
Minimum spanning trees (MSTs) 

All mistakes are my own! - Ivan Abraham (Fall 2024)

Sides based on material by Kani, Erickson, Chekuri, et. al.



Minimum Spanning Tree

Input: Connected graph   with edge costs 


Goal: Find   such that   is connected and total cost of all edges in   is smallest 


G = (V, E)

T ⊆ E (V, T) T
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Minimum Spanning Tree

Input: Connected graph   with edge costs 
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Applications

 4

• Network design 


• Designing networks with minimum cost but maximum connectivity


• Approximation algorithms 


• Can be used to bound the optimality of algorithms to approximate 
Traveling Salesman Problem, Steiner Trees, etc. 


• Cluster analysis

Minimum Spanning Tree



Spanning Trees
Basic properties

• Subgraph   of   is spanning for  , if   and   have same connected components.


• Tree: undirected graph in which any two vertices are connected by exactly one path 
  a connected (undirected) graph with no cycles. 


• Every tree has a leaf (i.e., vertex of degree one).


• A tree   on a graph   is spanning if   includes every node of  .


• Every spanning tree of a graph on   nodes has   edges.


• A graph   is connected   it has a spanning tree. 

H G G G H

∼

T G T G

n n − 1

G ⟺
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Some history

The first algorithm for MST was first published in 1926 by Otakar Borůvka as a 
method of constructing an efficient electricity network for Moravia. From his 
memoirs:


My studies at poly-technical schools made me feel very close to engineering sciences and made me fully appreciate 
technical and other applications of mathematics. Soon after the end of World War I, at the beginning of the 192Os, 
the Electric Power Company of Western Moravia, Brno, was engaged in rural electrification of Southern Moravia. 
In the framework of my friendly relations with some of their employees, I was asked to solve, from a mathematical 
standpoint, the question of the most economical construction of an electric power network. I succeeded in finding a 
construction-as it would be expressed today-of a maximal(ly) connected subgraph of minimum length, which I 
published in 1926 (i.e., at a time when the theory of graphs did not exist). 

There is some work in 1909 by a Polish anthropologist Jan Czekanowski on 
clustering, which is a precursor to MST.

 6
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Exchanging an edge in a spanning tree
Useful lemma

Let   be a spanning tree of  . Then,


• For every non-tree edge   there is a unique cycle   in  . 


• For every edge  ,   is another spanning tree of  .

T = (V, ET) G = (V, E)

e ∈ E\ET C T + e

f ∈ C − {e} T − f + e G
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Cuts
Definition

• Given a graph  , a cut is a 
partition of the vertices of the graph 
into two sets  . 


• Edges having an endpoint on both 
sides are the edges of the cut. 

• A cut edge is crossing the cut.

G = (V, E)

(S, V∖S)
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• Every cut identifies one safe edge …


• … the cheapest edge in the cut. 


• Note: An edge   may be a safe edge 
for many cuts!

e

Safe edge
Example
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Unsafe edge
Example
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• Every cycle identifies one unsafe 
edge … 


• … the most expensive edge in the 
cycle.
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Safe and unsafe edges
Assumption: Edge costs are distinct, that is no two edge costs are equal.

Safe edge:  

An edge   is a safe edge if there is some partition of   into   and   
and   is the unique minimum cost edge crossing   (one end in   and the other 
in   ).


Unsafe edge 

An edge   is an unsafe edge if there is some cycle   such that   is the 
unique maximum cost edge in  .

e = (u, v) V S V \S
e S S

V \S

e = (u, v) C e
C
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Safe and unsafe edges
Every edge is either safe or unsafe

Proposition: If edge costs are distinct then every edge is either safe or unsafe. 


Proof: Consider any edge  . Let  


• If   in same connected component of  , then   contains a 
cycle where   is most expensive     is unsafe.


