
Minimum spanning trees (MSTs)

All mistakes are my own! - Ivan Abraham (Fall 2024)

Sides based on material by Kani, Erickson, Chekuri, et. al.

Minimum Spanning Tree

Input: Connected graph with edge costs

Goal: Find such that is connected and total cost of all edges in is smallest

G = (V, E)

T ⊆ E (V, T) T

 2

1 2

6 3

5

20

23 15

36

17 4

7
1 4

9

25 16 328

Minimum Spanning Tree

Input: Connected graph with edge costs

Goal: Find such that is connected and total cost of all edges in is smallest

 is the minimum spanning tree (MST) of .

G = (V, E)

T ⊆ E (V, T) T

T G

 3

1 2

6 3

5

20

23 15

36

17 4

7
1 4

9

25 16 328

Applications

 4

• Network design

• Designing networks with minimum cost but maximum connectivity

• Approximation algorithms

• Can be used to bound the optimality of algorithms to approximate
Traveling Salesman Problem, Steiner Trees, etc.

• Cluster analysis

Minimum Spanning Tree

Spanning Trees
Basic properties

• Subgraph of is spanning for , if and have same connected components.

• Tree: undirected graph in which any two vertices are connected by exactly one path
 a connected (undirected) graph with no cycles.

• Every tree has a leaf (i.e., vertex of degree one).

• A tree on a graph is spanning if includes every node of .

• Every spanning tree of a graph on nodes has edges.

• A graph is connected it has a spanning tree.

H G G G H

∼

T G T G

n n − 1

G ⟺

 5

Some history

The first algorithm for MST was first published in 1926 by Otakar Borůvka as a
method of constructing an efficient electricity network for Moravia. From his
memoirs:

My studies at poly-technical schools made me feel very close to engineering sciences and made me fully appreciate
technical and other applications of mathematics. Soon after the end of World War I, at the beginning of the 192Os,
the Electric Power Company of Western Moravia, Brno, was engaged in rural electrification of Southern Moravia.
In the framework of my friendly relations with some of their employees, I was asked to solve, from a mathematical
standpoint, the question of the most economical construction of an electric power network. I succeeded in finding a
construction-as it would be expressed today-of a maximal(ly) connected subgraph of minimum length, which I
published in 1926 (i.e., at a time when the theory of graphs did not exist).

There is some work in 1909 by a Polish anthropologist Jan Czekanowski on
clustering, which is a precursor to MST.

 6

Minimum Spanning Tree

Exchanging an edge in a spanning tree
Useful lemma

Let be a spanning tree of . Then,

• For every non-tree edge there is a unique cycle in .

• For every edge , is another spanning tree of .

T = (V, ET) G = (V, E)

e ∈ E\ET C T + e

f ∈ C − {e} T − f + e G

 7

Cuts
Definition

• Given a graph , a cut is a
partition of the vertices of the graph
into two sets .

• Edges having an endpoint on both
sides are the edges of the cut.

• A cut edge is crossing the cut.

G = (V, E)

(S, V∖S)

 8

S V∖S

S V/S
13

7

3

5

11

• Every cut identifies one safe edge …

• … the cheapest edge in the cut.

• Note: An edge may be a safe edge
for many cuts!

e

Safe edge
Example

 9

S V/S
13

7

3

5

11

Safe edge in the cut (S, V/S)

5

7

2

15

3

Unsafe edge
Example

 10

• Every cycle identifies one unsafe
edge …

• … the most expensive edge in the
cycle.

5

7

2

15

3

Safe and unsafe edges
Assumption: Edge costs are distinct, that is no two edge costs are equal.

Safe edge:

An edge is a safe edge if there is some partition of into and
and is the unique minimum cost edge crossing (one end in and the other
in).

Unsafe edge

An edge is an unsafe edge if there is some cycle such that is the
unique maximum cost edge in .

e = (u, v) V S V \S
e S S

V \S

e = (u, v) C e
C

 11

Safe and unsafe edges
Every edge is either safe or unsafe

Proposition: If edge costs are distinct then every edge is either safe or unsafe.

