
Bellman-Ford and Dynamic 
Programming on Graphs

All mistakes are my own! - Ivan Abraham (Fall 2024)

Sides based on material by Kani, Erickson, Chekuri, et. al.



Why Dijkstra’s algorithm fails with negative 
edges

2



What are the distances computed by Dijkstra’s algorithm?
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What are the distances computed by Dijkstra’s algorithm?
But that is not the shortest path!
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What are the distances computed by Dijkstra’s algorithm?
But that is not the shortest path!
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Problem: False assumption that if   is a shortest path from   to  
then   for  . Holds true only for non-negative edge lengths.

s → v0 → v1 → v2 . . . → vk s vk
dist(s, vi) ≤ dist(s, vi+1) 0 ≤ i < k



Shortest paths with negative lengths

Lemma:  Let  be a directed graph with arbitrary edge lengths and let G

 s = v0 → v1 → v2 . . . → vk = t

be a shortest path from  to  then for : s t 1 ≤ i < k

•  is a shortest path from  to s = v0 → v1 → v2 → . . . vi s vi
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Shortest paths with negative lengths

Lemma:  Let  be a directed graph with arbitrary edge lengths and let G

 s = v0 → v1 → v2 . . . → vk = t

be a shortest path from  to  then for : s t 1 ≤ i < k

•  is a shortest path from  to s = v0 → v1 → v2 → . . . vi s vi
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Why can’t we just re-normalize the edge  lengths?
Instinctual thought
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Adding weights to edges penalizes paths with more edges, gives wrong path 
on original graph.
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so that the shortest 
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Negative length cycles
Definition
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Shortest paths and negative cycles
Given  with edge lengths and . Suppose  G = (V, E) s, t

•  has a negative length cycle , and  can reach  and  can reach .G C s C C t

Question: What is the shortest distance from  to  ? s t
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Shortest paths and negative cycles
Given  with edge lengths and . Suppose  G = (V, E) s, t

•  has a negative length cycle , and  can reach  and  can reach .G C s C C t

Question: What is the shortest distance from  to  ? s t
Possible answers:

• undefined, that is , OR −∞

• the length of a shortest simple path from  to .s t
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Restating problem of shortest path with negative edges
Alternatively: Finding shortest walks

Recall that given a graph : G = (V, E)

• A (simple) path is a sequence of distinct vertices  such that  
for . 

v1, v2, . . . , vk (vi, vi+1) ∈ E
1 ≤ i ≤ k − 1

• A walk is a sequence of vertices  such that  for 
.

v1, v2, . . . , vk (vi, vi+1) ∈ E
1 ≤ i ≤ k − 1
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Restating problem of shortest path with negative edges
Alternatively: Finding shortest walks

Recall that given a graph : G = (V, E)

• A (simple) path is a sequence of distinct vertices  such that  
for . 

v1, v2, . . . , vk (vi, vi+1) ∈ E
1 ≤ i ≤ k − 1

• A walk is a sequence of vertices  such that  for 
.

v1, v2, . . . , vk (vi, vi+1) ∈ E
1 ≤ i ≤ k − 1

Define  to be the length of a shortest walk from  to .dist(u, v) u v

• If there is a walk from  to  that contains negative length cycle then u v dist(u, v) = − ∞

• Else, there is a path with at most  edges whose length is equal to the length of a 
shortest walk and  is finite 

n − 1
dist(u, v)
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Algorithmic problems
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Input: A directed graph  with edge lengths (could be negative). For 
edge ,  is its length.

G = (V, E)
e = (u, v) l(e) = l(u, v)

Questions: 
• Given nodes  either find a negative length cycle  that  can reach or find 

a shortest path from  to . 
s, t C s
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Shortest paths and recursion
• Is it possible to compute the shortest path distance from  to  recursively? s t

• If yes, what are the smaller sub-problems?
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Shortest paths and recursion
• Is it possible to compute the shortest path distance from  to  recursively? s t

• If yes, what are the smaller sub-problems?