• If   and   are in different connected components of  , let   the vertices 
of connected component of   containing   . The edge   is cheapest 
edge in cut       is safe.

e = uv G<w(e) = (V, {xy ∈ E |w(xy) < w(e)})
x, y G<w(e) G<w(e) + e

e ⟹ e

x y G<w(e) S
G<w(e) x e

(S, V \S) ⟹ e
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Example

Figure 1: Graph with unique edge costs. 


Safe edges are red, rest are unsafe.


And all safe edges are in the MST in this case …
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Why do we care about safety?

Lemma: (a) If   is a safe edge then every minimum spanning tree contains   
and (b) if   is an unsafe edge then no MST of   contains  .


• Many different MST algorithms 


• All of them rely on some basic properties of MSTs, in particular the Cut 
Property (part one of the lemma). 


• Part two of the lemma is called the Cycle Property.

e e
e G e
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Key observation
Cut property

Lemma: If   is a safe edge then every minimum spanning tree contains  .


Proof: Suppose (for contradiction)   is not in MST  .  


• Since   is safe there is an   such that   is the unique min cost edge 
crossing  . 


• Since   is connected, there must be some edge   with one end in   and the 
other in   


• Since   is a spanning tree of lower cost!

e e

e T

e S ⊂ V e
S

T f S
V \S

cf > ce, T′ = (T \{f}) ∪ {e}
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Is the proof correct?



Problematic example.  ,  ,  .   is not a spanning treeS = {1,2,7} e = (7,3) f = (1,6) T − f + e
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(A) Consider adding the edge   to MST.


(B) It is safe because it is the cheapest edge in 
the cut.


(C) Lets throw out the edge   currently in the 
spanning tree which is more expensive than   
and is in the same cut. Put in   instead.


(D) New graph of selected edges is not a tree!

e

f
e

e
(D)

Error in proof …
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Proof of Cut Property
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1. Suppose   is not in MST   and   is min 
weight edge in cut  . Assume  . It is 
safe because it is the cheapest edge in the cut.


2.   is spanning tree: there is a unique path   from   to 
  in  .


3. Let   be the first vertex in   belonging to  ; let   
be the vertex just before it on  , and let  


4.   is spanning tree of lower cost. 
(Why?)

e = (v, w) T e
(S, V \S) v ∈ S

T P v
w T

w′ P V \S v′ 

P e′ = (v′ , w′ )

T′ = (T \{e′ }) ∪ {e}
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(contd)

Observation:   is a spanning tree.


Proof:   is connected


Removed   from   but   and   are connected by the path 
  in   . Hence   is connected if   is.


Proof:   is a tree


  is connected and has   edges (since   had   edges) and hence   
is a tree.

T′ = (T \{e′ }) ∪ {e}

T′ 

e′ = (v′ , w′ ) T v′ w′ 

P − f + e T′ T′ T

T′ 

T′ n − 1 T n − 1 T′ 
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Proof of Cut Property



Safe edges form a connected graph

Lemma: Let   be a connected graph with distinct edge costs, then the set of 
safe edges form a connected graph. 


Proof:


• Suppose not. Let   be a connected component in the graph induced by the 
safe edges. 


• Consider the edges crossing  , there must be a safe edge among them since 
edge costs are distinct and so we must have picked it.

G

S

S
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Safe edges, cycles and MST

Lemma: Let   be a connected graph with distinct edge costs, then the set of 
safe edges does not contain a cycle.


Corollary: Let   be a connected graph with distinct edge costs, then set of 
safe edges form the unique MST of  . 


Consequence:  Every correct MST algorithm when   has unique edge costs 
includes exactly the safe edges.

G

G
G

G
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Borůvka’s Algorithm

Simplest to implement. Assume   is a connected graph.G
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T is ∅ (* T will store edges of a MST *) 

while T is not spanning do 
X ← ∅ 
for each connected component S of T do 

add to X the cheapest edge between S and V\S
Add edges in X to T 

return the set T
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Borůvka’s Algorithm
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Initialize: All vertices are singleton 
connected components.  

