
Bellman-Ford and Dynamic
Programming on Graphs

All mistakes are my own! - Ivan Abraham (Fall 2024)

Sides based on material by Kani, Erickson, Chekuri, et. al.

Why Dijkstra’s algorithm fails with negative
edges

2

What are the distances computed by Dijkstra’s algorithm?

3

s x

y
z t

5

-5

1

1

1

s x

y
z t

5

-5

1

1

1↓
source

↓
&target

What are the distances computed by Dijkstra’s algorithm?

3

s x

y
z t

5

-5

1

1

1

s x

y
z t

5

-5

1

1

1

1

What are the distances computed by Dijkstra’s algorithm?

3

s x

y
z t

5

-5

1

1

1

s x

y
z t

5

-5

1

1

1

1
2

What are the distances computed by Dijkstra’s algorithm?

3

s x

y
z t

5

-5

1

1

1

s x

y
z t

5

-5

1

1

1

1
2 3

What are the distances computed by Dijkstra’s algorithm?
But that is not the shortest path!

 4

 s x

 y
 z t

5

-5

1

1

1

 s x

 y
 z t

5

-5

1

1

1

1
2 3

What are the distances computed by Dijkstra’s algorithm?
But that is not the shortest path!

 4

 s x

 y
 z t

5

-5

1

1

1

5
 s x

 y
 z t

5

-5

1

1

1

1
2 3

What are the distances computed by Dijkstra’s algorithm?
But that is not the shortest path!

 4

 s x

 y
 z t

5

-5

1

1

1

5

0
 s x

 y
 z t

5

-5

1

1

1

1
2 3

What are the distances computed by Dijkstra’s algorithm?
But that is not the shortest path!

 4

 s x

 y
 z t

5

-5

1

1

1

5

0 1
 s x

 y
 z t

5

-5

1

1

1

1
2 3

What are the distances computed by Dijkstra’s algorithm?
But that is not the shortest path!

 4

 s x

 y
 z t

5

-5

1

1

1

5

0 1
 s x

 y
 z t

5

-5

1

1

1

1
2 3

Problem: False assumption that if is a shortest path from to
then for . Holds true only for non-negative edge lengths.

s → v0 → v1 → v2 . . . → vk s vk
dist(s, vi) ≤ dist(s, vi+1) 0 ≤ i < k

Shortest paths with negative lengths

Lemma: Let be a directed graph with arbitrary edge lengths and let G

 s = v0 → v1 → v2 . . . → vk = t

be a shortest path from to then for : s t 1 ≤ i < k

• is a shortest path from to s = v0 → v1 → v2 → . . . vi s vi

5

Shortest paths with negative lengths

Lemma: Let be a directed graph with arbitrary edge lengths and let G

 s = v0 → v1 → v2 . . . → vk = t

be a shortest path from to then for : s t 1 ≤ i < k

• is a shortest path from to s = v0 → v1 → v2 → . . . vi s vi

• for .dist(s, vi) ≤ dist(s, vk) 1 ≤ i < k

5

Shortest paths with negative lengths

Lemma: Let be a directed graph with arbitrary edge lengths and let G

 s = v0 → v1 → v2 . . . → vk = t

be a shortest path from to then for : s t 1 ≤ i < k

• is a shortest path from to s = v0 → v1 → v2 → . . . vi s vi

• for .dist(s, vi) ≤ dist(s, vk) 1 ≤ i < k

5

False!⇒

-

-

Why can’t we just re-normalize the edge lengths?
Instinctual thought

6

s a

b c

t

-3

5 1

10

-2 3 Shortest Path:

 s → a → c → t

-

②

Why can’t we just re-normalize the edge lengths?
Instinctual thought

6

s a

b c

t

-3

5 1

10

-2 3 Shortest Path:

 s → a → c → t

Why can’t we simply add
a weight to each edge
so that the shortest
length is 0 (or positive)?

Why can’t we just re-normalize the edge lengths?
Instinctual thought

7

s a

b c

t

-3

5 1

10

-2 3 Shortest Path:

 s → a → c → t

s a

b c

t

0

8 4

16

1 6

Why can’t we simply add
a weight to each edge
so that the shortest
length is 0 (or positive)?

Why can’t we just re-normalize the edge lengths?
Instinctual thought

7

s a

b c

t

-3

5 1

10

-2 3 Shortest Path:

 s → a → c → t

s a

b c

t

0

8 4

16

1 6 Shortest Path:

 s → b → t

Why can’t we simply add
a weight to each edge
so that the shortest
length is 0 (or positive)?

Why can’t we just re-normalize the edge lengths?
Instinctual thought

7

s a

b c

t

-3

5 1

10

-2 3 Shortest Path:

 s → a → c → t

s a

b c

t

0

8 4

16

1 6 Shortest Path:

 s → b → t

Adding weights to edges penalizes paths with more edges, gives wrong path
on original graph.

Why can’t we simply add
a weight to each edge
so that the shortest
length is 0 (or positive)?

Negative length cycles
Definition

8

s

b

f

c

d

9

e

tg

10

18

6

15 -8

44

6

3

1911

-16
30

20
16

What is the shortest path distance
between and ?s t

Negative length cycles
Definition

8

s

b

f

c

d

9

e

tg

10

18

6

15 -8

44

6

3

1911

-16
30

20
16

What is the shortest path distance
between and ?s t

Negative length cycles
Definition

8

s

b

f

c

d

9

e

tg

10

18

6

15 -8

44

6

3

1911

-16
30

20
16

What is the shortest path distance
between and ?s t

What about adding red path?

Definition

9

s

b

f

c

d

9

e

tg

10

18

6

15 -8

44

6

3

1911

-16
30

20
16

Negative length cycles

What is the shortest path distance
between and ?s t

What about adding red path? ↓
↳

Definition

9

s

b

f

c

d

9

e

tg

10

18

6

15 -8

44

6

3

1911

-16
30

20
16

Negative length cycles

Fix: Restrcit paths to be simple …

What is the shortest path distance
between and ?s t

What about adding red path?

