Bellman-Ford and Dynamic
Programming on Graphs

Sides based on material by Kani, Erickson, Chekuri, et. al.

All mistakes are my own! - lvan Abraham (Fall 2024)

Image by ChatGPT (probably collaborated with DALL-E)



Why Dijkstra’s algorithm fails with negative
edges



What are the distances computed by Dijkstra’s algorithm?
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What are the distances computed by Dijkstra’s algorithm?

But that is not the shortest path!
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Problem: thatits — vy — vi = v,... — v, Is a shortest path from s to v,

then dist(s, v;) < dist(s, v, ;) for O < i < k. Holds true only for non-negative edge lengths.

4



Shortest paths with negative lengths

Lemma: Let G be a directed graph with arbitrary edge lengths and let
S=V0_>V1_)V2...—>Vk:t
be a shortest path from sto f thenfor | <1 < k:

¢« S =V, —> V; = V, = ...V s ashortest path from s to v
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Lemma: Let G be a directed graph with arbitrary edge lengths and let
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Why can’t we just re-normalize the edge lengths?
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Instinctual thought

Shortest Path:
S —>d—>C—t

Why can’t we simply add
a weight to each edge
so that the shortest
length is O (or positive)?
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Why can’t we just re-normalize the edge lengths?

Instinctual thought
Adding weights to edges penalizes paths with more edges, gives wrong path

on original grapnh.

Shortest Path:
S —>d—>C—t

Why can’t we simply add
a weight to each edge
so that the shortest
length is O (or positive)?

s—>b—>t




Negative length cycles

Definition

What is the shortest path distance
between s and 1 ?
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Negative length cycles

Definition

What is the shortest path distance
between s and 1 ?

What about adding red path?
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Negative length cycles

Definition

A cycle C is a negative length cycle if the sum of the edge lengths of C is negative.

What is the shortest path distance
between s and 1 ?

What about adding red path?

15

Fix: Restrcit paths to be simple ...




Shortest paths and negative cycles

Given G = (V, E) with edge lengths and s, . Suppose
» (5 has a negative length cycle C, and s can reach C and C can reach .

Question: What is the shortest distance from s to 7 ?
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Shortest paths and negative cycles

Given G = (V, E) with edge lengths and s, . Suppose
» (5 has a negative length cycle C, and s can reach C and C can reach .

Question: What is the shortest distance from s to 7 ?

Possible answers:

 undefined, that is — oo, OR
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Shortest paths and negative cycles

Given G = (V, E) with edge lengths and s, . Suppose
» (5 has a negative length cycle C, and s can reach C and C can reach .

Question: What is the shortest distance from s to 7 ?

Possible answers:

 undefined, that is — é—\

* the length of a shortest simple path from s to 7.
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Restating problem of shortest path with negative edges
Alternatively: FiInding shortest walks

Recall that given a graph G = (V, E):

« A (simple) is a sequence of distinct vertices v, v5, ..., v, such that (v,,v, ) € E
forl <1< k—1.
« A is a sequence of vertices v, V,, ...,V such that (v, v;, ) € E for

1<i<k-1 ‘
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« A (simple) is a sequence of distinct vertices v, v5, ..., v, such that (v,,v, ) € E
for| <i<k-—1.

e A is a sequence of vertices v, V,, ...,V such that (v, v;, ) € E for
1 <i<k-1.

Define dist(u, v) to be the length of a shortest walk from u to v. V/

* If there is a walk from u to v that contains negative length cycle then dist(u, v) = — o
AR it A
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Restating problem of shortest path with negative edges
Alternatively: FiInding shortest walks

Recall that given a graph G = (V, E):

« A (simple) is a sequence of distinct vertices v, v5, ..., v, such that (v,,v, ) € E
for| <i<k-—1.

e A is a sequence of vertices v, V,, ...,V such that (v, v;, ) € E for
1 <i<k-1.

Define dist(u, v) to be the length of a shortest walk from u to v.
* If there is a walk from u to v that contains negative length cycle then dist(u, v) = — o

 Else, there is a path with at most 7 — 1 edges whose length is equal to the length of a
shortest walk and dist(u, v) is finite
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Shortest paths with negative edges

Algorithmic problems

Input: A directed graph G = (V, E) with edge lengths (could be negative). For
edge ¢ = (u,v), l(e) = l(u,v) is its length.