Lemma: Let  be a directed graph with arbitrary edge lengths. If 
 

G
s = v0 → v1 → v2 → . . . → vk

is a shortest path from  to  then for : s vk 1 ≤ i < k

  is a shortest path from  to s = v0 → v1 → v2 → . . . → vi s vi

Sub-problem idea: paths of fewer hops/edges
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Single-source problem: Fix source . s

Assumptions: All nodes can be reached from  in .  Assume  has no 
negative-length cycle (for now).
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Hop-based recursion
Bellman-Ford Algorithm
Single-source problem: Fix source . s

Assumptions: All nodes can be reached from  in .  Assume  has no 
negative-length cycle (for now).

s G G

Define,  as the shortest walk length from  to  using at most  edges. 
Then note,  . Recursion for :

d(v, k) s v k
dist(s, v) = d(v, n − 1) d(v, k)

d(v, k) = min {
min
u∈V (d(u, k − 1) + l(u, v))
d(v, k − 1)

Base case:  and  for all d(s,0) = 0 d(v,0) = ∞ v ≠ s
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Bellman-Ford Algorithm
Algorithm
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Create  list from 

for each  do 
 

 

for k = 1 to n − 1 do 
   for each  do 

d(v, k)  d(v, k − 1) 
 for each edge  do 

d(v, k) = min{d(v, k), d(u, k − 1) + l(u, v)} 

for each  do 
dist(s, v)  d(v, n − 1)

In(G) adj(G)

u ∈ V
d(u,0) ← ∞

d(s,0) ← 0

v ∈ V
←

(u, v) ∈ In(v)

v ∈ V
←

Running time: O(n(n + m))

Space: O(m + n2)

↳
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for each  do 
 

 

for k = 1 to n − 1 do  
for each edge  do 
    d(v) = min{d(v), d(u) + l(u, v)} 

for each  do 
dist(s, v)  d(v, n − 1)

u ∈ V
d(u,0) ← ∞
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←

Running time: 
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27

s

a

b

-11

-1

Round s a b

0 0 ∞ ∞
1 0 1 ∞
2 0 1 0

3 -1 1 0

4 -1 0 0

5 -1 0 -1⑧
-



Correctness: detecting negative length cycle
Lemma: Suppose  has a negative cycle  reachable from . Then there is some 
node  such that .

G C s
v ∈ C d(v, n) < d(v, n − 1)

28



Correctness: detecting negative length cycle
Lemma: Suppose  has a negative cycle  reachable from . Then there is some 
node  such that .

G C s
v ∈ C d(v, n) < d(v, n − 1)

Proof: Suppose not. Let  be negative length cycle 
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C = v1 → v2 → . . . → vk → v1
s d(vi, n − 1) 1 ≤ i ≤ k C s
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reachable from . Then  is finite for  since  is reachable from . 
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By assumption  for all ; implies no change in  iteration; 
 for . 
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Correctness: detecting negative length cycle
Lemma: Suppose  has a negative cycle  reachable from . Then there is some 
node  such that .

G C s
v ∈ C d(v, n) < d(v, n − 1)

Proof: Suppose not. Let  be negative length cycle 
reachable from . Then  is finite for  since  is reachable from . 

C = v1 → v2 → . . . → vk → v1
s d(vi, n − 1) 1 ≤ i ≤ k C s

By assumption  for all ; implies no change in  iteration; 
 for . 

d(v, n) ≥ d(v, n − 1) v ∈ C nth

d(vi, n − 1) = d(vi, n) 1 ≤ i ≤ k

This means   for  and 
. 

d(vi, n − 1) ≤ d(vi−1, n − 1) + l(vi−1, vi) 2 ≤ i ≤ k
d(v1, n − 1) ≤ d(vk, n − 1) + l(vk, v1)
Summing/telescoping these inequalities results in  which contradicts the 
assumption that  !

