
Minimum spanning trees (MSTs) 

All mistakes are my own! - Ivan Abraham (Fall 2024)

Sides based on material by Kani, Erickson, Chekuri, et. al.
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Input: Connected graph  with edge costs G = (V, E)
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Minimum Spanning Tree

Input: Connected graph  with edge costs G = (V, E)
Goal: Find  such that  is connected and total cost of all edges in  is smallest T ⊆ E (V, T) T
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Minimum Spanning Tree

Input: Connected graph   with edge costs 


Goal: Find   such that   is connected and total cost of all edges in   is smallest 


  is the minimum spanning tree (MST) of  .

G = (V, E)
T ⊆ E (V, T) T

T G
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Applications

 4

• Network design 

• Designing networks with minimum cost but maximum connectivity

• Cluster analysis

• Social networks, epidemiological networks, etc. 

• Approximation algorithms 

• Can be used to bound the optimality of algorithms to approximate 
Traveling Salesman Problem, Steiner Trees, etc. 

Minimum Spanning Tree



Spanning Trees
Basic properties

• Subgraph  of  is spanning for , if  and  have same connected components.H G G G H
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 a connected (undirected) graph with no cycles. ∼
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• Subgraph  of  is spanning for , if  and  have same connected components.H G G G H

• Tree: undirected graph in which any two vertices are connected by exactly one path 
 a connected (undirected) graph with no cycles. ∼

• Every tree has a leaf (i.e., vertex of degree one).

• A tree  on a graph  is spanning if  includes every node of .T G T G

• Every spanning tree of a graph on  nodes has  edges.n n − 1
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Spanning Trees
Basic properties

• Subgraph  of  is spanning for , if  and  have same connected components.H G G G H

• Tree: undirected graph in which any two vertices are connected by exactly one path 
 a connected (undirected) graph with no cycles. ∼

• Every tree has a leaf (i.e., vertex of degree one).

• A tree  on a graph  is spanning if  includes every node of .T G T G

• Every spanning tree of a graph on  nodes has  edges.n n − 1

• A graph  is connected  it has a spanning tree. G ⟺

 5



Some history

The first algorithm for MST was first published in 1926 by Otakar Borůvka as a 
method of constructing an efficient electricity network for Moravia. From his 
memoirs:
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Some history

The first algorithm for MST was first published in 1926 by Otakar Borůvka as a 
method of constructing an efficient electricity network for Moravia. From his 
memoirs:

My studies at poly-technical schools made me feel very close to engineering sciences and made me fully appreciate 
technical and other applications of mathematics. Soon after the end of World War I, at the beginning of the 192Os, 
the Electric Power Company of Western Moravia, Brno, was engaged in rural electrification of Southern Moravia. 
In the framework of my friendly relations with some of their employees, I was asked to solve, from a mathematical 
standpoint, the question of the most economical construction of an electric power network. I succeeded in finding a 
construction-as it would be expressed today-of a maximal(ly) connected subgraph of minimum length, which I 
published in 1926 (i.e., at a time when the theory of graphs did not exist).
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Some history

The first algorithm for MST was first published in 1926 by Otakar Borůvka as a 
method of constructing an efficient electricity network for Moravia. From his 
memoirs:

My studies at poly-technical schools made me feel very close to engineering sciences and made me fully appreciate 
technical and other applications of mathematics. Soon after the end of World War I, at the beginning of the 192Os, 
the Electric Power Company of Western Moravia, Brno, was engaged in rural electrification of Southern Moravia. 
In the framework of my friendly relations with some of their employees, I was asked to solve, from a mathematical 
standpoint, the question of the most economical construction of an electric power network. I succeeded in finding a 
construction-as it would be expressed today-of a maximal(ly) connected subgraph of minimum length, which I 
published in 1926 (i.e., at a time when the theory of graphs did not exist).