Questions:



Shortest paths with negative edges

Algorithmic problems

Input: A directed graph G = (V, E) with edge lengths (could be negative). For
edge ¢ = (u,v), l(e) = l(u,Vv) is its length.
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Questions: /[7

» Given nodes s, f either find a negative length cycle C tha@an reach or find
a shortest path fromstoz. —
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Shortest paths with negative edges

Algorithmic problems

Input: A directed graph G = (V, E) with edge lengths (could be negative). For
edge ¢ = (u,v), l(e) = l(u,v) is its length.

Questions:

» Given nodes s, f either find a negative length cycle C that s can reach or find

a shortest path from s to 7. 4—-&
» Given node s, either find a negative length cycle C that s can reach or find
shortest path distances from s to all reachable nodes. ¢ = 44 ,{%o,eq
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Shortest paths with negative edges

Algorithmic problems

Input: A directed graph G = (V, E) with edge lengths (could be negative). For
edge ¢ = (u,v), l(e) = l(u,v) is its length.

Questions:

» Given nodes s, f either find a negative length cycle C that s can reach or find
a shortest path from s to 7.

» Given node s, either find a negative length cycle C that s can reach or find
shortest path distances from s to all reachable nodes.
P AodL Paa& ShﬁuQQAC"

« Check if G has a negative length cycle or not. < (’CdZL ﬂ“@&
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Bellman Ford Algorithm



Shortest paths and recursion

* |s it possible to compute the shortest path distance from s to 7 recursively?

* If yes, what are the smaller sub-problems?
ST s
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e |s it possible to compute the shortest path distance from s to 7 recursively?

* If yes, what are the smaller sub-problems?

Lemma: Let G be a directed graph with arbitrary edge lengths. If
S:VO_)Vl_)Vz—)...—)Vk

is a shortest path from s to v, then for | <1 < k:
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Shortest paths and recursion

e |s it possible to compute the shortest path distance from s to 7 recursively?

* If yes, what are the smaller sub-problems?

Lemma: Let G be a directed graph with arbitrary edge lengths. If
S:VO_)Vl_)Vz—)...—)Vk

is a shortest path from s to v, then for | <1 < k:

S =Vy— VvV, = V, > ... — v:Is ashortest path from s to v,

Sub-problem idea: paths of fewer hops/edges

=
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Hop-based recursion
Bellman-Ford Algorithm

Single-source problem: Fix source .

Assumptions: All nodes can be reached from s in G. Assume (G has no
negative-length cycle (for now).
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Hop-based recursion
Bellman-Ford Algorithm

Single-source problem: Fix source .

Assumptions: All nodes can be reached from s in G. Assume (G has no
negative-length cycle (for now).

Defi@s the shortest walk length from s to v using at most k edges.
Then —dist(s, v) =(d(»v,n — 1). Recursion for d(v, k):

%W.\
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Hop-based recursion
Bellman-Ford Algorithm

Single-source problem: Fix source .

Assumptions: All nodes can be reached from s in G. Assume (G has no
negative-length cycle (for now).

Define, as the shortest walk length from s to v using at most k edges.
Then note, dist(s,v) = d(v,n — 1). Recursion for d(v, k):

min (d@)k — 1) + i(u, v))

— mi ueV
d(v, k) = min o my

d(v,k —1) ¢ — ude o -
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Hop-based recursion
Bellman-Ford Algorithm

Single-source problem: Fix source .

Assumptions: All nodes can be reached from s in G. Assume (G has no
negative-length cycle (for now).

Define, as the shortest walk length from s to v using at most k edges.
Then note, dist(s,v) = d(v,n — 1). Recursion for d(v, k):

j — 1
oo = min J D (d(u, k — 1) + l(u,v))
dv,k—1)

Base case: d(s5,0) = 0 and d(v,0) = co forall v # s
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Bellman-Ford Algorithm
Algorithm a‘rQ‘/ZI f:\rp)’egy
, O e

Create In(G) list from adj(G)
Running time: O(n(n + m))
for each u€V do

d(u,0) < oo : 2
s0) 0 Space: O(m + n~)

for k =1 ton — 1 do

for each veV do 7 CC"PDVG WWM

d(v, k) «< d(v, k — 1) 0\
for each edge (#,v) € In(v) do
d(v, k) = min{d(v, k), d(u, k - 1) + 1(u, v)}

for each veV do
dist(s, v) «< d(v, n — 1)
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Bellman-Ford Algorithm