0 ≤ l(C)
l(C) < 0

28
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Proof of lemma …

d(v1, n − 1) ≤ d(v0, n − 1) + l(v0, v1)
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Proof of lemma …

d(v1, n − 1) ≤ d(v0, n − 1) + l(v0, v1)

 d(v2, n − 1) ≤ d(v1, n − 1) + l(v1, v2)
. . .

d(vi, n − 1) ≤ d(vi−1, n − 1) + l(vi−1, vi)
. . . 

d(vk, n − 1) ≤ d(vk−1, n − 1) + l(vk−1, vk)

d(v0, n − 1) ≤ d(vk, n − 1) + l(vk, v0)
29
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 is a not a negative cycle. Contradiction!

k

∑
i=0

d(vi, n − 1) ≤
k

∑
i=0

d(vi, n − 1) +
k

∑
i=1

l(vi−1, vi) + l(vk, v0)

0 ≤
k

∑
i=1

l(vi−1, vi) + l(vk, v0) = len(C)

C

Proof of lemma …

Essence of the lemma: If  has a negative cycle reachable from , then it can be 
detected in  iterations of the Bellman-Ford algorithm. 

G s
n



Bellman-Ford: negative cycle detection
Final version

31

for each  do 
 

 

for k = 1 to n − 1 do 
for each  do 

for each edge  do 
d(v) = min{d(v), d(u) + l(u, v)} 

(* One more iteration to check if distances change *) 
for each  do 

for each edge  do 
if (d(v) > d(u) + l(u, v)) 

Output “Negative Cycle” 

for each  do 
dist(s, v) ← d(v, n-1)

u ∈ V
d(u) ← ∞

d(s) ← 0

v ∈ V
(u, v) ∈ In(v)

v ∈ V
(u, v) ∈ In(v)

v ∈ V



Bellman-Ford: negative cycle detection
Final version
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for each  do 
 

 

for k = 1 to n − 1 do 
for each  do 

for each edge  do 
d(v) = min{d(v), d(u) + l(u, v)} 

(* One more iteration to check if distances change *) 
for each  do 

for each edge  do 
if (d(v) > d(u) + l(u, v)) 

Output “Negative Cycle” 

for each  do 
dist(s, v) ← d(v, n-1)

u ∈ V
d(u) ← ∞

d(s) ← 0

v ∈ V
(u, v) ∈ In(v)

v ∈ V
(u, v) ∈ In(v)

v ∈ V

All lines colored in 

red 


where already 
present previously. 



Variants on Bellman-Ford
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Finding the shortest path tree

How do we find a shortest path tree in addition to distances? 

33
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Finding the shortest path tree

How do we find a shortest path tree in addition to distances? 

• For each  the  can only get smaller as the algorithm proceeds. v d(v)

• If  becomes smaller it is because we found a vertex  such that 
 and we update . That is, we found a 

shorter path to  through . 

d(v) u
d(v) > d(u) + l(u, v) d(v) = d(u) + l(u, v)

v u
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Finding the shortest path tree

How do we find a shortest path tree in addition to distances? 

• For each  the  can only get smaller as the algorithm proceeds. v d(v)

• If  becomes smaller it is because we found a vertex  such that 
 and we update . That is, we found a 

shorter path to  through . 

d(v) u
d(v) > d(u) + l(u, v) d(v) = d(u) + l(u, v)

v u

• For each  have a  pointer and update it to point to  if  finds a shorter 
path via . 

v prev(v) u v
u

• At the end of the algorithm  pointers give a shortest path tree oriented 
towards the source .

prev(v)
s

33
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Negative cycle detection
Given directed graph  with arbitrary edge lengths, does it have a negative 
length cycle? 

G

• Bellman-Ford checks whether there is a negative cycle  that is reachable 
from a specific vertex . There may be negative cycles not reachable from . 

C
s s

34
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Negative cycle detection
Given directed graph  with arbitrary edge lengths, does it have a negative 
length cycle? 

G

• Bellman-Ford checks whether there is a negative cycle  that is reachable 
from a specific vertex . There may be negative cycles not reachable from . 

C
s s

• Run Bellman-Ford  times, once from each node ?|V | u

• Add a new node  and connect it to all nodes of  with zero length edges. 
Bellman-Ford from  will fill find a negative length cycle if there is one. 
Exercise: why does this work? 

s′ G
s′ 
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Negative cycle detection
Given directed graph  with arbitrary edge lengths, does it have a negative 
length cycle? 

G

• Bellman-Ford checks whether there is a negative cycle  that is reachable 
from a specific vertex . There may be negative cycles not reachable from . 