I
no repeated

Definition

9

s

b

f

c

d

9

e

tg

10

18

6

15 -8

44

6

3

1911

-16
30

20
16

Negative length cycles
A cycle is a negative length cycle if the sum of the edge lengths of is negative.C C

Fix: Restrcit paths to be simple …

What is the shortest path distance
between and ?s t

What about adding red path?

Shortest paths and negative cycles
Given with edge lengths and . Suppose G = (V, E) s, t

• has a negative length cycle , and can reach and can reach .G C s C C t

Question: What is the shortest distance from to ? s t

10

Shortest paths and negative cycles
Given with edge lengths and . Suppose G = (V, E) s, t

• has a negative length cycle , and can reach and can reach .G C s C C t

Question: What is the shortest distance from to ? s t
Possible answers:

10

Shortest paths and negative cycles
Given with edge lengths and . Suppose G = (V, E) s, t

• has a negative length cycle , and can reach and can reach .G C s C C t

Question: What is the shortest distance from to ? s t
Possible answers:

• undefined, that is , OR −∞

10

Shortest paths and negative cycles
Given with edge lengths and . Suppose G = (V, E) s, t

• has a negative length cycle , and can reach and can reach .G C s C C t

Question: What is the shortest distance from to ? s t
Possible answers:

• undefined, that is , OR −∞

• the length of a shortest simple path from to .s t

10

Of
-

Restating problem of shortest path with negative edges
Alternatively: Finding shortest walks

Recall that given a graph : G = (V, E)

• A (simple) path is a sequence of distinct vertices such that
for .

v1, v2, . . . , vk (vi, vi+1) ∈ E
1 ≤ i ≤ k − 1

• A walk is a sequence of vertices such that for
.

v1, v2, . . . , vk (vi, vi+1) ∈ E
1 ≤ i ≤ k − 1

11

-

-

-

Restating problem of shortest path with negative edges
Alternatively: Finding shortest walks

Recall that given a graph : G = (V, E)

• A (simple) path is a sequence of distinct vertices such that
for .

v1, v2, . . . , vk (vi, vi+1) ∈ E
1 ≤ i ≤ k − 1

• A walk is a sequence of vertices such that for
.

v1, v2, . . . , vk (vi, vi+1) ∈ E
1 ≤ i ≤ k − 1

Define to be the length of a shortest walk from to .dist(u, v) u v

11

Restating problem of shortest path with negative edges
Alternatively: Finding shortest walks

Recall that given a graph : G = (V, E)

• A (simple) path is a sequence of distinct vertices such that
for .

v1, v2, . . . , vk (vi, vi+1) ∈ E
1 ≤ i ≤ k − 1

• A walk is a sequence of vertices such that for
.

v1, v2, . . . , vk (vi, vi+1) ∈ E
1 ≤ i ≤ k − 1

Define to be the length of a shortest walk from to .dist(u, v) u v

• If there is a walk from to that contains negative length cycle then u v dist(u, v) = − ∞

11

↓
-

Restating problem of shortest path with negative edges
Alternatively: Finding shortest walks

Recall that given a graph : G = (V, E)

• A (simple) path is a sequence of distinct vertices such that
for .

v1, v2, . . . , vk (vi, vi+1) ∈ E
1 ≤ i ≤ k − 1

• A walk is a sequence of vertices such that for
.

v1, v2, . . . , vk (vi, vi+1) ∈ E
1 ≤ i ≤ k − 1

Define to be the length of a shortest walk from to .dist(u, v) u v

• If there is a walk from to that contains negative length cycle then u v dist(u, v) = − ∞

• Else, there is a path with at most edges whose length is equal to the length of a
shortest walk and is finite

n − 1
dist(u, v)

11

Shortest paths with negative edges
Algorithmic problems

12

Input: A directed graph with edge lengths (could be negative). For
edge , is its length.

G = (V, E)
e = (u, v) l(e) = l(u, v)

Questions:

Shortest paths with negative edges
Algorithmic problems

12

Input: A directed graph with edge lengths (could be negative). For
edge , is its length.

G = (V, E)
e = (u, v) l(e) = l(u, v)

Questions:
• Given nodes either find a negative length cycle that can reach or find

a shortest path from to .
s, t C s

s t
Schneeed

reachable

Shortest paths with negative edges
Algorithmic problems

12

Input: A directed graph with edge lengths (could be negative). For
edge , is its length.

G = (V, E)
e = (u, v) l(e) = l(u, v)

Questions:
• Given nodes either find a negative length cycle that can reach or find

a shortest path from to .
s, t C s

s t
• Given node , either find a negative length cycle that can reach or find

shortest path distances from to all reachable nodes.
s C s

s

S-E

?
Stall tagol .

Shortest paths with negative edges
Algorithmic problems

12

Input: A directed graph with edge lengths (could be negative). For
edge , is its length.

G = (V, E)
e = (u, v) l(e) = l(u, v)

Questions:
• Given nodes either find a negative length cycle that can reach or find

a shortest path from to .
s, t C s

s t
• Given node , either find a negative length cycle that can reach or find

shortest path distances from to all reachable nodes.
s C s

s
• Check if has a negative length cycle or not.G

All paus
shoutes(

e pathHoyc
-

Washell-

Bellman Ford Algorithm

13

Shortest paths and recursion
• Is it possible to compute the shortest path distance from to recursively? s t

• If yes, what are the smaller sub-problems?

14

-

-

Shortest paths and recursion
• Is it possible to compute the shortest path distance from to recursively? s t

• If yes, what are the smaller sub-problems?

Lemma: Let be a directed graph with arbitrary edge lengths. If

G
s = v0 → v1 → v2 → . . . → vk

14

Shortest paths and recursion
• Is it possible to compute the shortest path distance from to recursively? s t

• If yes, what are the smaller sub-problems?

Lemma: Let be a directed graph with arbitrary edge lengths. If

G
s = v0 → v1 → v2 → . . . → vk

is a shortest path from to then for : s vk 1 ≤ i < k

14

Shortest paths and recursion
• Is it possible to compute the shortest path distance from to recursively? s t

• If yes, what are the smaller sub-problems?

Lemma: Let be a directed graph with arbitrary edge lengths. If

G
s = v0 → v1 → v2 → . . . → vk

is a shortest path from to then for : s vk 1 ≤ i < k

 is a shortest path from to s = v0 → v1 → v2 → . . . → vi s vi

14

O

Shortest paths and recursion
• Is it possible to compute the shortest path distance from to recursively? s t

• If yes, what are the smaller sub-problems?