Algorithm
Create In(G) list from adj(G) 0( ( ))
nn-—+m
for each ueV do
d(u,0) < oo O(Wl + n2)

d(s,0) «< 0

for k = 1 to n - 1 do Space can be reduced to

for each veV do O(m - n)
d(v, k) «< d(v, k — 1)
for each edge (#,v) € In(v) do
d(v, k) = min{d(v, k), d(u, k - 1) + 1l(u, v)}

for each veV do
dist(s, v) «< d(v, n — 1)
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Bellman-Ford Algorithm

Algorithm
Do we need the In(G) list?
\r-
Create In(G) list from adj(G) L—
O(n(n + m))
for each ueV do
d(u,0) « oo O(m n n2)

d(s,0) «< 0

for k = 1 to n - 1 do Space can be reduced to

for each veV do O(m - n)
d(v, k) < d(v, k - 1)5' B
for each edge (#,v) € In(v) do
d(v, k) = min{d(v, k), d(u, k - 1) + 1l(u, v)}

for each veV do
dist(s, v) «< d(v, n — 1)
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Bellman-Ford Algorithm

Algorithm - cleaner version
Do we need the In(G) list?

for each ueV do
d(u,0) <« oo
d(s,0) «< 0

for k =1 ton - 1 do
for each veV do
/ for each edge (u,v) € In(v) do
d(v) = min{d(v), d(u) + 1l(u, v)}

for each ve V do
dist(s, v) «< d(v, n — 1)
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Bellman-Ford Algorithm

Algorithm - cleaner version

Do we need the In(G) list?

for each u€V do O(mn)
d(u,0) « oo
d(5,0) < 0 O(m + n)
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for each veV do
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Bellman-Ford Algorithm

Algorithm - cleaner version

Do we need the In(v) list?

for each u€V do O(mn)
d(u,0) « oo
d(5,0) < 0 O(m + n)

for k =1 ton — 1 do
for each veV do

for each edge

d(v) = min{d(v), d(u) + 1(u, v)}

for each ve V do
dist(s, v) «< d(v, n — 1)
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Bellman-Ford Algorithm

Algorithm - optimized

Do we need the In(v) list?

for each ue€eV do

d(u,0) « oo
d(s,0) < 0 O (n)é/

for k =1 ton — 1 do
for each edge (u,v) € G do
d(v) = min{d(v), d(u) + 1(u, v)}

for each ve V do
dist(s, v) «< d(v, n — 1)
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Negative cycles

What happens if we run this on a graph with negative cycles?
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Bellman-Ford Algorithm

Negative cycles

What happens if we run this on a graph with negative cycles?
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Correctness: detecting negative length cycle

Lemma: Suppose G has a negative cycle C reachable from s. Then there is some
node v € Csuchthatd(v,n) <d(v,n —1).



Correctness: detecting negative length cycle

Lemma: Suppose G has a negative cycle C reachable from s. Then there is som

e
node v € C such that d(v% dv,n—1). @& aane d C\'t "L"'F) & OQC\," K>

Proof: Suppose ncﬁt C=v,—>v,—> ... —>@—> v, be negative length cycle
reachable from s. Then d(v,,n — 1) is finite for | <1 < k since C is reachable from s.
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Correctness: detecting negative length cycle

Lemma: Suppose G has a negative cycle C reachable from s. Then there is some
node v € C suchthatd(v,n) < d(v,n —1).

Proof: Suppose not. Let C = v, = v, — ... — v, = v, be negative length cycle
reachable from s. Then d(v,,n — 1) is finite for | <1 < k since C is reachable from s.

By assumption d(v,n) > d(v,n — 1) for all v € C; implies no change in n"" iteration:

dv,n—1)=dv,n)forTZi<k.

28



Correctness: detecting negative length cycle

Lemma: Suppose G has a negative cycle C reachable from s. Then there is some
node v € C suchthatd(v,n) < d(v,n —1).

Proof: Suppose not. Let C = v, = v, — ... = v, = v, be negative length cycle
reachable from s. Then d(v,,n — 1) is finite for | <1 < k since C is reachable from s.

By assumption d(v,n) > d(v,n — 1) for all v € C; implies no change in n"" iteration:
dv,n—1)=d(v,n)forl <i<k.