Heuristic: Each vertex tries to expand its 
“network” (connected component) by 
gaining the “least expensive friend.”


Iterate until a spanning tree is formed.  
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Borůvka’s Algorithm
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Borůvka’s Algorithm
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Borůvka’s Algorithm
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Borůvka’s Algorithm
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T is ∅ (* T will store edges of a MST *) 
while T is not spanning do 

X ← ∅ 
for each connected component S of T 
do 

add to X the cheapest edge 
between S and V\S

Add edges in X to T 
return the set T



Implementing Borůvka’s Algorithm
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•   iterations of while loop. 
Why? 


• Number of connected 
components shrink by at least 
half since each component 
merges with one or more other 
components.


• Each iteration can be 
implemented in   time.


• Running time:   time

O(log n)

O(m)

O(m log n)

T is ∅ (* T will store edges of a MST *) 
while T is not spanning do 

X ← ∅ 
for each connected component S of T 
do 

add to X the cheapest edge 
between S and V\S

Add edges in X to T 
return the set T



Mininimum Spanning Trees
Greedy template

• In what order should the 
edges be processed?


• When should we add 
edget to spanning tree?


• Leads to Kruskal’s and 
Prim’s algorithms.

 28

Initially E is the set of all edges in G

T is empty (*T will store edges of a MST*)

while E is not empty do
choose e   E
if (e satisfies condition)
add e to T

return the set T

∈



Kruskal’s Algorithm
Process edges in the order of their costs (starting from the least) and add edges 
to   as long as they don’t form a cycle.T
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Kruskal’s Algorithm
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Process edges in the order of their costs (starting from the least) and add edges 
to   as long as they don’t form a cycle.T



Kruskal’s Algorithm
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Kruskal’s Algorithm
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Kruskal’s Algorithm
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Kruskal’s Algorithm
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Kruskal’s Algorithm
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Kruskal’s Algorithm
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Kruskal’s Algorithm
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Correctness of Kruskal’s Algorithm

Kruskal’s Algorithm: Picking the edge of lowest cost and adding if it does not 
form a cycle with existing edges generates a MST.


Proof: If   is added to tree, then   is safe 


• When algorithm adds   let   and   be the connected components containing 
  and   respectively 


•   is the lowest cost edge crossing   ( and also   ). 


• If there is an edge   crossing   and has lower cost than  , then   would 
come before   in the sorted order and would be added by the algorithm to   


• Set of edges output is a spanning tree

e = (u, v) e

e S S′ 

u v

e S S′ 

e′ S e e′ 

e T
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• Presort edges based on cost. Choosing minimum can be done in   time


• Do BFS/DFS on  . Takes   time 


• Total time  

O(1)

T ∪ {e} O(n)

O(m log m) + O(mn) = O(mn)
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Kruskal’s Algorithm

Kruskal_ComputeMST
Initially E is the set of all edges in G 
T is empty (* T will store edges of a MST *)
while E is not empty do 

choose e   E of minimum cost
remove e from E
if (T ∪ {e} does not have cycles)
add e to T 

return the set T

∈
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Kruskal’s Algorithm (efficiently)

Kruskal_ComputeMST
Sort edges in E based on cost
T is empty (* T will store edges of a MST *)
each vertex u is placed in a set by itself
while E is not empty do 

pick e = (u,v)  E of minimum cost
if u and v belong to different sets
add e to T 
merge the sets containing u and v

return the set T

∈

• Need a data structure to check if two elements belong to same set and to merge two sets.