Lemma: Let be a directed graph with arbitrary edge lengths. If

G
s = v0 → v1 → v2 → . . . → vk

is a shortest path from to then for : s vk 1 ≤ i < k

 is a shortest path from to s = v0 → v1 → v2 → . . . → vi s vi

Sub-problem idea: paths of fewer hops/edges

14

en

-

Hop-based recursion
Bellman-Ford Algorithm
Single-source problem: Fix source . s

Assumptions: All nodes can be reached from in . Assume has no
negative-length cycle (for now).

s G G

15

Hop-based recursion
Bellman-Ford Algorithm
Single-source problem: Fix source . s

Assumptions: All nodes can be reached from in . Assume has no
negative-length cycle (for now).

s G G

Define, as the shortest walk length from to using at most edges.
Then note, . Recursion for :

d(v, k) s v k
dist(s, v) = d(v, n − 1) d(v, k)

15

E
O

* P
deffert .

Hop-based recursion
Bellman-Ford Algorithm
Single-source problem: Fix source . s

Assumptions: All nodes can be reached from in . Assume has no
negative-length cycle (for now).

s G G

Define, as the shortest walk length from to using at most edges.
Then note, . Recursion for :

d(v, k) s v k
dist(s, v) = d(v, n − 1) d(v, k)

d(v, k) = min {
min
u∈V (d(u, k − 1) + l(u, v))
d(v, k − 1)

15

-

-

-

③ intervalute* X noda a

Hop-based recursion
Bellman-Ford Algorithm
Single-source problem: Fix source . s

Assumptions: All nodes can be reached from in . Assume has no
negative-length cycle (for now).

s G G

Define, as the shortest walk length from to using at most edges.
Then note, . Recursion for :

d(v, k) s v k
dist(s, v) = d(v, n − 1) d(v, k)

d(v, k) = min {
min
u∈V (d(u, k − 1) + l(u, v))
d(v, k − 1)

Base case: and for all d(s,0) = 0 d(v,0) = ∞ v ≠ s
15

Bellman-Ford Algorithm
Example

16

∞

∞

∞

∞

∞

0

∞

2-8

1

-3 -3

0 5

8

4

-1

36

E

FD

A C

B

S

Round S A B C D E F
0 0 ∞ ∞ ∞ ∞ ∞ ∞
1
2
3
4
5
6

interligation

8

start

∞

∞

∞

4

6

0

3

Bellman-Ford Algorithm
Example

17

2-8

1

-3 -3

0 5

8

4

-1

36

E

FD

A C

B

S

Round S A B C D E F
0 0 ∞ ∞ ∞ ∞ ∞ ∞
1 0 6 4 3 ∞ ∞ ∞
2
3
4
5
6

- Orie

4

∞

9

2

6

0

3

Bellman-Ford Algorithm
Example

18

2-8

1

-3 -3

0 5

8

4

-1

36

E

FD

A C

B

S

Round S A B C D E F
0 0 ∞ ∞ ∞ ∞ ∞ ∞
1 0 6 4 3 ∞ ∞ ∞
2 0 6 2 3 4 ∞ 9
3
4
5
6 O

2

11

7

2

1

0

3

Bellman-Ford Algorithm
Example

19

2-8

1

-3 -3

0 5

8

4

-1

36

E

FD

A C

B

S

Round S A B C D E F
0 0 ∞ ∞ ∞ ∞ ∞ ∞
1 0 6 4 3 ∞ ∞ ∞
2 0 6 2 3 4 ∞ 9
3 0 1 2 3 2 11 7
4
5
6

-2

2

9

7

2

-1

0

3

Bellman-Ford Algorithm
Example

20

2-8

1

-3 -3

0 5

8

4

-1

36

E

FD

A C

B

S

Round S A B C D E F
0 0 ∞ ∞ ∞ ∞ ∞ ∞
1 0 6 4 3 ∞ ∞ ∞
2 0 6 2 3 4 ∞ 9
3 0 1 2 3 2 11 7
4 0 -1 2 3 2 9 7
5
6

Bellman-Ford Algorithm
Example

21

Round S A B C D E F
0 0 ∞ ∞ ∞ ∞ ∞ ∞
1 0 6 4 3 ∞ ∞ ∞
2 0 6 2 3 4 ∞ 9
3 0 1 2 3 2 11 7
4 0 -1 2 3 2 9 7
5 0 -1 2 3 1 9 7
6

1

9

7

2

-1

0

3

2-8

1

-3 -3

0 5

8

4

-1

36

E

FD

A C

B

S

Bellman-Ford Algorithm
Example

22

Round S A B C D E F
0 0 ∞ ∞ ∞ ∞ ∞ ∞
1 0 6 4 3 ∞ ∞ ∞
2 0 6 2 3 4 ∞ 9
3 0 1 2 3 2 11 7
4 0 -1 2 3 2 9 7
5 0 -1 2 3 1 9 7
6 0 -2 2 3 1 9 7

1

9

7

2

-2

0

3

2-8

1

-3 -3

0 5

8

4

-1

36

E

FD

A C

B

S

1

9

7

2

-2

0

3

Bellman-Ford Algorithm
Example

23

2-8

1

-3 -3

0 5

8

4

-1

36

E

FD

A C

B

S

Round S A B C D E F
0 0 ∞ ∞ ∞ ∞ ∞ ∞
1 0 6 4 3 ∞ ∞ ∞
2 0 6 2 3 4 ∞ 9
3 0 1 2 3 2 11 7
4 0 -1 2 3 2 9 7
5 0 -1 2 3 1 9 7
6 0 -2 2 3 1 9 7

latd

Bellman-Ford Algorithm
Algorithm

24

Create list from

for each do

for k = 1 to n − 1 do
 for each do

d(v, k) d(v, k − 1)
 for each edge do

d(v, k) = min{d(v, k), d(u, k − 1) + l(u, v)}

for each do
dist(s, v) d(v, n − 1)