There is some work in 1909 by a Polish anthropologist Jan Czekanowski on 
clustering, which is a precursor to MST.
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Exchanging an edge in a spanning tree
Useful lemma

Let  be a spanning tree of . Then,T = (V, ET) G = (V, E)
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Useful lemma

Let  be a spanning tree of . Then,T = (V, ET) G = (V, E)

• For every non-tree edge  there is a unique cycle  in . e ∈ E\ET C T + e
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Exchanging an edge in a spanning tree
Useful lemma

Let  be a spanning tree of . Then,T = (V, ET) G = (V, E)

• For every non-tree edge  there is a unique cycle  in . e ∈ E\ET C T + e

• For every edge ,  is another spanning tree of .f ∈ C − {e} T − f + e G
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Cuts
Definition

• Given a graph , a cut is a 
partition of the vertices of the graph 
into two sets . 

G = (V, E)

(S, V∖S)
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Cuts
Definition

• Given a graph , a cut is a 
partition of the vertices of the graph 
into two sets . 

G = (V, E)

(S, V∖S)
• Edges having an endpoint on both 

sides are the edges of the cut.
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Cuts
Definition

• Given a graph , a cut is a 
partition of the vertices of the graph 
into two sets . 

G = (V, E)

(S, V∖S)
• Edges having an endpoint on both 

sides are the edges of the cut.

• A cut edge is crossing the cut.

 8

S V∖S



Safe and unsafe edges
Assumption: Edge costs are distinct, that is no two edge costs are equal.

Safe edge: 

An edge  is a safe edge if there is some partition of  into  and  
and  is the unique minimum cost edge crossing  (one end in  and the other 
in  ).

e = (u, v) V S V \S
e S S

V \S
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• Every cut identifies one safe edge …

• … the cheapest edge in the cut. 

• Note: An edge  may be a safe edge 
for many cuts!

e

Safe edge
Example
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Safe and unsafe edges
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Safe edge: 

An edge  is a safe edge if there is some partition of  into  and  
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Safe and unsafe edges
Assumption: Edge costs are distinct, that is no two edge costs are equal.

Safe edge: 

An edge  is a safe edge if there is some partition of  into  and  
and  is the unique minimum cost edge crossing  (one end in  and the other 
in  ).

e = (u, v) V S V \S
e S S

V \S
Unsafe edge

An edge  is an unsafe edge if there is some cycle  such that  is the 
unique maximum cost edge in .

e = (u, v) C e
C
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Safe and unsafe edges
Assumption: Edge costs are distinct
Proposition: Every edge is either safe or unsafe

Proof: Consider any edge . Let e = uv
G<w(e) = (V, {xy ∈ E |w(xy) < w(e)})
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Safe and unsafe edges
Assumption: Edge costs are distinct
Proposition: Every edge is either safe or unsafe

Proof: Consider any edge . Let e = uv
G<w(e) = (V, {xy ∈ E |w(xy) < w(e)})
• If  in same connected component of , then  

contains a cycle where  is most expensive   is unsafe.
x, y G<w(e) G<w(e) + e

e ⟹ e
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Safe and unsafe edges
Assumption: Edge costs are distinct
Proposition: Every edge is either safe or unsafe

Proof: Consider any edge . Let e = uv
G<w(e) = (V, {xy ∈ E |w(xy) < w(e)})
• If  in same connected component of , then  

contains a cycle where  is most expensive   is unsafe.
x, y G<w(e) G<w(e) + e

e ⟹ e

• If  and  are in different connected components of , let  
be the vertices of connected component of  containing  . 
The edge  is cheapest edge in cut    is safe.

x y G<w(e) S
G<w(e) x

e (S, V \S) ⟹ e
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Figure 1: Graph with unique edge costs. 
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Figure 1: Graph with unique edge costs. 

Safe edges are red, rest are unsafe.
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Example

Figure 1: Graph with unique edge costs. 

Safe edges are red, rest are unsafe.

And all safe edges are in the MST in this case …
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Why do we care about safety?
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Lemma: (a) If  is a safe edge then every minimum spanning tree contains  
and (b) if  is an unsafe edge then no MST of  contains .
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Why do we care about safety?

Lemma: (a) If  is a safe edge then every minimum spanning tree contains  
and (b) if  is an unsafe edge then no MST of  contains .

e e
e G e

• Many different MST algorithms 

• All of them rely on some basic properties of MSTs, in particular the Cut 
Property (part one of the lemma). 