Thismeans d(v,n—1) <d(v._,n—1)+(v,_,,v)for2 <i < kand
dv,n—1) <dWv,n—1)+ (v, vy).
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Correctness: detecting negative length cycle

Lemma: Suppose G has a negative cycle C reachable from s. Then there is some
node v € C suchthatd(v,n) < d(v,n —1).

Proof: Suppose not. Let C = v, = v, — ... = v, = v, be negative length cycle
reachable from s. Then d(v,,n — 1) is finite for | <1 < k since C is reachable from s.

By assumption d(v,n) > d(v,n — 1) for all v € C; implies no change in n"" iteration:
dv,n—1)=d(v,n)forl <i<k.

Thismeans d(v,n—1) <d(v._,n—1)+(v,_,,v)for2 <i < kand
dv,n—1) <dWv,n—1)+ (v, vy).

Summing/telescoping these inequalities results in 0 < [(C) which contradicts the
assumption that /(C) < 0!
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o ’pm@ _«— Assumed that forall v, d(v,n) > d(v,n — 1)
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Proof of lemma ...
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Assumed that for all v, d(v,n) > d(v,n — 1)

Proof of lemma....

oo d(vi,n = 1) < d(vo,n = 1) + (v 1))
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Assumed that for all v, d(v,n) > d(v,n — 1)

Proof of lemma....

TR dv,n—1) <dWvy,n—1)+ l(vy, V)
o \ dv,,n—1)<dv,n—=1)+ (v, )
c;C/ C b, N2
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Assumed that for all v, d(v,n) > d(v,n — 1)

Proof of lemma....

v, dv,n—1) <dve,n— 1)+ l(vy, v,)
Vg / \ d( ,n—l)Sd(Vl,n—l)‘Fl(Vp )
c; C % V3

Vi d(Vl', n — 1) S d(vi_l, n — 1) + Z(Vi—b Vl')

29



Assumed that for all v, d(v,n) > d(v,n — 1)

Proof of lemma....

oo d(vi,n = 1) < d(vo,n = 1)+ I(v, )

Vg \ d( ,n—l)Sd(Vl,l’l—l)‘Fl(Vp )
o & C ey,

Vy é d(v,n—1) él(vi_l,n - D+ 1l(v._,v)

dv,,n—1) < d( n—1)+ [( , V)

dvo,n—1) <dWv,n—1)+ (v, )
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Proof of lemma....

k k k
/ \ = 1)< doun =1k P 101.9) + 105
(=0 (=0 =1
k

\ 0< 2 [(v._,v) + [(v, vy) = len(C)

o—0"
=1

C is a not a negative cycle. Contradiction!

30



Proof of lemma....

Vi W k k K
‘/D—V\ Z d(Vl-, n — 1) S Z d(Vl', n — 1) + Z l(vi—la vi) T l(vk’ V())
| Vo C i=0 i=0 i=1
O LV k
\04—0”: 0 < 2 l(vi—l’ Vi) T l(vk’ VO) — len(C)
Vi i=1

C is a not a negative cycle. Contradiction!

Essence of the lemma: If G has a negative cycle reachable from s, then it can be
detected in n iterations of the Bellman-Ford algorithm.
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Bellman-Ford: negative cycle detection

Final version for each u €V do
d(u) <« oo

d(s) <« 0O

for Kk =1 ton - 1 do
for each veV do
for each edge (u,v) € In(v) do
d(v) = min{d(v), d(u) + 1(u, v)}

(* One more iteration to check i1f distances change *)
for each ve V do
for each edge (u,v) € In(v) do
1if (d(v) > d(u) + 1(u, v))
Output “Negative Cycle”

for each veV do
dist(s, v) « d(v, n-1)

31



Bellman-Ford: negative cycle detection

Final version for each ue€V do
d(u) <« oo

d(s) <« 0O

for k =1 ton - 1 do
| _ for each ve V do
All lines colored In for each edge (u,v) € In(v) do
red d(v) = min{d(v), d(u) + 1l(u, v)}

where already

. (* One more iteration to check 1f distances change *)
present previously.

for each veV do
for each edge (u,v) € In(v) do
1if (d(v) > d(u) + 1(u, v))
Output “Negative Cycle”

for each veV do
dist(s, v) « d(v, n-1)
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Variants on Bellman-Ford



Finding the shortest path tree

How do we find a shortest path tree in addition to distances?
O e ———



Finding the shortest path tree

How do we find a shortest path tree in addition to distances?