In(G) adj(G)

u ∈ V
d(u,0) ← ∞

d(s,0) ← 0

v ∈ V
←

(u, v) ∈ In(v)

v ∈ V
←

Running time: O(n(n + m))

Space: O(m + n2)

↳
creatyalye

Copying
aleeast

T toul
&

Bellman-Ford Algorithm
Algorithm

24

Create list from

for each do

for k = 1 to n − 1 do
 for each do

d(v, k) d(v, k − 1)
 for each edge do

d(v, k) = min{d(v, k), d(u, k − 1) + l(u, v)}

for each do
dist(s, v) d(v, n − 1)

In(G) adj(G)

u ∈ V
d(u,0) ← ∞

d(s,0) ← 0

v ∈ V
←

(u, v) ∈ In(v)

v ∈ V
←

Running time: O(n(n + m))

Space: O(m + n2)
Space can be reduced to
O(m + n)

Bellman-Ford Algorithm
Algorithm

24

Create list from

for each do

for k = 1 to n − 1 do
 for each do

d(v, k) d(v, k − 1)
 for each edge do

d(v, k) = min{d(v, k), d(u, k − 1) + l(u, v)}

for each do
dist(s, v) d(v, n − 1)

In(G) adj(G)

u ∈ V
d(u,0) ← ∞

d(s,0) ← 0

v ∈ V
←

(u, v) ∈ In(v)

v ∈ V
←

Running time: O(n(n + m))

Space: O(m + n2)
Space can be reduced to
O(m + n)

Do we need the list?In(G)
-

T

t

Bellman-Ford Algorithm
Algorithm - cleaner version

25

for each do

for k = 1 to n − 1 do
 for each do

for each edge do
 d(v) = min{d(v), d(u) + l(u, v)}

for each do
dist(s, v) d(v, n − 1)

u ∈ V
d(u,0) ← ∞

d(s,0) ← 0

v ∈ V
(u, v) ∈ In(v)

v ∈ V
←

Do we need the list?In(G)

&
T

Bellman-Ford Algorithm
Algorithm - cleaner version

25

for each do

for k = 1 to n − 1 do
 for each do

for each edge do
 d(v) = min{d(v), d(u) + l(u, v)}

for each do
dist(s, v) d(v, n − 1)

u ∈ V
d(u,0) ← ∞

d(s,0) ← 0

v ∈ V
(u, v) ∈ In(v)

v ∈ V
←

Do we need the list?In(G)

Running time: O(mn)

Space: O(m + n)

Bellman-Ford Algorithm
Algorithm - cleaner version

25

for each do

for k = 1 to n − 1 do
 for each do

for each edge do
 d(v) = min{d(v), d(u) + l(u, v)}

for each do
dist(s, v) d(v, n − 1)

u ∈ V
d(u,0) ← ∞

d(s,0) ← 0

v ∈ V
(u, v) ∈ In(v)

v ∈ V
←

Do we need the list?In(v)

Running time: O(mn)

Space: O(m + n)

-

Bellman-Ford Algorithm
Algorithm - optimized

26

for each do

for k = 1 to n − 1 do
for each edge do
 d(v) = min{d(v), d(u) + l(u, v)}

for each do
dist(s, v) d(v, n − 1)

u ∈ V
d(u,0) ← ∞

d(s,0) ← 0

(u, v) ∈ G

v ∈ V
←

Running time:

Space:

O(mn)

O(n)

Do we need the list?In(v)

E

Bellman-Ford Algorithm
Negative cycles

What happens if we run this on a graph with negative cycles?

27

s

a

b

-11

-1

Round s a b

Bellman-Ford Algorithm
Negative cycles

What happens if we run this on a graph with negative cycles?

27

s

a

b

-11

-1

Round s a b

0 0 ∞ ∞

Bellman-Ford Algorithm
Negative cycles

What happens if we run this on a graph with negative cycles?

27

s

a

b

-11

-1

Round s a b

0 0 ∞ ∞
1 0 1 ∞

Bellman-Ford Algorithm
Negative cycles

What happens if we run this on a graph with negative cycles?

27

s

a

b

-11

-1

Round s a b

0 0 ∞ ∞
1 0 1 ∞
2 0 1 0

E

Bellman-Ford Algorithm
Negative cycles

What happens if we run this on a graph with negative cycles?

27

s

a

b

-11

-1

Round s a b

0 0 ∞ ∞
1 0 1 ∞
2 0 1 0

3 -1 1 06

Bellman-Ford Algorithm
Negative cycles

What happens if we run this on a graph with negative cycles?

27

s

a

b

-11

-1

Round s a b

0 0 ∞ ∞
1 0 1 ∞
2 0 1 0

3 -1 1 0

4 -1 0 0

O

Bellman-Ford Algorithm
Negative cycles

What happens if we run this on a graph with negative cycles?

27

s

a

b

-11

-1

Round s a b

0 0 ∞ ∞
1 0 1 ∞
2 0 1 0

3 -1 1 0

4 -1 0 0

5 -1 0 -1⑧
-

Correctness: detecting negative length cycle
Lemma: Suppose has a negative cycle reachable from . Then there is some
node such that .

G C s
v ∈ C d(v, n) < d(v, n − 1)

28

Correctness: detecting negative length cycle
Lemma: Suppose has a negative cycle reachable from . Then there is some
node such that .

G C s
v ∈ C d(v, n) < d(v, n − 1)

Proof: Suppose not. Let be negative length cycle
reachable from . Then is finite for since is reachable from .

C = v1 → v2 → . . . → vk → v1
s d(vi, n − 1) 1 ≤ i ≤ k C s

28

so assume d (v , n -1) 1 d(n)
-
- O

Correctness: detecting negative length cycle
Lemma: Suppose has a negative cycle reachable from . Then there is some
node such that .

G C s
v ∈ C d(v, n) < d(v, n − 1)

Proof: Suppose not. Let be negative length cycle
reachable from . Then is finite for since is reachable from .

C = v1 → v2 → . . . → vk → v1
s d(vi, n − 1) 1 ≤ i ≤ k C s

By assumption for all ; implies no change in iteration;
 for .

d(v, n) ≥ d(v, n − 1) v ∈ C nth

d(vi, n − 1) = d(vi, n) 1 ≤ i ≤ k

28

-

Correctness: detecting negative length cycle
Lemma: Suppose has a negative cycle reachable from . Then there is some
node such that .