Proof: Consider any edge . Let

• If in same connected component of , then contains a
cycle where is most expensive is unsafe.

• If and are in different connected components of , let the vertices
of connected component of containing . The edge is cheapest
edge in cut is safe.

e = uv G<w(e) = (V, {xy ∈ E |w(xy) < w(e)})
x, y G<w(e) G<w(e) + e

e ⟹ e

x y G<w(e) S
G<w(e) x e

(S, V \S) ⟹ e

 12

1 2

6 3

5

20

23 15

36

17 4

7
1 4

9

25 16 328

1 2

6 3

5

20

23 15

36

17 4

7
1 4

9

25 16 328

Example

Figure 1: Graph with unique edge costs.

Safe edges are red, rest are unsafe.

And all safe edges are in the MST in this case …
 13

Why do we care about safety?

Lemma: (a) If is a safe edge then every minimum spanning tree contains
and (b) if is an unsafe edge then no MST of contains .

• Many different MST algorithms

• All of them rely on some basic properties of MSTs, in particular the Cut
Property (part one of the lemma).

• Part two of the lemma is called the Cycle Property.

e e
e G e

 14

Key observation
Cut property

Lemma: If is a safe edge then every minimum spanning tree contains .

Proof: Suppose (for contradiction) is not in MST .

• Since is safe there is an such that is the unique min cost edge
crossing .

• Since is connected, there must be some edge with one end in and the
other in

• Since is a spanning tree of lower cost!

e e

e T

e S ⊂ V e
S

T f S
V \S

cf > ce, T′ = (T \{f}) ∪ {e}

 15

Is the proof correct?

Problematic example. , , . is not a spanning treeS = {1,2,7} e = (7,3) f = (1,6) T − f + e

 16

(A) Consider adding the edge to MST.

(B) It is safe because it is the cheapest edge in
the cut.

(C) Lets throw out the edge currently in the
spanning tree which is more expensive than
and is in the same cut. Put in instead.

(D) New graph of selected edges is not a tree!

e

f
e

e
(D)

Error in proof …

e

1 2

6 3

5

20
23

15

36

17 4

7
1 4

9

25 16 328

f

Proof of Cut Property

 17

1. Suppose is not in MST and is min
weight edge in cut . Assume . It is
safe because it is the cheapest edge in the cut.

2. is spanning tree: there is a unique path from to
 in .

3. Let be the first vertex in belonging to ; let
be the vertex just before it on , and let

4. is spanning tree of lower cost.
(Why?)

e = (v, w) T e
(S, V \S) v ∈ S

T P v
w T

w′ P V \S v′

P e′ = (v′ , w′)

T′ = (T \{e′ }) ∪ {e}

1 2

6 3

5

20

23 15

36

17 4

7
1 4

9

25 16 328

e

1 2

6 3

5

20

23 15

36

17 4

7
1 4

9

25 16 328

P

1 2

6 3

5

20

23 15

36

17 4

7
1 4

9

25 16 328

e

1 2

6 3

5

20

23 15

36

17 4

7
1 4

9

25 16 328

(contd)

Observation: is a spanning tree.

Proof: is connected

Removed from but and are connected by the path
 in . Hence is connected if is.

Proof: is a tree

 is connected and has edges (since had edges) and hence
is a tree.

T′ = (T \{e′ }) ∪ {e}

T′

e′ = (v′ , w′) T v′ w′

P − f + e T′ T′ T

T′

T′ n − 1 T n − 1 T′

 18

Proof of Cut Property

Safe edges form a connected graph

Lemma: Let be a connected graph with distinct edge costs, then the set of
safe edges form a connected graph.

Proof:

• Suppose not. Let be a connected component in the graph induced by the
safe edges.

• Consider the edges crossing , there must be a safe edge among them since
edge costs are distinct and so we must have picked it.

G

S

S

 19

Safe edges, cycles and MST

Lemma: Let be a connected graph with distinct edge costs, then the set of
safe edges does not contain a cycle.