C
s s

• Run Bellman-Ford  times, once from each node ?|V | u

• Add a new node  and connect it to all nodes of  with zero length edges. 
Bellman-Ford from  will fill find a negative length cycle if there is one. 
Exercise: why does this work? 

s′ G
s′ 

•  negative cycle detection can be done with one Bellman-Ford 
invocation.
⟹

34



Shortest paths in a DAG
Input: A directed acyclic graph  with arbitrary (including negative) 
edge lengths. For edge  is its length. 

G = (V, E)
e = (u, v), l(e) = l(u, v)

• Given nodes  find shortest path from  to . s, t s t

• Given node  find shortest path from  to all other nodes.s s

35
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Shortest paths in a DAG
Input: A directed acyclic graph  with arbitrary (including negative) 
edge lengths. For edge  is its length. 

G = (V, E)
e = (u, v), l(e) = l(u, v)

• Given nodes  find shortest path from  to . s, t s t

• Given node  find shortest path from  to all other nodes.s s
Simplification of algorithms for DAGs  

• No cycles and hence no negative length cycles! Hence can find shortest 
paths even for negative length edges.

• Can order nodes using topological sort.

35
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Algorithm for DAGs

• Want to find shortest paths from . Ignore nodes not reachable from . s s

• Let  be a topological sort of .s = v1, v2, vi+1, . . . , vn G

Observations:
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Algorithm for DAGs

• Want to find shortest paths from . Ignore nodes not reachable from . s s

• Let  be a topological sort of .s = v1, v2, vi+1, . . . , vn G

Observations:

• Shortest path from  to  cannot use any node from .s vi vi+1, …, vn

• Can also find shortest paths in topologically sorted ordering.

36



Shortest Paths for DAGs
Example
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Shortest Paths for DAGs
Example

38
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Algorithm for DAGs

39

for i = 1 to n do 
    d(s, vi) = ∞

d(s, s) = 0 
for i = 1 to n − 1 do 

for each edge (vi , vj) in Adj(vi) do 
 

return d(s, ·) values computed

d(s, vj) = min{d(s, vj), d(s, vi) + l(vi, vj)}



Algorithm for DAGs

Correctness: Induction on  and observations in previous slide.                        
Running time:  time algorithm! Works for negative edge lengths and 
hence can find longest paths in a DAG.

i
O(m + n)

39

for i = 1 to n do 
    d(s, vi) = ∞

d(s, s) = 0 
for i = 1 to n − 1 do 

for each edge (vi , vj) in Adj(vi) do 
 

return d(s, ·) values computed

d(s, vj) = min{d(s, vj), d(s, vi) + l(vi, vj)}



All pairs shortest paths
Shortest Path Problems

Input: A (undirected or directed) graph  with edge lengths. For edge 
,  is its length. 

G = (V, E)
e = (u, v) l(e) = l(u, v)

• Given nodes  find shortest path from  to . s, t s t

• Given node  find shortest path from  to all other nodes. s s
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All pairs shortest paths
Shortest Path Problems

Input: A (undirected or directed) graph  with edge lengths. For edge 
,  is its length. 

G = (V, E)
e = (u, v) l(e) = l(u, v)

• Given nodes  find shortest path from  to . s, t s t

• Given node  find shortest path from  to all other nodes. s s

• Find shortest paths for all pairs of nodes.

40

-> left over to discuss



All-Pairs Shortest Paths - Using known algorithms...
All-Pairs Shortest Path Problem

41

Input: A (undirected or directed) graph  with edge lengths. For edge 
,  is its length. Find shortest paths for all pairs of nodes.

G = (V, E)
e = (u, v) l(e) = l(u, v)
If we apply single-source algorithms  times, once for each vertex. n
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• Non-negative lengths.  with heaps and  using 
advanced priority queues. 

O(nm log n) O(nm + n2 log n)
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Input: A (undirected or directed) graph  with edge lengths. For edge 
,  is its length. Find shortest paths for all pairs of nodes.