G C s
v ∈ C d(v, n) < d(v, n − 1)

Proof: Suppose not. Let be negative length cycle
reachable from . Then is finite for since is reachable from .

C = v1 → v2 → . . . → vk → v1
s d(vi, n − 1) 1 ≤ i ≤ k C s

By assumption for all ; implies no change in iteration;
 for .

d(v, n) ≥ d(v, n − 1) v ∈ C nth

d(vi, n − 1) = d(vi, n) 1 ≤ i ≤ k

This means for and
.

d(vi, n − 1) ≤ d(vi−1, n − 1) + l(vi−1, vi) 2 ≤ i ≤ k
d(v1, n − 1) ≤ d(vk, n − 1) + l(vk, v1)

28

Correctness: detecting negative length cycle
Lemma: Suppose has a negative cycle reachable from . Then there is some
node such that .

G C s
v ∈ C d(v, n) < d(v, n − 1)

Proof: Suppose not. Let be negative length cycle
reachable from . Then is finite for since is reachable from .

C = v1 → v2 → . . . → vk → v1
s d(vi, n − 1) 1 ≤ i ≤ k C s

By assumption for all ; implies no change in iteration;
 for .

d(v, n) ≥ d(v, n − 1) v ∈ C nth

d(vi, n − 1) = d(vi, n) 1 ≤ i ≤ k

This means for and
.

d(vi, n − 1) ≤ d(vi−1, n − 1) + l(vi−1, vi) 2 ≤ i ≤ k
d(v1, n − 1) ≤ d(vk, n − 1) + l(vk, v1)
Summing/telescoping these inequalities results in which contradicts the
assumption that !

0 ≤ l(C)
l(C) < 0

28

Proof of lemma …

29

v0

v1 v2

v3

vk

s
C

Assumed that for all , v d(v, n) ≥ d(v, n − 1)For pootacti
X

Proof of lemma …

d(v1, n − 1) ≤ d(v0, n − 1) + l(v0, v1)

29

v0

v1 v2

v3

vk

s
C

Assumed that for all , v d(v, n) ≥ d(v, n − 1)

-

O

Proof of lemma …

d(v1, n − 1) ≤ d(v0, n − 1) + l(v0, v1)

 d(v2, n − 1) ≤ d(v1, n − 1) + l(v1, v2)

29

v0

v1 v2

v3

vk

s
C

Assumed that for all , v d(v, n) ≥ d(v, n − 1)

-

Proof of lemma …

d(v1, n − 1) ≤ d(v0, n − 1) + l(v0, v1)

 d(v2, n − 1) ≤ d(v1, n − 1) + l(v1, v2)
. . .

d(vi, n − 1) ≤ d(vi−1, n − 1) + l(vi−1, vi)
. . .

29

v0

v1 v2

v3

vk

s
C

Assumed that for all , v d(v, n) ≥ d(v, n − 1)

Proof of lemma …

d(v1, n − 1) ≤ d(v0, n − 1) + l(v0, v1)

 d(v2, n − 1) ≤ d(v1, n − 1) + l(v1, v2)
. . .

d(vi, n − 1) ≤ d(vi−1, n − 1) + l(vi−1, vi)
. . .

d(vk, n − 1) ≤ d(vk−1, n − 1) + l(vk−1, vk)

d(v0, n − 1) ≤ d(vk, n − 1) + l(vk, v0)
29

v0

v1 v2

v3

vk

s
C

Assumed that for all , v d(v, n) ≥ d(v, n − 1)

↳ E

30

v0

v1 v2

v3

vk

s
C

 is a not a negative cycle. Contradiction!

k

∑
i=0

d(vi, n − 1) ≤
k

∑
i=0

d(vi, n − 1) +
k

∑
i=1

l(vi−1, vi) + l(vk, v0)

0 ≤
k

∑
i=1

l(vi−1, vi) + l(vk, v0) = len(C)

C

Proof of lemma …

30

v0

v1 v2

v3

vk

s
C

 is a not a negative cycle. Contradiction!

k

∑
i=0

d(vi, n − 1) ≤
k

∑
i=0

d(vi, n − 1) +
k

∑
i=1

l(vi−1, vi) + l(vk, v0)

0 ≤
k

∑
i=1

l(vi−1, vi) + l(vk, v0) = len(C)

C

Proof of lemma …

Essence of the lemma: If has a negative cycle reachable from , then it can be
detected in iterations of the Bellman-Ford algorithm.

G s
n

Bellman-Ford: negative cycle detection
Final version

31

for each do

for k = 1 to n − 1 do
for each do

for each edge do
d(v) = min{d(v), d(u) + l(u, v)}

(* One more iteration to check if distances change *)
for each do

for each edge do
if (d(v) > d(u) + l(u, v))

Output “Negative Cycle”

for each do
dist(s, v) ← d(v, n-1)

u ∈ V
d(u) ← ∞

d(s) ← 0

v ∈ V
(u, v) ∈ In(v)

v ∈ V
(u, v) ∈ In(v)

v ∈ V

Bellman-Ford: negative cycle detection
Final version

31

for each do

for k = 1 to n − 1 do
for each do

for each edge do
d(v) = min{d(v), d(u) + l(u, v)}

(* One more iteration to check if distances change *)
for each do

for each edge do
if (d(v) > d(u) + l(u, v))

Output “Negative Cycle”

for each do
dist(s, v) ← d(v, n-1)

u ∈ V
d(u) ← ∞

d(s) ← 0

v ∈ V
(u, v) ∈ In(v)

v ∈ V
(u, v) ∈ In(v)

v ∈ V

All lines colored in

red

where already
present previously.

Variants on Bellman-Ford

32

Finding the shortest path tree

How do we find a shortest path tree in addition to distances?

33

men

Finding the shortest path tree

How do we find a shortest path tree in addition to distances?

• For each the can only get smaller as the algorithm proceeds. v d(v)

33

Finding the shortest path tree

How do we find a shortest path tree in addition to distances?