• Part two of the lemma is called the Cycle Property.
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Key observation
Cut property

Lemma: If  is a safe edge then every minimum spanning tree contains .e e

Proof: Suppose (for contradiction)  is not in MST .  e T
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Key observation
Cut property

Lemma: If  is a safe edge then every minimum spanning tree contains .e e

Proof: Suppose (for contradiction)  is not in MST .  e T

• Since  is safe there is an  such that  is the unique min cost edge 
crossing . 

e S ⊂ V e
S

• Since  is connected, there must be some edge  with one end in  and the 
other in  

T f S
V \S

• Since  is a spanning tree of lower cost!cf > ce, T′ = (T \{f}) ∪ {e}
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Problematic example.  ,  ,  .   is not a spanning treeS = {1,2,7} e = (7,3) f = (1,6) T − f + e
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 17

(A) Consider adding the edge  to MST.e
(B) It is safe because it is the cheapest edge in 

the cut.

(C) Lets throw out the edge  currently in the 
spanning tree which is more expensive than  
and is in the same cut. Put in  instead.
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Problematic example.  ,  ,  .   is not a spanning treeS = {1,2,7} e = (7,3) f = (1,6) T − f + e

 17

(A) Consider adding the edge  to MST.e
(B) It is safe because it is the cheapest edge in 

the cut.

(C) Lets throw out the edge  currently in the 
spanning tree which is more expensive than  
and is in the same cut. Put in  instead.

f
e

e
(D) New graph of selected edges is not a tree!

(D)

Error in proof …
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Proof of Cut Property
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1. Suppose  is not in MST  and  is min 
weight edge in cut . Assume . It is 
safe because it is the cheapest edge in the cut.

e = (v, w) T e
(S, V \S) v ∈ S

2.  is spanning tree: there is a unique path  from  to 
 in .
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w T
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1. Suppose  is not in MST  and  is min 
weight edge in cut . Assume . It is 
safe because it is the cheapest edge in the cut.

e = (v, w) T e
(S, V \S) v ∈ S

2.  is spanning tree: there is a unique path  from  to 
 in .

T P v
w T

3. Let  be the first vertex in  belonging to ; let  
be the vertex just before it on , and let 

w′ P V \S v′ 

P e′ = (v′ , w′ )
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Proof of Cut Property

 18

1. Suppose  is not in MST  and  is min 
weight edge in cut . Assume . It is 
safe because it is the cheapest edge in the cut.

e = (v, w) T e
(S, V \S) v ∈ S

2.  is spanning tree: there is a unique path  from  to 
 in .

T P v
w T

3. Let  be the first vertex in  belonging to ; let  
be the vertex just before it on , and let 

w′ P V \S v′ 

P e′ = (v′ , w′ )
4.  is spanning tree of lower cost. 

(Why?)
T′ = (T \{e′ }) ∪ {e}
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(contd)

Observation:  is a spanning tree.T′ = (T \{e′ }) ∪ {e}

 19

Proof of Cut Property



(contd)

Observation:  is a spanning tree.T′ = (T \{e′ }) ∪ {e}
Proof:  is connectedT′ 
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(contd)

Observation:  is a spanning tree.T′ = (T \{e′ }) ∪ {e}
Proof:  is connectedT′ 

Removed  from  but  and  are connected by the path 
 in  . Hence  is connected if  is.
e′ = (v′ , w′ ) T v′ w′ 

P − f + e T′ T′ T
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(contd)

Observation:  is a spanning tree.T′ = (T \{e′ }) ∪ {e}
Proof:  is connectedT′ 

Removed  from  but  and  are connected by the path 
 in  . Hence  is connected if  is.
e′ = (v′ , w′ ) T v′ w′ 

P − f + e T′ T′ T

Proof:  is a treeT′ 
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(contd)

Observation:  is a spanning tree.T′ = (T \{e′ }) ∪ {e}
Proof:  is connectedT′ 

Removed  from  but  and  are connected by the path 
 in  . Hence  is connected if  is.
e′ = (v′ , w′ ) T v′ w′ 

P − f + e T′ T′ T

Proof:  is a treeT′ 

 is connected and has  edges (since  had  edges) and hence  
is a tree.
T′ n − 1 T n − 1 T′ 

 19
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Safe edges form a connected graph

Lemma: Let  be a connected graph with distinct edge costs, then the set of 
safe edges form a connected graph. 