G = (V, E)
e = (u, v) l(e) = l(u, v)
If we apply single-source algorithms  times, once for each vertex. n

• Non-negative lengths.  with heaps and  using 
advanced priority queues. 
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All-Pairs Shortest Paths - Using known algorithms...
All-Pairs Shortest Path Problem

41

Input: A (undirected or directed) graph  with edge lengths. For edge 
,  is its length. Find shortest paths for all pairs of nodes.

G = (V, E)
e = (u, v) l(e) = l(u, v)
If we apply single-source algorithms  times, once for each vertex. n

• Non-negative lengths.  with heaps and  using 
advanced priority queues. 

O(nm log n) O(nm + n2 log n)

• Arbitrary edge lengths:  and   if O(n2m) →(n4) m = ≤(n2)
Can we do better? Yes (obio) .



All Pairs Shortest Paths: A 
recursive solution

42
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All-Pairs Shortest Paths

• Number vertices arbitrarily as v1, v2, . . . , vn

• : length of shortest walk from  to  among all walks in which the largest 
index of an intermediate node is at most  (could be  if there is a negative length 
cycle).

dist(i, j, k) vi vj
k ⇒−

43

Recursion on index of intermediate nodes

·A-o
i ↳↑j-

O

many paths bot
restuct all interrelate

O
woches to be2 UK

-



All-Pairs Shortest Paths

• Number vertices arbitrarily as v1, v2, . . . , vn

• : length of shortest walk from  to  among all walks in which the largest 
index of an intermediate node is at most  (could be  if there is a negative length 
cycle).

dist(i, j, k) vi vj
k ⇒−

43

i

1 3

j

2

10
5

2

1
1

1

4

100

Recursion on index of intermediate nodes



All-Pairs Shortest Paths

• Number vertices arbitrarily as v1, v2, . . . , vn

• : length of shortest walk from  to  among all walks in which the largest 
index of an intermediate node is at most  (could be  if there is a negative length 
cycle).

dist(i, j, k) vi vj
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43

i

1 3

j

2

10
5

2

1
1

1

4

100

dist(i, j,0) =
dist(i, j,1) =
dist(i, j,2) =
dist(i, j,3) =

Recursion on index of intermediate nodes
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• Number vertices arbitrarily as 


• : length of shortest walk from  to  among all walks in which the largest 
index of an intermediate node is at most  (could be  if there is a negative length 
cycle).

v1, v2, . . . , vn

dist(i, j, k) vi vj
k ⇒−
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• Number vertices arbitrarily as 


• : length of shortest walk from  to  among all walks in which the largest 
index of an intermediate node is at most  (could be  if there is a negative length 
cycle).

v1, v2, . . . , vn
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• Number vertices arbitrarily as 


• : length of shortest walk from  to  among all walks in which the largest 
index of an intermediate node is at most  (could be  if there is a negative length 
cycle).

v1, v2, . . . , vn

dist(i, j, k) vi vj
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• Number vertices arbitrarily as 


• : length of shortest walk from  to  among all walks in which the largest 
index of an intermediate node is at most  (could be  if there is a negative length 
cycle).

v1, v2, . . . , vn

dist(i, j, k) vi vj
k ⇒−
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j

dist(k, j, k ⇒ 1)

dist(i, j, k ⇒ 1)

All-Pairs Shortest Paths
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i

kdist(i, k, k ⇒ 1)

j

dist(k, j, k ⇒ 1)

dist(i, j, k ⇒ 1)

dist(i, j, k) = min {dist(i, j, k ⇒ 1)
dist(i, k, k ⇒ 1) + dist(k, j, k ⇒ 1)

All-Pairs Shortest Paths
Recursion on index of intermediate nodes



• Base case: , otherwise 


• Correctness: If  shortest walk goes through  then  occurs only once on the path 
— otherwise there is a negative length cycle

dist(i, j,0) = l(i, j) if (i, j) ∞ E −
i ∈ j k k

48
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j

dist(k, j, k ⇒ 1)

dist(i, j, k ⇒ 1)

dist(i, j, k) = min {dist(i, j, k ⇒ 1)
dist(i, k, k ⇒ 1) + dist(k, j, k ⇒ 1)

All-Pairs Shortest Paths
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All-Pairs: Recursion on index of intermediate nodes

If  can reach  and  can reach  and  then  has a 
negative length cycle containing  and . 