• For each the can only get smaller as the algorithm proceeds. v d(v)

• If becomes smaller it is because we found a vertex such that
 and we update . That is, we found a

shorter path to through .

d(v) u
d(v) > d(u) + l(u, v) d(v) = d(u) + l(u, v)

v u

33

Finding the shortest path tree

How do we find a shortest path tree in addition to distances?

• For each the can only get smaller as the algorithm proceeds. v d(v)

• If becomes smaller it is because we found a vertex such that
 and we update . That is, we found a

shorter path to through .

d(v) u
d(v) > d(u) + l(u, v) d(v) = d(u) + l(u, v)

v u

• For each have a pointer and update it to point to if finds a shorter
path via .

v prev(v) u v
u

33

Finding the shortest path tree

How do we find a shortest path tree in addition to distances?

• For each the can only get smaller as the algorithm proceeds. v d(v)

• If becomes smaller it is because we found a vertex such that
 and we update . That is, we found a

shorter path to through .

d(v) u
d(v) > d(u) + l(u, v) d(v) = d(u) + l(u, v)

v u

• For each have a pointer and update it to point to if finds a shorter
path via .

v prev(v) u v
u

• At the end of the algorithm pointers give a shortest path tree oriented
towards the source .

prev(v)
s

33

-

-

Negative cycle detection
Given directed graph with arbitrary edge lengths, does it have a negative
length cycle?

G

• Bellman-Ford checks whether there is a negative cycle that is reachable
from a specific vertex . There may be negative cycles not reachable from .

C
s s

34

-

Negative cycle detection
Given directed graph with arbitrary edge lengths, does it have a negative
length cycle?

G

• Bellman-Ford checks whether there is a negative cycle that is reachable
from a specific vertex . There may be negative cycles not reachable from .

C
s s

• Run Bellman-Ford times, once from each node ?|V | u

34

Negative cycle detection
Given directed graph with arbitrary edge lengths, does it have a negative
length cycle?

G

• Bellman-Ford checks whether there is a negative cycle that is reachable
from a specific vertex . There may be negative cycles not reachable from .

C
s s

• Run Bellman-Ford times, once from each node ?|V | u

• Add a new node and connect it to all nodes of with zero length edges.
Bellman-Ford from will fill find a negative length cycle if there is one.
Exercise: why does this work?

s′ G
s′

34

g·
SI

Negative cycle detection
Given directed graph with arbitrary edge lengths, does it have a negative
length cycle?

G

• Bellman-Ford checks whether there is a negative cycle that is reachable
from a specific vertex . There may be negative cycles not reachable from .

C
s s

• Run Bellman-Ford times, once from each node ?|V | u

• Add a new node and connect it to all nodes of with zero length edges.
Bellman-Ford from will fill find a negative length cycle if there is one.
Exercise: why does this work?

s′ G
s′

• negative cycle detection can be done with one Bellman-Ford
invocation.
⟹

34

Shortest paths in a DAG
Input: A directed acyclic graph with arbitrary (including negative)
edge lengths. For edge is its length.

G = (V, E)
e = (u, v), l(e) = l(u, v)

• Given nodes find shortest path from to . s, t s t

• Given node find shortest path from to all other nodes.s s

35

-no geles

Shortest paths in a DAG
Input: A directed acyclic graph with arbitrary (including negative)
edge lengths. For edge is its length.

G = (V, E)
e = (u, v), l(e) = l(u, v)

• Given nodes find shortest path from to . s, t s t

• Given node find shortest path from to all other nodes.s s
Simplification of algorithms for DAGs

35

Shortest paths in a DAG
Input: A directed acyclic graph with arbitrary (including negative)
edge lengths. For edge is its length.

G = (V, E)
e = (u, v), l(e) = l(u, v)

• Given nodes find shortest path from to . s, t s t

• Given node find shortest path from to all other nodes.s s
Simplification of algorithms for DAGs

• No cycles and hence no negative length cycles! Hence can find shortest
paths even for negative length edges.

35

-

-

Shortest paths in a DAG
Input: A directed acyclic graph with arbitrary (including negative)
edge lengths. For edge is its length.

G = (V, E)
e = (u, v), l(e) = l(u, v)

• Given nodes find shortest path from to . s, t s t

• Given node find shortest path from to all other nodes.s s
Simplification of algorithms for DAGs

• No cycles and hence no negative length cycles! Hence can find shortest
paths even for negative length edges.

• Can order nodes using topological sort.

35

-

Algorithm for DAGs

• Want to find shortest paths from . Ignore nodes not reachable from . s s

• Let be a topological sort of .s = v1, v2, vi+1, . . . , vn G

Observations:

36

-

Algorithm for DAGs

• Want to find shortest paths from . Ignore nodes not reachable from . s s

• Let be a topological sort of .s = v1, v2, vi+1, . . . , vn G

Observations:

• Shortest path from to cannot use any node from .s vi vi+1, …, vn

36

Algorithm for DAGs

• Want to find shortest paths from . Ignore nodes not reachable from . s s

• Let be a topological sort of .s = v1, v2, vi+1, . . . , vn G

Observations:

• Shortest path from to cannot use any node from .s vi vi+1, …, vn

• Can also find shortest paths in topologically sorted ordering.

36

Shortest Paths for DAGs
Example

37

A B

D

C

F

E

H

G

5 -4 -1

23

-4
2

Shortest Paths for DAGs
Example

37

A B

D

C

F

E

H

G

5 -4 -1

23

-4
2

A B C D E F G H

-4

5 -1 3

-4

2 2

Shortest Paths for DAGs
Example

38

A B

D

C

F

E

H

G

5 -4 -1

23

-4
2

0 ∞ ∞ 5 -4 8 -2 -8

-4

5 -1 3

-4

2 2

Algorithm for DAGs

39

for i = 1 to n do
 d(s, vi) = ∞

d(s, s) = 0
for i = 1 to n − 1 do

for each edge (vi , vj) in Adj(vi) do

return d(s, ·) values computed

d(s, vj) = min{d(s, vj), d(s, vi) + l(vi, vj)}

Algorithm for DAGs

Correctness: Induction on and observations in previous slide.
Running time: time algorithm! Works for negative edge lengths and
hence can find longest paths in a DAG.

i
O(m + n)

39

for i = 1 to n do
 d(s, vi) = ∞

d(s, s) = 0
for i = 1 to n − 1 do

for each edge (vi , vj) in Adj(vi) do

return d(s, ·) values computed

d(s, vj) = min{d(s, vj), d(s, vi) + l(vi, vj)}

All pairs shortest paths
Shortest Path Problems

Input: A (undirected or directed) graph with edge lengths. For edge
, is its length.