Corollary: Let be a connected graph with distinct edge costs, then set of
safe edges form the unique MST of .

Consequence: Every correct MST algorithm when has unique edge costs
includes exactly the safe edges.

G

G
G

G

 20

Borůvka’s Algorithm

Simplest to implement. Assume is a connected graph.G

 21

T is ∅ (* T will store edges of a MST *)

while T is not spanning do
X ← ∅
for each connected component S of T do

add to X the cheapest edge between S and V\S
Add edges in X to T

return the set T

 22

Borůvka’s Algorithm

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328

Initialize: All vertices are singleton
connected components.

Heuristic: Each vertex tries to expand its
“network” (connected component) by
gaining the “least expensive friend.”

Iterate until a spanning tree is formed.

 23

Borůvka’s Algorithm

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328

 24

Borůvka’s Algorithm

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328 3,4,5

1,2,6,7

9

 25

Borůvka’s Algorithm

3,4,5

1,2,6,7

9

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328

 26

Borůvka’s Algorithm

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328

T is ∅ (* T will store edges of a MST *)
while T is not spanning do

X ← ∅
for each connected component S of T
do

add to X the cheapest edge
between S and V\S

Add edges in X to T
return the set T

Implementing Borůvka’s Algorithm

 27

• iterations of while loop.
Why?

• Number of connected
components shrink by at least
half since each component
merges with one or more other
components.

• Each iteration can be
implemented in time.

• Running time: time

O(log n)

O(m)

O(m log n)

T is ∅ (* T will store edges of a MST *)
while T is not spanning do

X ← ∅
for each connected component S of T
do

add to X the cheapest edge
between S and V\S

Add edges in X to T
return the set T

Mininimum Spanning Trees
Greedy template

• In what order should the
edges be processed?

• When should we add
edget to spanning tree?

• Leads to Kruskal’s and
Prim’s algorithms.

 28

Initially E is the set of all edges in G

T is empty (*T will store edges of a MST*)

while E is not empty do
choose e E
if (e satisfies condition)
add e to T

return the set T

∈

Kruskal’s Algorithm
Process edges in the order of their costs (starting from the least) and add edges
to as long as they don’t form a cycle.T

 29

1 2

6 3

5

20

23 15

36

17 4

7
1 4

9

25 16 328

Graph G

1 2

6 3

5 4

7

MST of G

Kruskal’s Algorithm

 30

1 2

6 3

5

20

23 15

36

17 4

7
1 4

9

25 16 328

Graph G

1 2

6 3

5 4

7

MST of G

1

Process edges in the order of their costs (starting from the least) and add edges
to as long as they don’t form a cycle.T

Kruskal’s Algorithm

 31

1 2

6 3

5

20

23 15

36

17 4

7
1 4

9

25 16 328

Graph G

1 2

6 3

5 4

7

MST of G

3

1

Process edges in the order of their costs (starting from the least) and add edges
to as long as they don’t form a cycle.T

Kruskal’s Algorithm

 32

1 2

6 3

5

20

23 15

36

17 4

7
1 4

9

25 16 328

Graph G

1 2

6 3

5 4

7

MST of G

3

1 4

Process edges in the order of their costs (starting from the least) and add edges
to as long as they don’t form a cycle.T

Kruskal’s Algorithm

 33

1 2

6 3

5

20

23 15

36

17 4

7
1 4

9

25 16 328

Graph G

1 2

6 3

5 4

7

MST of G

3

1 4

9

Process edges in the order of their costs (starting from the least) and add edges
to as long as they don’t form a cycle.T

Kruskal’s Algorithm

 34

1 2

6 3

5

20

23 15

36

17 4

7
1 4

9

25 16 328

Graph G

1 2

6 3

5 4

7

MST of G

3

1 4

9

15

Process edges in the order of their costs (starting from the least) and add edges
to as long as they don’t form a cycle.T

Kruskal’s Algorithm

 35

1 2

6 3

5

20

23 15

36

17 4

7
1 4

9

25 16 328

Graph G

1 2

6 3

5 4

7

MST of G

3

1 4

9

Process edges in the order of their costs (starting from the least) and add edges
to as long as they don’t form a cycle.T