• Using Union-Find (disjoint-set) data structure can implement Kruskal’s algorithm in 
  time.O((m + n)log m)



Prim’s algorithm
  maintained by algorithm will be a tree. Start with a node in  . In each iteration, pick 
edge with least attachment cost to  .
T T

T
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Prim’s algorithm
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Prim’s algorithm
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Prim’s algorithm

 47

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328

  maintained by algorithm will be a tree. Start with a node in  . In each iteration, pick 
edge with least attachment cost to  .
T T

T
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Prim’s algorithm
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Correctness of Prim’s Algorithm

Prim’s Algorithm: Picking edge with minimum attachment cost to current tree, and 
adding to current tree generates a MST.


Proof: If   is added to tree, then   is safe and belongs to every MST. 


• Let   be the vertices connected by edges in   when   is added. 


•   is edge of lowest cost with one end in   and the other in   and hence   is safe. 


• Set of edges output is a spanning tree 


• Set of edges output forms a connected graph: by induction,   is connected in each 
iteration and eventually  . 


• Only safe edges added and they do not have a cycle

e e

S T e

e S V \S e

S
S = V
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Implementing Prim’s Algorithm

Analysis


• Number of iterations = 
 , where   is number of 
vertices 


• Picking e is   where   
is the number of edges 


• Total time  

O(n) n

O(m) m

O(nm)
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Prim_ComputeMST 
E is the set of all edges in G 
S = {1} 
T is empty (* T will store edges of a MST *) 
while  S   V do 

pick e =(v,w)   E such that 
v ∈ S and w ∈ V\S 
e has minimum cost 

T = T   e 
S = S   w 

return the set T

≠
∈

∪
∪



Prim’s relation to Djikstra
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Prim_ComputeMSTv1 
E is the set of all edges in G 
S ← {1} 
T is empty 
(* T will store edges of a MST *) 
for  ,   
for  ,   
while   do 

pick   with minimum d(v) 
e ← vp(v) 
T ← T ∪ {e} 
S ← S ∪ {v} 
update arrays d and p 

return the set T

v ∉ S d(v) = minx∈S c(xv)
v ∉ S p(v) = arg minx∈S c(xv)

S ≠ V
v ∈ V \S

Prim_ComputeMSTv2 

T ← ∅, S ← ∅, s = 1 
∀v ∈ V (G) : d(v) ← ∞
∀v ∈ V (G) : p(v) ← Nil
d(s) ← 0

while   do 
pick   with minimum d(v) 
e ← vp(v) 
T ← T ∪ {e} 
S ← S ∪ {v} 
update arrays d and p 

return T

S ≠ V
v ∈ V \S



Prim_ComputeMSTv2 

T ← ∅, S ← ∅, s = 1 
∀v ∈ V (G) : d(v) ← ∞
∀v ∈ V (G) : p(v) ← Nil
d(s) ← 0

while   do 
pick   with minimum d(v) 
e ← vp(v) 
T ← T ∪ {e} 
S ← S ∪ {v} 
update arrays d and p 

return T

S ≠ V
v ∈ V \S

Prim’s relation to Djikstra

 60

Prim_ComputeMSTv3 
T ← ∅, S ← ∅, s = 1 
∀v ∈ V (G) : d(v) ← ∞, p(v) ← Nil
d(s) ← 0
while   do  

 
T ← T ∪ {vp(v)} 
S ← S ∪ {v} 
for each u in Adj(v) do

  

if d(u) = c(vu) then 
p(u) ← v

return T

S ≠ V
v ← arg minu∈V \Sd(u)

d(u) ← min{d(u)
c(vu)

Maintain vertices in    in a priority queue with key  V \S d(v)



Prim_ComputeMSTv3 
T ← ∅, S ← ∅, s = 1 
∀v ∈ V (G) : d(v) ← ∞, p(v) ← Nil
d(s) ← 0
while   do  

 
T ← T ∪ {vp(v)} 
S ← S ∪ {v} 
for each u in Adj(v) do

  

if d(u) = c(vu) then 
p(u) ← v

return T

S ≠ V
v ← arg minu∈V \Sd(u)

d(u) ← min{d(u)
c(vu)

Prim’s relation to Djikstra
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Prim’s algorithm is essentially Dijkstra’s algorithm!