» For each v the d(v) can only get smaller as the algorithm proceeds.
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Finding the shortest path tree

How do we find a shortest path tree in addition to distances?
» For each v the d(v) can only get smaller as the algorithm proceeds.

» If d(v) becomes smaller it is because we found a vertex i such that
d(v) > d(u) + l(u, v) and we update d(v) = d(u) + [(u,v). That is, we found a
shorter path to v through u.
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Finding the shortest path tree

How do we find a shortest path tree in addition to distances?

» For each v the d(v) can only get smaller as the algorithm proceeds.

 If d(v) becomes smaller it is because we found a vertex 1 such that

d(v) > d(u) + l(u, v) and we update d(v) = d(u) + [(u,v). That is, we found a
shorter path to v through u.

» For each v have a prev(v) pointer and update it to point to u if v finds a shorter
path via u.
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Finding the shortest path tree

How do we find a shortest path tree in addition to distances?

» For each v the d(v) can only get smaller as the algorithm proceeds.

 If d(v) becomes smaller it is because we found a vertex 1 such that

d(v) > d(u) + l(u, v) and we update d(v) = d(u) + [(u,v). That is, we found a
shorter path to v through u.

» For each v have a prev(v) pointer and update it to point to u if v finds a shorter
path via u.

» At the end of the algorithm prev(v) pointers give a shortest path tree oriented
towards the source . |

————————————
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Negative cycle detection

Given directed graph G with arbitrary edge lengths, does it have a negative
length cycle?

» Bellman-Ford checks whether there is a negative cycle C that is reachable

from a specific vertex s. There may be negative cycles not reachable from s.
s
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Negative cycle detection

Given directed graph G with arbitrary edge lengths, does it have a negative
length cycle?

» Bellman-Ford checks whether there is a negative cycle C that is reachable
from a specific vertex s. There may be negative cycles not reachable from s.

» Run Bellman-Ford | V| times, once from each node u?
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Negative cycle detection ~.C

Given directed graph G with arbitrary edge lengths, does it have a negative
length cycle?

» Bellman-Ford checks whether there is a negative cycle C that is reachable
from a specific vertex s. There may be negative cycles not reachable from s.

» Run Bellman-Ford | V| times, once from each node u?

» Add a new node s’ and connect it to all nodes of G with zero length edges.

Bellman-Ford from s’ will fill find a negative length cycle if there is one.
why does this work?
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Negative cycle detection

Given directed graph G with arbitrary edge lengths, does it have a negative
length cycle?

» Bellman-Ford checks whether there is a negative cycle C that is reachable
from a specific vertex s. There may be negative cycles not reachable from s.

» Run Bellman-Ford | V| times, once from each node u?

» Add a new node s’ and connect it to all nodes of G with zero length edges.

Bellman-Ford from s’ will fill find a negative length cycle if there is one.
why does this work?

e — negative cycle detection can be done with one Bellman-Ford
Invocation.
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Shortest paths in a DAG

Input: A directed graph G = (V, E) with arbitrary (including negative)
edge lengths. For edge ¢ = (u, v), [(e) = [(u, V) is its length.

 Given nodes s, 1 find shortest path from s to 7.

* Given node s find shortest path from s to all other nodes.
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Shortest paths in a DAG

Input: A directed graph G = (V, E) with arbitrary (including negative)
edge lengths. For edge ¢ = (u, v), l(e) = [(u, v) is its length.

o Given nodes s, 1 find shortest path from s to 7.

 Given node s find shortest path from s to all other nodes.

Simplification of algorithms for S
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Shortest paths in a DAG

Input: A directed graph G = (V, E) with arbitrary (including negative)
edge lengths. For edge ¢ = (u, v), l(e) = [(u, v) is its length.

o Given nodes s, 1 find shortest path from s to 7.

 Given node s find shortest path from s to all other nodes.
Simplification of algorithms for S

* No cycles and hence no negative length cycles! Hence can find shortest
paths even for negative length edges.
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Shortest paths in a DAG

Input: A directed graph G = (V, E) with arbitrary (including negative)
edge lengths. For edge ¢ = (u, v), l(e) = [(u, v) is its length.

o Given nodes s, 1 find shortest path from s to 7.

 Given node s find shortest path from s to all other nodes.
Simplification of algorithms for S

* No cycles and hence no negative length cycles! Hence can find shortest
paths even for negative length edges.