G

Proof:
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Safe edges form a connected graph

Lemma: Let  be a connected graph with distinct edge costs, then the set of 
safe edges form a connected graph. 

G

Proof:

• Suppose not. Let  be a connected component in the graph induced by the 
safe edges. 

S
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Safe edges form a connected graph

Lemma: Let  be a connected graph with distinct edge costs, then the set of 
safe edges form a connected graph. 

G

Proof:

• Suppose not. Let  be a connected component in the graph induced by the 
safe edges. 

S

• Consider the edges crossing , there must be a safe edge among them since 
edge costs are distinct and so we must have picked it.

S
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Safe edges, cycles and MST

Lemma: Let  be a connected graph with distinct edge costs, then the set of 
safe edges does not contain a cycle.

G
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Safe edges, cycles and MST

Lemma: Let  be a connected graph with distinct edge costs, then the set of 
safe edges does not contain a cycle.

G

Corollary: Let  be a connected graph with distinct edge costs, then set of 
safe edges form the unique MST of . 

G
G
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Safe edges, cycles and MST

Lemma: Let  be a connected graph with distinct edge costs, then the set of 
safe edges does not contain a cycle.

G

Corollary: Let  be a connected graph with distinct edge costs, then set of 
safe edges form the unique MST of . 

G
G

Consequence:  Every correct MST algorithm when  has unique edge costs 
includes exactly the safe edges.

G
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Borůvka’s Algorithm

Simplest to implement. Assume   is a connected graph.G
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Borůvka’s Algorithm

Simplest to implement. Assume   is a connected graph.G
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T is ∅ (* T will store edges of a MST *) 

while T is not spanning do 
X ← ∅ 
for each connected component S of T do 

add to X the cheapest edge between S and V\S
Add edges in X to T 

return the set T
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Initialize: All vertices are singleton 
connected components. 
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Heuristic: Each vertex tries to expand its 
“network” (connected component) by 
gaining the “least expensive friend.”
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Iterate until a spanning tree is formed. 
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Initialize: All vertices are singleton 
connected components. 

Heuristic: Each vertex tries to expand its 
“network” (connected component) by 
gaining the “least expensive friend.”

Iterate until a spanning tree is formed. 

↑
-I
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T is ∅ (* T will store edges of a MST *) 
while T is not spanning do 

X ← ∅ 
for each connected component S of T 
do 

add to X the cheapest edge 
between S and V\S

Add edges in X to T 
return the set T
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•  iterations of while loop. 
Why? 
O(log n)
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Add edges in X to T 
return the set T
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•  iterations of while loop. 
Why? 
O(log n)

• Number of connected 
components shrink by at least 
half since each component 
merges with one or more other 
components.

• Each iteration can be 
implemented in  time.O(m)

• Running time:  timeO(m log n)

T is ∅ (* T will store edges of a MST *) 
while T is not spanning do 

X ← ∅ 
for each connected component S of T 
do 

add to X the cheapest edge 
between S and V\S

Add edges in X to T 
return the set T



Mininimum Spanning Trees
Greedy template
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Initially E is the set of all edges in G

T is empty (*T will store edges of a MST*)

while E is not empty do
choose e   E
if (e satisfies condition)
add e to T

return the set T

∈

- -> remove e famE
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Initially E is the set of all edges in G

T is empty (*T will store edges of a MST*)

while E is not empty do
choose e   E
if (e satisfies condition)
add e to T

return the set T
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Mininimum Spanning Trees
Greedy template

• In what order should the 
edges be processed?

• When should we add 
edget to spanning tree?

• Leads to Kruskal’s and 
Prim’s algorithms.

 29

Initially E is the set of all edges in G

T is empty (*T will store edges of a MST*)

while E is not empty do
choose e   E
if (e satisfies condition)
add e to T

return the set T

∈



Kruskal’s Algorithm
Process edges in the order of their costs (starting from the least) and add edges 
to   as long as they don’t form a cycle.T
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Correctness of Kruskal’s Algorithm
Kruskal’s Algorithm: Picking the edge of lowest cost and adding if it does not 
form a cycle with existing edges generates a MST.


Proof: If   is added to tree, then   is safe 


• When algorithm adds   let   and   be the connected components containing 
  and   respectively 


•   is the lowest cost edge crossing   ( and also   ). 