Dijkstra(G,s):
∀v ∈ V (G) : d(v) ← ∞, p(v) ← Nil
S ← ∅, d(s) ← 0

while   do  
 
S ← S ∪ {v} 
for each u in Adj(v) do

  

if d(u) = d(v) + l(v,u) then 
p(u) ← v

return d(v)

S ≠ V
v ← arg minu∈V \Sd(u)

d(u) ← min{d(u)
d(v) + l(v, u)



Implementing Prim’s algorithm 
with priority queues
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Prim’s using priority queues

Maintain vertices in   in a priority 
queue with key   


• Requires   extractMin 
operations 


• Requires   decreaseKey 
operations

V \S
d(v)

O(n)

O(m)
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Prim_ComputeMSTv3 
T ← ∅, S ← ∅, s = 1 
∀v ∈ V (G) : d(v) ← ∞, p(v) ← Nil
d(s) ← 0
while   do  

 
T ← T ∪ {vp(v)} 
S ← S ∪ {v} 
for each u in Adj(v) do

  

if d(u) = c(vu) then 
p(u) ← v

return T

S ≠ V
v ← arg minu∈V \Sd(u)

d(u) ← min{d(u)
c(vu)



Running time of Prim’s Algorithm

  extractMin operations and   decreaseKey operations 


• Using standard Heaps, extractMin and decreaseKey take   time. Total: 
  


• Using Fibonacci Heaps,   for extractMin and   (amortized) for 
decreaseKey. Total:  . 


• Prim’s algorithm and Dijkstra’s algorithms are similar. Where is the difference? 


• Prim’s algorithm = Dijkstra where length of a path   is the weight of the heaviest 
edge in  . (Bottleneck shortest path.)

O(n) O(m)

O(log n)
O((m + n)log n)

O(log n) O(1)
O(n log n + m)

π
π
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MST algorithm for negative 
weights, and non-distinct costs
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When edge costs are not distinct

Heuristic argument: Make edge costs distinct by adding a small tiny and different cost to 
each edge


Formal argument: Order edges lexicographically to break ties 


•   if either   or (   and   )  


• Lexicographic ordering extends to sets of edges. If  ,   then   if 
either   or (   and   has a lower indexed edge than   ). 


• Can order all spanning trees according to lexicographic order of their edge sets. Hence 
there is a unique MST. 


Prim’s and Kruskal’s Algorithms are optimal with respect to lexicographic ordering.

ei ≺ ej c(ei) < c(ej) c(ei) = c(ej) i < j

A, B ⊆ E A ≠ B A ≺ B
c(A) < c(B) c(A) = c(B) A\B B\A
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Edge Costs: Positive and Negative

• Algorithms and proofs don’t assume that edge costs are non-negative! MST 
algorithms work for arbitrary edge costs. 


• Another way to see this: make edge costs non-negative by adding to each 
edge a large enough positive number. Why does this work for MSTs but not 
for shortest paths? 


• Can compute maximum weight spanning tree by negating edge costs and 
then computing an MST. 


Question: Why does this not work for shortest paths?
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MST: An epilogue
Best Known Asymptotic Running Times for MST

Prim’s algorithm using Fibonacci heaps:  . 


If   is   then running time is  .


Question: Is there a linear time (   time ) algorithm for MST?


•   time [Fredman and Tarjan 1987]  

•   time using bit operations in RAM model [Fredman, Willard 1994] 


•   expected time (randomized algorithm) [Karger, Klein, Tarjan 1995] 


•   time [Chazelle 2000] 


• Still open: Is there an   time deterministic algorithm in the comparison model?

O(n log n + m)

m O(n) Ω(n log n)

O(m + n)

O(m log* m)

O(m + n)

O(m + n)

O((n + m)α(m, n))

O(n + m)
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