» Can order nodes using topological sort.

35



Algorithm for DAGs

e Want to find shortest paths from s. Ignore nodes not reachable from s.

e Lets =v,v,,Vv..(,...,V, be atopological sort of G.

Observations:
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Algorithm for DAGs

e Want to find shortest paths from s. Ignore nodes not reachable from s.

e Lets =v,v,,Vv..(,...,V, be atopological sort of G.

Observations:

 Shortest path from s to v, cannot use any node fromv;_, ..., V,.
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Algorithm for DAGs

e Want to find shortest paths from s. Ignore nodes not reachable from s.

e Lets =v,v,,Vv..(,...,V, be atopological sort of G.

Observations:
 Shortest path from s to v; cannot use any node from v, ¢, ...,V

n-

* Can also find shortest paths in topologically sorted ordering.

36



Shortest Paths for DAGs

Example




Shortest Paths for DAGs

Example
A B C
5 X 1
D ; -4
/\
. ° A B C




Shortest Paths for DAGs

Example
A B C
5 X 1
D E -4
3 2 y /\\m
\ 4 -0 oo | o0 5 -
\. 4 N /
F 4 G
5 1
2




Algorithm for DAGs

for 1 = 1 to n do
d(s, vi) = ©
d(s, s) =0

for 1 = 1 ton - 1 do
for each edge (vi , vj) in Adj(vi) do

d(s,v;) = min{d(s, v;),d(s,v;) + {(v;, V) }

return d(s, °*) values computed
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Algorithm for DAGs

for 1 = 1 to n do
d(s, vi) = ©

d(s, s) =0
for 1 = 1 ton - 1 do
for each edge (vi , vj) in Adj(vi) do

d(s,v;) = min{d(s, v;),d(s,v;) + {(v;, V) }

return d(s, °*) values computed

Induction on 1 and observations in previous slide.

O(m + n) time algorithm! Works for negative edge lengths and
hence can find longest paths in a DAG.
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All pairs shortest paths

Shortest Path Problems

Input: A (undirected or directed) graph G = (V, E) with edge lengths. For edge
e = (u,v), l(e) = l(u,v) is its length.

e Given nodes s, f find shortest path from s to 7.

* Given node s find shortest path from s to all other nodes.
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All pairs shortest paths

Shortest Path Problems

Input: A (undirected or directed) graph G = (V, E) with edge lengths. For edge
e = (u,v), l(e) = l(u,v) is its length.

e Given nodes s, f find shortest path from s to 7.

* Given node s find shortest path from s to all other nodes.

* Find shortest paths for all pairs of nodes.

40



All-Pairs Shortest Paths - Using known algorithms...
All-Pairs Shortest Path Problem

Input: A (undirected or directed) graph G = (V, E) with edge lengths. For edge
e = (u,v), l(e) = l(u, v) is its length. Find shortest paths for all pairs of nodes.

If we apply single-source algorithms 7 times, once for each vertex.

41



All-Pairs Shortest Paths - Using known algorithms...
All-Pairs Shortest Path Problem

Input: A (undirected or directed) graph G = (V, E) with edge lengths. For edge
e = (u,v), l(e) = l(u, v) is its length. Find shortest paths for all pairs of nodes.

If we apply single-source algorithms 7 times, once for each vertex.

» Non-negative lengths. O(nm log n) with heaps and O(nm + n’ log n) using
advanced priority queues.
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All-Pairs Shortest Paths - Using known algorithms...
All-Pairs Shortest Path Problem

Input: A (undirected or directed) graph G = (V, E) with edge lengths. For edge
e = (u,v), l(e) = l(u, v) is its length. Find shortest paths for all pairs of nodes.

If we apply single-source algorithms 7 times, once for each vertex.

» Non-negative lengths. O(nm log n) with heaps and O(nm + n’ log n) using
advanced priority queues.

. Arbitrary edge lengths: O(n“1) and O(n*) if m = Q(n?)
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All-Pairs Shortest Paths - Using known algorithms...
All-Pairs Shortest Path Problem

Input: A (undirected or directed) graph G = (V, E) with edge lengths. For edge
e = (u,v), l(e) = l(u, v) is its length. Find shortest paths for all pairs of nodes.

If we apply single-source algorithms 7 times, once for each vertex.

» Non-negative lengths. O(nm log n) with heaps and O(nm + n’ log n) using
advanced priority queues.