Kruskal’s Algorithm

 36

1 2

6 3

5

20

23 15

36

17 4

7
1 4

9

25 16 328

Graph G

1 2

6 3

5 4

7

MST of G

3

1 4

9

Process edges in the order of their costs (starting from the least) and add edges
to as long as they don’t form a cycle.T

Kruskal’s Algorithm

 37

1 2

6 3

5

20

23 15

36

17 4

7
1 4

9

25 16 328

Graph G

1 2

6 3

5 4

7

MST of G

3

1 4

9

Process edges in the order of their costs (starting from the least) and add edges
to as long as they don’t form a cycle.T

Kruskal’s Algorithm

 38

1 2

6 3

5

20

23 15

36

17 4

7
1 4

9

25 16 328

Graph G

1 2

6 3

5 4

7

MST of G

3

1 4

9

Process edges in the order of their costs (starting from the least) and add edges
to as long as they don’t form a cycle.T

Correctness of Kruskal’s Algorithm

Kruskal’s Algorithm: Picking the edge of lowest cost and adding if it does not
form a cycle with existing edges generates a MST.

Proof: If is added to tree, then is safe

• When algorithm adds let and be the connected components containing
 and respectively

• is the lowest cost edge crossing (and also).

• If there is an edge crossing and has lower cost than , then would
come before in the sorted order and would be added by the algorithm to

• Set of edges output is a spanning tree

e = (u, v) e

e S S′

u v

e S S′

e′ S e e′

e T

 39

• Presort edges based on cost. Choosing minimum can be done in time

• Do BFS/DFS on . Takes time

• Total time

O(1)

T ∪ {e} O(n)

O(m log m) + O(mn) = O(mn)

 40

Kruskal’s Algorithm

Kruskal_ComputeMST
Initially E is the set of all edges in G
T is empty (* T will store edges of a MST *)
while E is not empty do

choose e E of minimum cost
remove e from E
if (T ∪ {e} does not have cycles)
add e to T

return the set T

∈

 41

Kruskal’s Algorithm (efficiently)

Kruskal_ComputeMST
Sort edges in E based on cost
T is empty (* T will store edges of a MST *)
each vertex u is placed in a set by itself
while E is not empty do

pick e = (u,v) E of minimum cost
if u and v belong to different sets
add e to T
merge the sets containing u and v

return the set T

∈

• Need a data structure to check if two elements belong to same set and to merge two sets.

• Using Union-Find (disjoint-set) data structure can implement Kruskal’s algorithm in
 time.O((m + n)log m)

Prim’s algorithm
 maintained by algorithm will be a tree. Start with a node in . In each iteration, pick
edge with least attachment cost to .
T T

T

 42

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328

Prim’s algorithm

 43

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328

 maintained by algorithm will be a tree. Start with a node in . In each iteration, pick
edge with least attachment cost to .
T T

T

Prim’s algorithm

 44

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328

 maintained by algorithm will be a tree. Start with a node in . In each iteration, pick
edge with least attachment cost to .
T T

T

Prim’s algorithm

 45

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328

 maintained by algorithm will be a tree. Start with a node in . In each iteration, pick
edge with least attachment cost to .
T T

T

Prim’s algorithm

 46

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328

 maintained by algorithm will be a tree. Start with a node in . In each iteration, pick
edge with least attachment cost to .
T T

T

Prim’s algorithm

 47

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328

 maintained by algorithm will be a tree. Start with a node in . In each iteration, pick
edge with least attachment cost to .
T T

T

Prim’s algorithm

 48

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328

 maintained by algorithm will be a tree. Start with a node in . In each iteration, pick
edge with least attachment cost to .
T T

T

Prim’s algorithm

 49

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328

 maintained by algorithm will be a tree. Start with a node in . In each iteration, pick
edge with least attachment cost to .
T T

T

Prim’s algorithm

 50

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328

 maintained by algorithm will be a tree. Start with a node in . In each iteration, pick
edge with least attachment cost to .
T T