G = (V, E)
e = (u, v) l(e) = l(u, v)

• Given nodes find shortest path from to . s, t s t

• Given node find shortest path from to all other nodes. s s

40

All pairs shortest paths
Shortest Path Problems

Input: A (undirected or directed) graph with edge lengths. For edge
, is its length.

G = (V, E)
e = (u, v) l(e) = l(u, v)

• Given nodes find shortest path from to . s, t s t

• Given node find shortest path from to all other nodes. s s

• Find shortest paths for all pairs of nodes.

40

-> left over to discuss

All-Pairs Shortest Paths - Using known algorithms...
All-Pairs Shortest Path Problem

41

Input: A (undirected or directed) graph with edge lengths. For edge
, is its length. Find shortest paths for all pairs of nodes.

G = (V, E)
e = (u, v) l(e) = l(u, v)
If we apply single-source algorithms times, once for each vertex. n

All-Pairs Shortest Paths - Using known algorithms...
All-Pairs Shortest Path Problem

41

Input: A (undirected or directed) graph with edge lengths. For edge
, is its length. Find shortest paths for all pairs of nodes.

G = (V, E)
e = (u, v) l(e) = l(u, v)
If we apply single-source algorithms times, once for each vertex. n

• Non-negative lengths. with heaps and using
advanced priority queues.

O(nm log n) O(nm + n2 log n)
-> Djubstra

All-Pairs Shortest Paths - Using known algorithms...
All-Pairs Shortest Path Problem

41

Input: A (undirected or directed) graph with edge lengths. For edge
, is its length. Find shortest paths for all pairs of nodes.

G = (V, E)
e = (u, v) l(e) = l(u, v)
If we apply single-source algorithms times, once for each vertex. n

• Non-negative lengths. with heaps and using
advanced priority queues.

O(nm log n) O(nm + n2 log n)

• Arbitrary edge lengths: and if O(n2m) →(n4) m = ≤(n2)
Belen Fore

-
⑧
-

All-Pairs Shortest Paths - Using known algorithms...
All-Pairs Shortest Path Problem

41

Input: A (undirected or directed) graph with edge lengths. For edge
, is its length. Find shortest paths for all pairs of nodes.

G = (V, E)
e = (u, v) l(e) = l(u, v)
If we apply single-source algorithms times, once for each vertex. n

• Non-negative lengths. with heaps and using
advanced priority queues.

O(nm log n) O(nm + n2 log n)

• Arbitrary edge lengths: and if O(n2m) →(n4) m = ≤(n2)
Can we do better? Yes (obio) .

All Pairs Shortest Paths: A
recursive solution

42

All-Pairs Shortest Paths

• Number vertices arbitrarily as v1, v2, . . . , vn

43

Recursion on index of intermediate nodes

All-Pairs Shortest Paths

• Number vertices arbitrarily as v1, v2, . . . , vn

• : length of shortest walk from to among all walks in which the largest
index of an intermediate node is at most (could be if there is a negative length
cycle).

dist(i, j, k) vi vj
k ⇒−

43

Recursion on index of intermediate nodes

·A-o
i ↳↑j-

O

many paths bot
restuct all interrelate

O
woches to be2 UK

-

All-Pairs Shortest Paths

• Number vertices arbitrarily as v1, v2, . . . , vn

• : length of shortest walk from to among all walks in which the largest
index of an intermediate node is at most (could be if there is a negative length
cycle).

dist(i, j, k) vi vj
k ⇒−

43

i

1 3

j

2

10
5

2

1
1

1

4

100

Recursion on index of intermediate nodes

All-Pairs Shortest Paths

• Number vertices arbitrarily as v1, v2, . . . , vn

• : length of shortest walk from to among all walks in which the largest
index of an intermediate node is at most (could be if there is a negative length
cycle).

dist(i, j, k) vi vj
k ⇒−

43

i

1 3

j

2

10
5

2

1
1

1

4

100

dist(i, j,0) =
dist(i, j,1) =
dist(i, j,2) =
dist(i, j,3) =

Recursion on index of intermediate nodes

↓

• Number vertices arbitrarily as

• : length of shortest walk from to among all walks in which the largest
index of an intermediate node is at most (could be if there is a negative length
cycle).

v1, v2, . . . , vn

dist(i, j, k) vi vj
k ⇒−

44

i

1 3

j

2

10
5

2

1
1

1

4

100

dist(i, j,0) = 100
dist(i, j,1) =
dist(i, j,2) =
dist(i, j,3) =

All-Pairs Shortest Paths
Recursion on index of intermediate nodes

e v

~

v

v

• Number vertices arbitrarily as

• : length of shortest walk from to among all walks in which the largest
index of an intermediate node is at most (could be if there is a negative length
cycle).

v1, v2, . . . , vn

dist(i, j, k) vi vj
k ⇒−

45

i

1 3

j

2

10
5

2

1
1

1

4

100

dist(i, j,0) = 100
dist(i, j,1) = 9
dist(i, j,2) =
dist(i, j,3) =

All-Pairs Shortest Paths
Recursion on index of intermediate nodes

• Number vertices arbitrarily as

• : length of shortest walk from to among all walks in which the largest
index of an intermediate node is at most (could be if there is a negative length
cycle).

v1, v2, . . . , vn

dist(i, j, k) vi vj
k ⇒−

46

i

1 3

j

2

10
5

2

1
1

1

4

100

dist(i, j,0) = 100
dist(i, j,1) = 9
dist(i, j,2) = 8
dist(i, j,3) =

All-Pairs Shortest Paths
Recursion on index of intermediate nodes

• Number vertices arbitrarily as

• : length of shortest walk from to among all walks in which the largest
index of an intermediate node is at most (could be if there is a negative length
cycle).