. Arbitrary edge lengths: O(n°m) and O(n*) it m = Q(n?)

Can we do better? \fioq (_@Ja'b \ \
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All Pairs Shortest Paths: A
recursive solution




All-Pairs Shortest Paths

Recursion on index of intermediate nodes

» Number vertices arbitrarily as v, v,,..., v,
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. . . . C
Recursion on index of intermediate nodes

» Number vertices arbitrarily as v, v,,..., v,

. O length of shortest walk from v. to v. among all walks in which the largest

index of an intermediate node i@ould be — oo If there is a negative length
cycle).
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All-Pairs Shortest Paths

Recursion on index of intermediate nodes

» Number vertices arbitrarily as v, v,,..., v,

. : length of shortest walk from v, to V; among all walks in which the largest

index of an intermediate node is at most & (could be — oo if there is a negative length

cycle).
1
» 3 1
N
P
2

e
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All-Pairs Shortest Paths

Recursion on index of intermediate nodes

» Number vertices arbitrarily as v, v,,..., v,

. : length of shortest walk from v, to V; among all walks in which the largest

index of an intermediate node is at most & (could be — oo if there is a negative length

cycle).
dist(z, 7,0) =

1
1 > 3
1
/ \\\; dist(z,7,1) =
2 ]
i * : % dist(, 7,2) =
\ 100 dist(7, 7,3) =
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All-Pairs Shortest Paths

Recursion on index of intermediate nodes

» Number vertices arbitrarily as v, v,,..., v,

. . length of shortest walk from v; to v; among all walks in which the largest

index of an intermediate node is at most k (could be — o if there is a negative length
cycle).

V: LY dist(z, 7,0) = 100

1
/ \\\:V dist(7, j,1) =
2 J
N > % dist(i, j,2) =

100 dist(7, 7,3) =
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All-Pairs Shortest Paths

Recursion on index of intermediate nodes

» Number vertices arbitrarily as v, v,,..., v,

. . length of shortest walk from v; to v; among all walks in which the largest

index of an intermediate node is at most k (could be — o if there is a negative length

cycle).
dist(i, j,0) = 100

1
1 » 3

1

yd \N dist(i,,1) = 9
2 J

1 % dist(i, /,2) =

\ 100 dist(7, 7,3) =
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All-Pairs Shortest Paths

Recursion on index of intermediate nodes

» Number vertices arbitrarily as v, v,,..., v,

. . length of shortest walk from v; to v; among all walks in which the largest

index of an intermediate node is at most k (could be — o if there is a negative length

cycle).
dist(i, j,0) = 100

1
1 » 3
1
/ \N dist(s,j,1) =9
| 2 10 j oL
o~ : 7 dist(i, 7,2) = 8
\ 100 dist(7, 7,3) =
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All-Pairs Shortest Paths

Recursion on index of intermediate nodes

» Number vertices arbitrarily as v, v,,..., v,

. . length of shortest walk from v; to v; among all walks in which the largest

index of an intermediate node is at most k (could be — o if there is a negative length
cycle).

| dist(, j,0) = 100

/ 12\N dist(i,7.1) = 9

1
3
1
5
J
o~ % dist(i, 7,2) = 8
2
\ 100 dist(7,7,3) = 5




All-Pairs Shortest Paths

Recursion on index of intermediate nodes

0 (&



All-Pairs Shortest Paths

Recursion on index of intermediate nodes

&



All-Pairs Shortest Paths

Recursion on index of intermediate nodes

M

dist(i,j,k— 1)



All-Pairs Shortest Paths

Recursion on index of intermediate nodes

k w(\k,j,k—l)

>

dist(i,k,k— 1)

dist(i,j,k— 1)
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All-Pairs Shortest Paths

Recursion on index of intermediate nodes

k w(\k,j,k—l)

>

dist(i,k,k— 1)

dist(i,j,k— 1)

dist(i,j, k— 1)
dist(i, k,k — 1) + dist(k,j, k— 1)

dist(Z, j, k) = min {
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All-Pairs Shortest Paths

Recursion on index of intermediate nodes

k w(\k,j,k—l)

>

dist(i,k,k— 1)

dist(i,j,k— 1)

dist(i,j, k— 1)
dist(i, k,k — 1) + dist(k,j, k— 1)

« Base case: dist(7,7,0) = [(1,)) if (i,]) € E, otherwise co

dist(Z, j, k) = min {

. If i — j shortest walk goes through k then k occurs only once on the path
— otherwise there Is a negative length cycle
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All-Pairs: Recursion on index of intermediate nodes

If i can reach k and k can reach j and dist(k, K,k — 1) < 0 then G has a
negative length cycle containing k and dist(z, j, k) = — 0.