• If there is an edge   crossing   and has lower cost than  , then   would 
come before   in the sorted order and would be added by the algorithm to   


• Set of edges output is a spanning tree

e = (u, v) e

e S S⊆ 

u v

e S S⊆ 

e⊆ S e e⊆ 

e T

 40
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Kruskal’s Algorithm
Kruskal_ComputeMST

Initially E is the set of all edges in G 
T is empty (* T will store edges of a MST *)
while E is not empty do 

choose e   E of minimum cost
remove e from E
if (T ∪ {e} does not have cycles)
add e to T 

return the set T

∼

I answered a student question

incorrectly in class .
Faizi asked

"Why out we store a
list of

vertices from elses
added to

Tm a list Land check for a

cele from
an incoming edge

quivy by seeing of
UEL

,
+L

.

"

Because : 1= 11 , 2 , 3 , 4 , 5, 7,8]

See f us e .itedetective 2 3
-

I
· f
4t
go



• Presort edges based on cost. Choosing minimum can be done in   time


• Do BFS/DFS on  . Takes   time 


• Total time  

O(1)
T − {e} O(n)

O(m log m) + O(mn) = O(mn)
 41

Kruskal’s Algorithm
Kruskal_ComputeMST

Initially E is the set of all edges in G 
T is empty (* T will store edges of a MST *)
while E is not empty do 

choose e   E of minimum cost
remove e from E
if (T ∪ {e} does not have cycles)
add e to T 

return the set T

∼
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Kruskal’s Algorithm (efficiently)
Kruskal_ComputeMST

Sort edges in E based on cost
T is empty (* T will store edges of a MST *)
each vertex u is placed in a set by itself
while E is not empty do 

pick e = (u,v)  E of minimum cost
if u and v belong to different sets
add e to T 
merge the sets containing u and v

return the set T

∼

• Need a data structure to check if two elements belong to same set and to merge two sets.


• Using Union-Find (disjoint-set) data structure can implement Kruskal’s algorithm in 
  time.O((m + n)log m)-



Prim’s algorithm
  maintained by algorithm will be a tree. Start with a node in  . In each iteration, pick 
edge with least attachment cost to  .
T T

T
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Correctness of Prim’s Algorithm

Prim’s Algorithm: Picking edge with minimum attachment cost to current tree, and 
adding to current tree generates a MST.

Proof: If  is added to tree, then  is safe and belongs to every MST. e e

 58



Correctness of Prim’s Algorithm

Prim’s Algorithm: Picking edge with minimum attachment cost to current tree, and 
adding to current tree generates a MST.

Proof: If  is added to tree, then  is safe and belongs to every MST. e e

• Let  be the vertices connected by edges in  when  is added. S T e

 58



Correctness of Prim’s Algorithm

Prim’s Algorithm: Picking edge with minimum attachment cost to current tree, and 
adding to current tree generates a MST.

Proof: If  is added to tree, then  is safe and belongs to every MST. e e

• Let  be the vertices connected by edges in  when  is added. S T e

•  is edge of lowest cost with one end in  and the other in  and hence  is safe. e S V \S e

 58



Correctness of Prim’s Algorithm

Prim’s Algorithm: Picking edge with minimum attachment cost to current tree, and 
adding to current tree generates a MST.

Proof: If  is added to tree, then  is safe and belongs to every MST. e e

• Let  be the vertices connected by edges in  when  is added. S T e

•  is edge of lowest cost with one end in  and the other in  and hence  is safe. e S V \S e
• Set of edges output is a spanning tree 

 58



Correctness of Prim’s Algorithm

Prim’s Algorithm: Picking edge with minimum attachment cost to current tree, and 
adding to current tree generates a MST.

Proof: If  is added to tree, then  is safe and belongs to every MST. e e

• Let  be the vertices connected by edges in  when  is added. S T e

•  is edge of lowest cost with one end in  and the other in  and hence  is safe. e S V \S e
• Set of edges output is a spanning tree 

• Set of edges output forms a connected graph: by induction,  is connected in each 
iteration and eventually . 

S
S = V
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Correctness of Prim’s Algorithm

Prim’s Algorithm: Picking edge with minimum attachment cost to current tree, and 
adding to current tree generates a MST.