v1, v2, . . . , vn

dist(i, j, k) vi vj
k ⇒−

47

i

1 3

j

2

10
5

2

1
1

1

4

100

dist(i, j,0) = 100
dist(i, j,1) = 9
dist(i, j,2) = 8
dist(i, j,3) = 5

All-Pairs Shortest Paths
Recursion on index of intermediate nodes

48

i j

All-Pairs Shortest Paths
Recursion on index of intermediate nodes

48

i j

All-Pairs Shortest Paths
Recursion on index of intermediate nodes

48

i j

dist(i, j, k ⇒ 1)

All-Pairs Shortest Paths
Recursion on index of intermediate nodes

48

i

kdist(i, k, k ⇒ 1)

j

dist(k, j, k ⇒ 1)

dist(i, j, k ⇒ 1)

All-Pairs Shortest Paths
Recursion on index of intermediate nodes

48

i

kdist(i, k, k ⇒ 1)

j

dist(k, j, k ⇒ 1)

dist(i, j, k ⇒ 1)

dist(i, j, k) = min {dist(i, j, k ⇒ 1)
dist(i, k, k ⇒ 1) + dist(k, j, k ⇒ 1)

All-Pairs Shortest Paths
Recursion on index of intermediate nodes

• Base case: , otherwise

• Correctness: If shortest walk goes through then occurs only once on the path
— otherwise there is a negative length cycle

dist(i, j,0) = l(i, j) if (i, j) ∞ E −
i ∈ j k k

48

i

kdist(i, k, k ⇒ 1)

j

dist(k, j, k ⇒ 1)

dist(i, j, k ⇒ 1)

dist(i, j, k) = min {dist(i, j, k ⇒ 1)
dist(i, k, k ⇒ 1) + dist(k, j, k ⇒ 1)

All-Pairs Shortest Paths
Recursion on index of intermediate nodes

All-Pairs: Recursion on index of intermediate nodes

If can reach and can reach and then has a
negative length cycle containing and .

i k k j dist(k, k, k ⇒ 1) < 0 G
k dist(i, j, k) = ⇒ −

49

All-Pairs: Recursion on index of intermediate nodes

If can reach and can reach and then has a
negative length cycle containing and .

i k k j dist(k, k, k ⇒ 1) < 0 G
k dist(i, j, k) = ⇒ −

Recursion below is valid only if . We can detect this during
the algorithm or wait till the end.

dist(k, k, k ⇒ 1) ≠ 0

49

All-Pairs: Recursion on index of intermediate nodes

If can reach and can reach and then has a
negative length cycle containing and .

i k k j dist(k, k, k ⇒ 1) < 0 G
k dist(i, j, k) = ⇒ −

Recursion below is valid only if . We can detect this during
the algorithm or wait till the end.

dist(k, k, k ⇒ 1) ≠ 0

49

dist(i, j, k) = min {dist(i, j, k ⇒ 1)
dist(i, k, k ⇒ 1) + dist(k, j, k ⇒ 1)

Floyd-Warshall Algorithm

50

Floyd - Warshall Algorithm
For All-Pairs Shortest Paths

51

for i = 1 to n do
 for j = 1 to n do

(* l(i, j) = ∞ if (i, j) E, 0 if i = j *)
for k = 1 to n do

for i = 1 to n do
for j = 1 to n do

for i = 1 to n do
if then

Output ∃ negative cycle in G

d(i, j,0) = l(i, j)

←

dist(i, j, k) = min{dist(i, j, k ⇒ 1)
dist(i, k, k ⇒ 1) + dist(k, j, k ⇒ 1)

(dist(i, i, n) < 0)

Floyd - Warshall Algorithm
For All-Pairs Shortest Paths

51

for i = 1 to n do
 for j = 1 to n do

(* l(i, j) = ∞ if (i, j) E, 0 if i = j *)
for k = 1 to n do

for i = 1 to n do
for j = 1 to n do

for i = 1 to n do
if then

Output ∃ negative cycle in G

d(i, j,0) = l(i, j)

←

dist(i, j, k) = min{dist(i, j, k ⇒ 1)
dist(i, k, k ⇒ 1) + dist(k, j, k ⇒ 1)

(dist(i, i, n) < 0)

Running time:

Space:

Correctness: via induction
and recursive definition

→(n3)

→(n3)

Floyd - Warshall Algorithm
Finding the Paths

52

Question: Can we find the paths in addition to the distances?

• Create a array Next that stores the next vertex on shortest path for
each pair of vertices

• With array Next, for any pair of given vertices can compute a shortest
path in time.

n ≥ n

i, j
O(n)

Floyd - Warshall Algorithm
Finding the Paths

53

for i = 1 to n do
 for j = 1 to n do

(* l(i, j) = ∞ if (i, j) E, 0 if i = j *)
Next(i, j) = −1

for k = 1 to n do
for i = 1 to n do

for j = 1 to n do
if then

Next(i, j) = k

for i = 1 to n do
if then

Output ∃ negative cycle in G

d(i, j,0) = l(i, j)

←

(d(i, j, k ⇒ 1) > d(i, k, k ⇒ 1) + d(k, j, k ⇒ 1))
d(i, j, k) = d(i, k, k ⇒ 1) + d(k, j, k ⇒ 1)

(dist(i, i, n) < 0)

Summary of shortest path
algorithms

54

Summary of results on shortest paths

55

Single source

No negative edges Dijkstra O(n log n + m)

Edge lengths can be negative Bellman Ford O(nm)

All Pairs Shortest Paths
No negative edges n * Dijkstra O(n2 log n + nm)

No negative cycles n * Bellman Ford O(n2m) = O(n4)

No negative cycles Johnson’s 1 O(nm + n2 log n)

No negative cycles Floyd-Warsh O(n3)

Unweighted Matrix multiplication 2 O(n2.38), O(n2.58)

(1) The algorithm for the case
that there are no negative
cycles, and doing all shortest
paths, works by computing a
potential function using
Bellman-Ford and then doing
Dijkstra. It is mentioned for
the sake of completeness,
but it outside the scope of the
class.

(2) https://resources.mpi-
inf.mpg.de/ departments/d1/
teaching/ss12/
AdvancedGraphAlgorithms/
Slides14.pdf

m+ # edjes
.

n -> # verfees .

-
all

I