i k k j dist(k, k, k ⇒ 1) < 0 G
k dist(i, j, k) = ⇒ −
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All-Pairs: Recursion on index of intermediate nodes

If  can reach  and  can reach  and  then  has a 
negative length cycle containing  and . 

i k k j dist(k, k, k ⇒ 1) < 0 G
k dist(i, j, k) = ⇒ −

Recursion below is valid only if . We can detect this during 
the algorithm or wait till the end.

dist(k, k, k ⇒ 1) ≠ 0
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dist(i, j, k) = min {dist(i, j, k ⇒ 1)
dist(i, k, k ⇒ 1) + dist(k, j, k ⇒ 1)



Floyd-Warshall Algorithm
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Floyd - Warshall Algorithm
For All-Pairs Shortest Paths
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for i = 1 to n do 
    for j = 1 to n do

    

(* l(i, j) = ∞ if (i, j)  E, 0 if i = j *)
for k = 1 to n do 

for i = 1 to n do 
for j = 1 to n do 

for i = 1 to n do 
if  then 

Output ∃ negative cycle in G

d(i, j,0) = l(i, j)

←

dist(i, j, k) = min{dist(i, j, k ⇒ 1)
dist(i, k, k ⇒ 1) + dist(k, j, k ⇒ 1)

(dist(i, i, n) < 0)
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For All-Pairs Shortest Paths

51

for i = 1 to n do 
    for j = 1 to n do

    

(* l(i, j) = ∞ if (i, j)  E, 0 if i = j *)
for k = 1 to n do 

for i = 1 to n do 
for j = 1 to n do 

for i = 1 to n do 
if  then 

Output ∃ negative cycle in G

d(i, j,0) = l(i, j)

←

dist(i, j, k) = min{dist(i, j, k ⇒ 1)
dist(i, k, k ⇒ 1) + dist(k, j, k ⇒ 1)

(dist(i, i, n) < 0)

Running time: 


Space: 


Correctness: via induction 
and recursive definition

→(n3)

→(n3)



Floyd - Warshall Algorithm
Finding the Paths
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Question: Can we find the paths in addition to the distances?  


• Create a  array Next that stores the next vertex on shortest path for 
each pair of vertices 


• With array Next, for any pair of given vertices  can compute a shortest 
path in  time.

n ≥ n

i, j
O(n)



Floyd - Warshall Algorithm
Finding the Paths
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for i = 1 to n do 
    for j = 1 to n do

    

(* l(i, j) = ∞ if (i, j)  E, 0 if i = j *)
Next(i, j) = −1

for k = 1 to n do 
for i = 1 to n do 

for j = 1 to n do 
if  then 

 
Next(i, j) = k

for i = 1 to n do 
if  then 

Output ∃ negative cycle in G

d(i, j,0) = l(i, j)

←

(d(i, j, k ⇒ 1) > d(i, k, k ⇒ 1) + d(k, j, k ⇒ 1))
d(i, j, k) = d(i, k, k ⇒ 1) + d(k, j, k ⇒ 1)

(dist(i, i, n) < 0)



Summary of shortest path 
algorithms
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Summary of results on shortest paths
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Single source

No negative edges   Dijkstra O(n log n + m)

Edge lengths can be negative   Bellman Ford O(nm)

All Pairs Shortest Paths
No negative edges  n * Dijkstra O(n2 log n + nm)

No negative cycles  n * Bellman Ford O(n2m)  = O(n4)

No negative cycles  Johnson’s 1 O(nm + n2 log n)

No negative cycles  Floyd-Warsh O(n3)

Unweighted  Matrix multiplication 2 O(n2.38), O(n2.58)

(1) The algorithm for the case 
that there are no negative 
cycles, and doing all shortest 
paths, works by computing a 
potential function using 
Bellman-Ford and then doing 
Dijkstra. It is mentioned for 
the sake of completeness, 
but it outside the scope of the 
class.


(2) https://resources.mpi-
inf.mpg.de/ departments/d1/
teaching/ss12/ 
AdvancedGraphAlgorithms/
Slides14.pdf

m+ # edjes
.

n -> # verfees .

-
all

I