Proof: If  is added to tree, then  is safe and belongs to every MST. e e

• Let  be the vertices connected by edges in  when  is added. S T e

•  is edge of lowest cost with one end in  and the other in  and hence  is safe. e S V \S e
• Set of edges output is a spanning tree 

• Set of edges output forms a connected graph: by induction,  is connected in each 
iteration and eventually . 

S
S = V

• Only safe edges added and they do not have a cycle
 58



Implementing Prim’s Algorithm

Analysis

 59

Prim_ComputeMST 
E is the set of all edges in G 
S = {1} 
T is empty (* T will store edges of a MST *) 
while  S   V do 

pick e =(v,w)   E such that 
v ∈ S and w ∈ V\S 
e has minimum cost 

T = T   e 
S = S   w 

return the set T

⟺
∼

−
−
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O(n) n
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Implementing Prim’s Algorithm

Analysis

• Number of iterations = 
, where  is number of 

vertices 
O(n) n

• Picking  is  where  
is the number of edges 

e O(m) m

• Total time O(nm)

 59

Prim_ComputeMST 
E is the set of all edges in G 
S = {1} 
T is empty (* T will store edges of a MST *) 
while  S   V do 

pick e =(v,w)   E such that 
v ∈ S and w ∈ V\S 
e has minimum cost 

T = T   e 
S = S   w 

return the set T

⟺
∼

−
−



MST algorithm for negative 
weights, and non-distinct costs

 60



When edge costs are not distinct

Heuristic argument: Make edge costs distinct by adding a small tiny and different cost to 
each edge

 61
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When edge costs are not distinct

Heuristic argument: Make edge costs distinct by adding a small tiny and different cost to 
each edge

Formal argument: Order edges lexicographically to break ties 

•  if either  or (  and  )  ei ∈ ej c(ei) < c(ej) c(ei) = c(ej) i < j

• Lexicographic ordering extends to sets of edges. If ,  then  if 
either  or (  and  has a lower indexed edge than  ). 

A, B ⟹ E A ⟺ B A ∈ B
c(A) < c(B) c(A) = c(B) A\B B\A
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either  or (  and  has a lower indexed edge than  ). 
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• Can order all spanning trees according to lexicographic order of their edge sets. Hence 
there is a unique MST. 
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When edge costs are not distinct

Heuristic argument: Make edge costs distinct by adding a small tiny and different cost to 
each edge

Formal argument: Order edges lexicographically to break ties 

•  if either  or (  and  )  ei ∈ ej c(ei) < c(ej) c(ei) = c(ej) i < j

• Lexicographic ordering extends to sets of edges. If ,  then  if 
either  or (  and  has a lower indexed edge than  ). 

A, B ⟹ E A ⟺ B A ∈ B
c(A) < c(B) c(A) = c(B) A\B B\A

• Can order all spanning trees according to lexicographic order of their edge sets. Hence 
there is a unique MST. 

Prim’s and Kruskal’s Algorithms are optimal with respect to lexicographic ordering.
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• Algorithms and proofs don’t assume that edge costs are non-negative! MST 
algorithms work for arbitrary edge costs. 
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Edge Costs: Positive and Negative

• Algorithms and proofs don’t assume that edge costs are non-negative! MST 
algorithms work for arbitrary edge costs. 

• Another way to see this: make edge costs non-negative by adding to each 
edge a large enough positive number. Why does this work for MSTs but not 
for shortest paths? 

• Can compute maximum weight spanning tree by negating edge costs and 
then computing an MST. 

Question: Why does this not work for shortest paths?
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MST: An epilogue
Best Known Asymptotic Running Times for MST

Prim’s algorithm using Fibonacci heaps:  . 


If   is   then running time is  .


Question: Is there a linear time (   time ) algorithm for MST?


•   time [Fredman and Tarjan 1987]  

•   time using bit operations in RAM model [Fredman, Willard 1994] 


•   expected time (randomized algorithm) [Karger, Klein, Tarjan 1995] 


•   time [Chazelle 2000] 


• Still open: Is there an   time deterministic algorithm in the comparison model?

O(n log n + m)
m O(n) ⊂(n log n)

O(m + n)
O(m log* m)
O(m + n)
O(m + n)
O((n + m)α(m, n))

O(n + m)
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