49



All-Pairs: Recursion on index of intermediate nodes

If i can reach k and k can reach j and dist(k, K,k — 1) < 0 then G has a
negative length cycle containing k and dist(z, j, k) = — 0.

Recursion below is valid only if dist(k, k, k — 1) > (. We can detect this during
the algorithm or wait till the end.
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All-Pairs: Recursion on index of intermediate nodes

If i can reach k and k can reach j and dist(k, K,k — 1) < 0 then G has a
negative length cycle containing k and dist(z, j, k) = — 0.

Recursion below is valid only if dist(k, k, k — 1) > (. We can detect this during
the algorithm or wait till the end.

dist(z,j,k— 1)

dist(i,j, k) =minq§ . . ist(k, 7
18t(i, J, k) mm{dwt(l,kak_ 1) + dist(k, j, k — 1)
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Floyd-Warshall Algorithm




Floyd - Warshall Algorithm

For All-Pairs Shortest Paths

for i = 1 to n do
for 7 = 1 to n do

d(i, j,0) = (i, ))

(* 1(i, j) = o if (i, j) &€ E, 0 if i = j *)
for Kk = 1 to n do
for 1 = 1 to n do
for 7 = 1 to n do
o dist(z, j,k— 1)
dist(7, j, k) = min {

dist(i, k, k — 1) 4+ dist(k, j, k — 1)

for 1 = 1 to n do
if (dist(i,i,n) < 0) then
Output d negative cycle in G
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Floyd - Warshall Algorithm

For All-Pairs Shortest Paths

for i = 1 to n do
for 7 = 1 to n do

d(i, j,0) = (i, ))

3
(* 1(i, j) = o if (i, j) & B, 0 if i = j *) On°)
for Kk = 1 to n do 3
for 1 = 1 to n do ®(n)
for 7 = 1 to n do
dist(i, j, k — 1) via iInduction

dist(i, j, k) = mi L , , .
(), ) = min {dlst(z,k,k— 1) + dist(k, j,k — 1) and recursive definition

for 1 = 1 to n do
if (dist(i,i,n) < 0) then
Output d negative cycle in G
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Floyd - Warshall Algorithm

Finding the Paths

Question: Can we find the paths in addition to the distances?

 Create an X n array Next that stores the next vertex on shortest path for
each pair of vertices

« With array Next, for any pair of given vertices 1, ] can compute a shortest
path in O(n) time.
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Floyd - Warshall Algorithm

Finding the Paths

for 1 = 1 to n do
for 7 = 1 to n do

d(i, j,0) = I(i, J)

(* 1(i, j) = o if (i, j) € E, 0 if 1 = J *)

Next (i, j) = -1
for kK = 1 to n do
for 1 = 1 to n do

for 7 = 1 to n do
if (d(,j,k—1)>d@G,k,k—1)+d(k,j,k— 1)) then
d(i,j, k) =dG,k,k—1)+dk,j,k—1)
Next (i, j) = k

for 1 = 1 to n do
if (dist(i,i,n) < 0) then
Output d negative cycle in G
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Summary of shortest path
algorithms



Summary of results on shortest paths

Single source

No negative edges

Dijkstra

O(n log n + m)

Edge lengths can be negative | Bellman Ford

O(nm)

All Pairs Shortest Paths

No negative edges

n * Dijkstra

O(n2log n + nm)

No negative cycles

n * Bellman Ford

O(n2m) = O(n%)

No negative cycles

O(hm + n2log n)

No negative cycles

Floyd-Warshg &;

O(n3)

Unweighted

( Matrix multiplication Q(n2-38), O(n2-58)

55

m— I QOQQS__
n—= % vedeeys .

(1)

The algorithm for the case
that there are no negative
cycles, and doing all shortest
paths, works by computing a
potential function using
Bellman-Ford and then doing
Dijkstra. It is mentioned for
the sake of completeness,

but it outside the scope of the
class.

https://resources.mpi-
iInf.mpg.de/ departments/d1/
teaching/ss12/
AdvancedGraphAlgorithms/
Slides14.pdf



