.

Bellman-Ford from s’ will fill find a negative length cycle if there is one.
why does this work?

34

Negative cycle detection

Given directed graph G with arbitrary edge lengths, does it have a negative
length cycle?

» Bellman-Ford checks whether there is a negative cycle C that is reachable
from a specific vertex s. There may be negative cycles not reachable from s.

» Run Bellman-Ford | V| times, once from each node u?

» Add a new node s’ and connect it to all nodes of G with zero length edges.

Bellman-Ford from s’ will fill find a negative length cycle if there is one.
why does this work?

e — negative cycle detection can be done with one Bellman-Ford
Invocation.

34

Shortest paths in a DAG

Input: A directed graph G = (V, E) with arbitrary (including negative)
edge lengths. For edge ¢ = (u, v), [(e) = [(u, V) is its length.

 Given nodes s, 1 find shortest path from s to 7.

* Given node s find shortest path from s to all other nodes.

35

Shortest paths in a DAG

Input: A directed graph G = (V, E) with arbitrary (including negative)
edge lengths. For edge ¢ = (u, v), l(e) = [(u, v) is its length.

o Given nodes s, 1 find shortest path from s to 7.

 Given node s find shortest path from s to all other nodes.

Simplification of algorithms for S

35

Shortest paths in a DAG

Input: A directed graph G = (V, E) with arbitrary (including negative)
edge lengths. For edge ¢ = (u, v), l(e) = [(u, v) is its length.

o Given nodes s, 1 find shortest path from s to 7.

 Given node s find shortest path from s to all other nodes.
Simplification of algorithms for S

* No cycles and hence no negative length cycles! Hence can find shortest
paths even for negative length edges.

35

Shortest paths in a DAG

Input: A directed graph G = (V, E) with arbitrary (including negative)
edge lengths. For edge ¢ = (u, v), l(e) = [(u, v) is its length.

o Given nodes s, 1 find shortest path from s to 7.

 Given node s find shortest path from s to all other nodes.
Simplification of algorithms for S

* No cycles and hence no negative length cycles! Hence can find shortest
paths even for negative length edges.

» Can order nodes using topological sort.

35

Algorithm for DAGs

e Want to find shortest paths from s. Ignore nodes not reachable from s.

e Lets =v,v,,Vv..(,...,V, be atopological sort of G.

Observations:

36

Algorithm for DAGs

e Want to find shortest paths from s. Ignore nodes not reachable from s.

e Lets =v,v,,Vv..(,...,V, be atopological sort of G.

Observations:

 Shortest path from s to v, cannot use any node fromv;_, ..., V,.

36

Algorithm for DAGs

e Want to find shortest paths from s. Ignore nodes not reachable from s.

e Lets =v,v,,Vv..(,...,V, be atopological sort of G.

Observations:
 Shortest path from s to v; cannot use any node from v, ¢, ...,V

n-

* Can also find shortest paths in topologically sorted ordering.

36

Shortest Paths for DAGs

Example

Shortest Paths for DAGs

Example
A B C
5 X 1
D ; -4
/\
. ° A B C

Shortest Paths for DAGs

Example
A B C
5 X 1
D E -4
3 2 y /\\m
\ 4 -0 oo | o0 5 -
\. 4 N /
F 4 G
5 1
2

Algorithm for DAGs

for 1 = 1 to n do
d(s, vi) = ©
d(s, s) =0

for 1 = 1 ton - 1 do
for each edge (vi , vj) in Adj(vi) do

d(s,v;) = min{d(s, v;),d(s,v;) + {(v;, V) }

return d(s, °*) values computed

39

Algorithm for DAGs

for 1 = 1 to n do
d(s, vi) = ©

d(s, s) =0
for 1 = 1 ton - 1 do
for each edge (vi , vj) in Adj(vi) do

d(s,v;) = min{d(s, v;),d(s,v;) + {(v;, V) }

return d(s, °*) values computed

Induction on 1 and observations in previous slide.

O(m + n) time algorithm! Works for negative edge lengths and
hence can find longest paths in a DAG.

39

All pairs shortest paths

Shortest Path Problems

Input: A (undirected or directed) graph G = (V, E) with edge lengths. For edge
e = (u,v), l(e) = l(u,v) is its length.

e Given nodes s, f find shortest path from s to 7.

* Given node s find shortest path from s to all other nodes.

40

All pairs shortest paths

Shortest Path Problems

Input: A (undirected or directed) graph G = (V, E) with edge lengths. For edge
e = (u,v), l(e) = l(u,v) is its length.

e Given nodes s, f find shortest path from s to 7.

* Given node s find shortest path from s to all other nodes.

* Find shortest paths for all pairs of nodes.

40

All-Pairs Shortest Paths - Using known algorithms...
All-Pairs Shortest Path Problem

Input: A (undirected or directed) graph G = (V, E) with edge lengths. For edge
e = (u,v), l(e) = l(u, v) is its length. Find shortest paths for all pairs of nodes.

If we apply single-source algorithms 7 times, once for each vertex.