T

Prim’s algorithm

 51

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328

 maintained by algorithm will be a tree. Start with a node in . In each iteration, pick
edge with least attachment cost to .
T T

T

Prim’s algorithm

 52

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328

 maintained by algorithm will be a tree. Start with a node in . In each iteration, pick
edge with least attachment cost to .
T T

T

Prim’s algorithm

 53

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328

 maintained by algorithm will be a tree. Start with a node in . In each iteration, pick
edge with least attachment cost to .
T T

T

Prim’s algorithm

 54

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328

 maintained by algorithm will be a tree. Start with a node in . In each iteration, pick
edge with least attachment cost to .
T T

T

Prim’s algorithm

 55

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328

 maintained by algorithm will be a tree. Start with a node in . In each iteration, pick
edge with least attachment cost to .
T T

T

Prim’s algorithm

 56

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328

 maintained by algorithm will be a tree. Start with a node in . In each iteration, pick
edge with least attachment cost to .
T T

T

Correctness of Prim’s Algorithm

Prim’s Algorithm: Picking edge with minimum attachment cost to current tree, and
adding to current tree generates a MST.

Proof: If is added to tree, then is safe and belongs to every MST.

• Let be the vertices connected by edges in when is added.

• is edge of lowest cost with one end in and the other in and hence is safe.

• Set of edges output is a spanning tree

• Set of edges output forms a connected graph: by induction, is connected in each
iteration and eventually .

• Only safe edges added and they do not have a cycle

e e

S T e

e S V \S e

S
S = V

 57

Implementing Prim’s Algorithm

Analysis

• Number of iterations =
 , where is number of
vertices

• Picking e is where
is the number of edges

• Total time

O(n) n

O(m) m

O(nm)

 58

Prim_ComputeMST
E is the set of all edges in G
S = {1}
T is empty (* T will store edges of a MST *)
while S V do

pick e =(v,w) E such that
v ∈ S and w ∈ V\S
e has minimum cost

T = T e
S = S w

return the set T

≠
∈

∪
∪

Prim’s relation to Djikstra

 59

Prim_ComputeMSTv1
E is the set of all edges in G
S ← {1}
T is empty
(* T will store edges of a MST *)
for ,
for ,
while do

pick with minimum d(v)
e ← vp(v)
T ← T ∪ {e}
S ← S ∪ {v}
update arrays d and p

return the set T

v ∉ S d(v) = minx∈S c(xv)
v ∉ S p(v) = arg minx∈S c(xv)

S ≠ V
v ∈ V \S

Prim_ComputeMSTv2

T ← ∅, S ← ∅, s = 1
∀v ∈ V (G) : d(v) ← ∞
∀v ∈ V (G) : p(v) ← Nil
d(s) ← 0

while do
pick with minimum d(v)
e ← vp(v)
T ← T ∪ {e}
S ← S ∪ {v}
update arrays d and p

return T

S ≠ V
v ∈ V \S

Prim_ComputeMSTv2

T ← ∅, S ← ∅, s = 1
∀v ∈ V (G) : d(v) ← ∞
∀v ∈ V (G) : p(v) ← Nil
d(s) ← 0

while do
pick with minimum d(v)
e ← vp(v)
T ← T ∪ {e}
S ← S ∪ {v}
update arrays d and p

return T

S ≠ V
v ∈ V \S

Prim’s relation to Djikstra

 60

Prim_ComputeMSTv3
T ← ∅, S ← ∅, s = 1
∀v ∈ V (G) : d(v) ← ∞, p(v) ← Nil
d(s) ← 0
while do

T ← T ∪ {vp(v)}
S ← S ∪ {v}
for each u in Adj(v) do

if d(u) = c(vu) then
p(u) ← v

return T

S ≠ V
v ← arg minu∈V \Sd(u)

d(u) ← min{d(u)
c(vu)

Maintain vertices in in a priority queue with key V \S d(v)

Prim_ComputeMSTv3
T ← ∅, S ← ∅, s = 1
∀v ∈ V (G) : d(v) ← ∞, p(v) ← Nil
d(s) ← 0
while do

T ← T ∪ {vp(v)}
S ← S ∪ {v}
for each u in Adj(v) do

if d(u) = c(vu) then
p(u) ← v

return T

S ≠ V
v ← arg minu∈V \Sd(u)

d(u) ← min{d(u)
c(vu)

Prim’s relation to Djikstra

 61

Prim’s algorithm is essentially Dijkstra’s algorithm!