41

All-Pairs Shortest Paths - Using known algorithms...
All-Pairs Shortest Path Problem

Input: A (undirected or directed) graph G = (V, E) with edge lengths. For edge
e = (u,v), l(e) = l(u, v) is its length. Find shortest paths for all pairs of nodes.

If we apply single-source algorithms 7 times, once for each vertex.

» Non-negative lengths. O(nm log n) with heaps and O(nm + n’ log n) using
advanced priority queues.

41

All-Pairs Shortest Paths - Using known algorithms...
All-Pairs Shortest Path Problem

Input: A (undirected or directed) graph G = (V, E) with edge lengths. For edge
e = (u,v), l(e) = l(u, v) is its length. Find shortest paths for all pairs of nodes.

If we apply single-source algorithms 7 times, once for each vertex.

» Non-negative lengths. O(nm log n) with heaps and O(nm + n’ log n) using
advanced priority queues.

. Arbitrary edge lengths: O(n“1) and O(n*) if m = Q(n?)

41

All-Pairs Shortest Paths - Using known algorithms...
All-Pairs Shortest Path Problem

Input: A (undirected or directed) graph G = (V, E) with edge lengths. For edge
e = (u,v), l(e) = l(u, v) is its length. Find shortest paths for all pairs of nodes.

If we apply single-source algorithms 7 times, once for each vertex.

» Non-negative lengths. O(nm log n) with heaps and O(nm + n’ log n) using
advanced priority queues.

. Arbitrary edge lengths: O(n°m) and O(n*) it m = Q(n?)

Can we do better? \fioq (_@Ja'b \ \

41

All Pairs Shortest Paths: A
recursive solution

All-Pairs Shortest Paths

Recursion on index of intermediate nodes

» Number vertices arbitrarily as v, v,,..., v,

43

. N
All-Pairs Shortest Paths Q,/\\é /7\\

. . . . C
Recursion on index of intermediate nodes

» Number vertices arbitrarily as v, v,,..., v,

. O length of shortest walk from v. to v. among all walks in which the largest

index of an intermediate node i@ould be — oo If there is a negative length
cycle).

43

All-Pairs Shortest Paths

Recursion on index of intermediate nodes

» Number vertices arbitrarily as v, v,,..., v,

. : length of shortest walk from v, to V; among all walks in which the largest

index of an intermediate node is at most & (could be — oo if there is a negative length

cycle).
1
» 3 1
N
P
2

e

43

All-Pairs Shortest Paths

Recursion on index of intermediate nodes

» Number vertices arbitrarily as v, v,,..., v,

. : length of shortest walk from v, to V; among all walks in which the largest

index of an intermediate node is at most & (could be — oo if there is a negative length

cycle).
dist(z, 7,0) =

1
1 > 3
1
/ \\\; dist(z,7,1) =
2]
i * : % dist(, 7,2) =
\ 100 dist(7, 7,3) =

43

All-Pairs Shortest Paths

Recursion on index of intermediate nodes

» Number vertices arbitrarily as v, v,,..., v,

. . length of shortest walk from v; to v; among all walks in which the largest

index of an intermediate node is at most k (could be — o if there is a negative length
cycle).

V: LY dist(z, 7,0) = 100

1
/ \\\:V dist(7, j,1) =
2 J
N > % dist(i, j,2) =

100 dist(7, 7,3) =

44

All-Pairs Shortest Paths

Recursion on index of intermediate nodes

» Number vertices arbitrarily as v, v,,..., v,

. . length of shortest walk from v; to v; among all walks in which the largest

index of an intermediate node is at most k (could be — o if there is a negative length

cycle).
dist(i, j,0) = 100

1
1 » 3

1

yd \N dist(i,,1) = 9
2 J

1 % dist(i, /,2) =

\ 100 dist(7, 7,3) =

45

All-Pairs Shortest Paths

Recursion on index of intermediate nodes

» Number vertices arbitrarily as v, v,,..., v,

. . length of shortest walk from v; to v; among all walks in which the largest

index of an intermediate node is at most k (could be — o if there is a negative length

cycle).
dist(i, j,0) = 100

1
1 » 3
1
/ \N dist(s,j,1) =9
| 2 10 j oL
o~ : 7 dist(i, 7,2) = 8
\ 100 dist(7, 7,3) =

46

All-Pairs Shortest Paths

Recursion on index of intermediate nodes

» Number vertices arbitrarily as v, v,,..., v,

. . length of shortest walk from v; to v; among all walks in which the largest

index of an intermediate node is at most k (could be — o if there is a negative length
cycle).

| dist(, j,0) = 100

/ 12\N dist(i,7.1) = 9

1
3
1
5
J
o~ % dist(i, 7,2) = 8
2
\ 100 dist(7,7,3) = 5

All-Pairs Shortest Paths

Recursion on index of intermediate nodes

0 (&

All-Pairs Shortest Paths

Recursion on index of intermediate nodes

&

All-Pairs Shortest Paths

Recursion on index of intermediate nodes

M

dist(i,j,k— 1)

All-Pairs Shortest Paths

Recursion on index of intermediate nodes

k w(\k,j,k—l)

>

dist(i,k,k— 1)

dist(i,j,k— 1)