Dijkstra(G,s):
∀v ∈ V (G) : d(v) ← ∞, p(v) ← Nil
S ← ∅, d(s) ← 0

while do

S ← S ∪ {v}
for each u in Adj(v) do

if d(u) = d(v) + l(v,u) then
p(u) ← v

return d(v)

S ≠ V
v ← arg minu∈V \Sd(u)

d(u) ← min{d(u)
d(v) + l(v, u)

Implementing Prim’s algorithm
with priority queues

 62

Prim’s using priority queues

Maintain vertices in in a priority
queue with key

• Requires extractMin
operations

• Requires decreaseKey
operations

V \S
d(v)

O(n)

O(m)

 63

Prim_ComputeMSTv3
T ← ∅, S ← ∅, s = 1
∀v ∈ V (G) : d(v) ← ∞, p(v) ← Nil
d(s) ← 0
while do

T ← T ∪ {vp(v)}
S ← S ∪ {v}
for each u in Adj(v) do

if d(u) = c(vu) then
p(u) ← v

return T

S ≠ V
v ← arg minu∈V \Sd(u)

d(u) ← min{d(u)
c(vu)

Running time of Prim’s Algorithm

 extractMin operations and decreaseKey operations

• Using standard Heaps, extractMin and decreaseKey take time. Total:

• Using Fibonacci Heaps, for extractMin and (amortized) for
decreaseKey. Total: .

• Prim’s algorithm and Dijkstra’s algorithms are similar. Where is the difference?

• Prim’s algorithm = Dijkstra where length of a path is the weight of the heaviest
edge in . (Bottleneck shortest path.)

O(n) O(m)

O(log n)
O((m + n)log n)

O(log n) O(1)
O(n log n + m)

π
π

 64

MST algorithm for negative
weights, and non-distinct costs

 65

When edge costs are not distinct

Heuristic argument: Make edge costs distinct by adding a small tiny and different cost to
each edge

Formal argument: Order edges lexicographically to break ties

• if either or (and)

• Lexicographic ordering extends to sets of edges. If , then if
either or (and has a lower indexed edge than).

• Can order all spanning trees according to lexicographic order of their edge sets. Hence
there is a unique MST.

Prim’s and Kruskal’s Algorithms are optimal with respect to lexicographic ordering.

ei ≺ ej c(ei) < c(ej) c(ei) = c(ej) i < j

A, B ⊆ E A ≠ B A ≺ B
c(A) < c(B) c(A) = c(B) A\B B\A

 66

Edge Costs: Positive and Negative

• Algorithms and proofs don’t assume that edge costs are non-negative! MST
algorithms work for arbitrary edge costs.

• Another way to see this: make edge costs non-negative by adding to each
edge a large enough positive number. Why does this work for MSTs but not
for shortest paths?

• Can compute maximum weight spanning tree by negating edge costs and
then computing an MST.

Question: Why does this not work for shortest paths?

 67

MST: An epilogue
Best Known Asymptotic Running Times for MST

Prim’s algorithm using Fibonacci heaps: .

If is then running time is .

Question: Is there a linear time (time) algorithm for MST?

• time [Fredman and Tarjan 1987]

• time using bit operations in RAM model [Fredman, Willard 1994]

• expected time (randomized algorithm) [Karger, Klein, Tarjan 1995]

• time [Chazelle 2000]

• Still open: Is there an time deterministic algorithm in the comparison model?

O(n log n + m)

m O(n) Ω(n log n)

O(m + n)

O(m log* m)

O(m + n)

O(m + n)

O((n + m)α(m, n))

O(n + m)
 68