48

All-Pairs Shortest Paths

Recursion on index of intermediate nodes

k w(\k,j,k—l)

>

dist(i,k,k— 1)

dist(i,j,k— 1)

dist(i,j, k— 1)
dist(i, k,k — 1) + dist(k,j, k— 1)

dist(Z, j, k) = min {

48

All-Pairs Shortest Paths

Recursion on index of intermediate nodes

k w(\k,j,k—l)

>

dist(i,k,k— 1)

dist(i,j,k— 1)

dist(i,j, k— 1)
dist(i, k,k — 1) + dist(k,j, k— 1)

« Base case: dist(7,7,0) = [(1,)) if (i,]) € E, otherwise co

dist(Z, j, k) = min {

. If i — j shortest walk goes through k then k occurs only once on the path
— otherwise there Is a negative length cycle

48

All-Pairs: Recursion on index of intermediate nodes

If i can reach k and k can reach j and dist(k, K,k — 1) < 0 then G has a
negative length cycle containing k and dist(z, j, k) = — 0.

49

All-Pairs: Recursion on index of intermediate nodes

If i can reach k and k can reach j and dist(k, K,k — 1) < 0 then G has a
negative length cycle containing k and dist(z, j, k) = — 0.

Recursion below is valid only if dist(k, k, k — 1) > (. We can detect this during
the algorithm or wait till the end.

49

All-Pairs: Recursion on index of intermediate nodes

If i can reach k and k can reach j and dist(k, K,k — 1) < 0 then G has a
negative length cycle containing k and dist(z, j, k) = — 0.

Recursion below is valid only if dist(k, k, k — 1) > (. We can detect this during
the algorithm or wait till the end.

dist(z,j,k— 1)

dist(i,j, k) =minq§ . . ist(k, 7
18t(i, J, k) mm{dwt(l,kak_ 1) + dist(k, j, k — 1)

49

Floyd-Warshall Algorithm

Floyd - Warshall Algorithm

For All-Pairs Shortest Paths

for i = 1 to n do
for 7 = 1 to n do

d(i, j,0) = (i,))

(* 1(i, j) = o if (i, j) &€ E, 0 if i = j *)
for Kk = 1 to n do
for 1 = 1 to n do
for 7 = 1 to n do
o dist(z, j,k— 1)
dist(7, j, k) = min {

dist(i, k, k — 1) 4+ dist(k, j, k — 1)

for 1 = 1 to n do
if (dist(i,i,n) < 0) then
Output d negative cycle in G

51

Floyd - Warshall Algorithm

For All-Pairs Shortest Paths

for i = 1 to n do
for 7 = 1 to n do

d(i, j,0) = (i,))

3
(* 1(i, j) = o if (i, j) & B, 0 if i = j *) On°)
for Kk = 1 to n do 3
for 1 = 1 to n do ®(n)
for 7 = 1 to n do
dist(i, j, k — 1) via iInduction

dist(i, j, k) = mi L , , .
(),) = min {dlst(z,k,k— 1) + dist(k, j,k — 1) and recursive definition

for 1 = 1 to n do
if (dist(i,i,n) < 0) then
Output d negative cycle in G

51

Floyd - Warshall Algorithm

Finding the Paths

Question: Can we find the paths in addition to the distances?

 Create an X n array Next that stores the next vertex on shortest path for
each pair of vertices

« With array Next, for any pair of given vertices 1,] can compute a shortest
path in O(n) time.

52

Floyd - Warshall Algorithm

Finding the Paths

for 1 = 1 to n do
for 7 = 1 to n do

d(i, j,0) = I(i, J)

(* 1(i, j) = o if (i, j) € E, 0 if 1 = J *)

Next (i, j) = -1
for kK = 1 to n do
for 1 = 1 to n do

for 7 = 1 to n do
if (d(,j,k—1)>d@G,k,k—1)+d(k,j,k— 1)) then
d(i,j, k) =dG,k,k—1)+dk,j,k—1)
Next (i, j) = k

for 1 = 1 to n do
if (dist(i,i,n) < 0) then
Output d negative cycle in G

53

Summary of shortest path
algorithms

Summary of results on shortest paths

Single source

No negative edges

Dijkstra

O(n log n + m)

Edge lengths can be negative | Bellman Ford

O(nm)

All Pairs Shortest Paths

No negative edges

n * Dijkstra

O(n2log n + nm)

No negative cycles

n * Bellman Ford

O(n2m) = O(n%)

No negative cycles

O(hm + n2log n)

No negative cycles

Floyd-Warshg &;

O(n3)

Unweighted

(Matrix multiplication Q(n2-38), O(n2-58)

55

m— I QOQQS__
n—= % vedeeys .

(1)

The algorithm for the case
that there are no negative
cycles, and doing all shortest
paths, works by computing a
potential function using
Bellman-Ford and then doing
Dijkstra. It is mentioned for
the sake of completeness,

but it outside the scope of the
class.

https://resources.mpi-
iInf.mpg.de/ departments/d1/
teaching/ss12/
AdvancedGraphAlgorithms/
Slides14.pdf

