
Minimum spanning trees (MSTs)

All mistakes are my own! - Ivan Abraham (Fall 2024)

Sides based on material by Kani, Erickson, Chekuri, et. al.

Minimum Spanning Tree

 2

1 2

6 3

5

20

23 15

36

17 4

7
1 4

9

25 16 328

Minimum Spanning Tree

Input: Connected graph with edge costs G = (V, E)

 2

1 2

6 3

5

20

23 15

36

17 4

7
1 4

9

25 16 328

Minimum Spanning Tree

Input: Connected graph with edge costs G = (V, E)
Goal: Find such that is connected and total cost of all edges in is smallest T ⊆ E (V, T) T

 2

1 2

6 3

5

20

23 15

36

17 4

7
1 4

9

25 16 328

O

Minimum Spanning Tree

Input: Connected graph with edge costs

Goal: Find such that is connected and total cost of all edges in is smallest

 is the minimum spanning tree (MST) of .

G = (V, E)
T ⊆ E (V, T) T

T G

 3

1 2

6 3

5

20

23 15

36

17 4

7
1 4

9

25 16 328

-

Applications

 4

• Network design

Minimum Spanning Tree

Applications

 4

• Network design

• Designing networks with minimum cost but maximum connectivity

Minimum Spanning Tree

Applications

 4

• Network design

• Designing networks with minimum cost but maximum connectivity

• Cluster analysis

Minimum Spanning Tree

Applications

 4

• Network design

• Designing networks with minimum cost but maximum connectivity

• Cluster analysis

• Social networks, epidemiological networks, etc.

Minimum Spanning Tree

Applications

 4

• Network design

• Designing networks with minimum cost but maximum connectivity

• Cluster analysis

• Social networks, epidemiological networks, etc.

• Approximation algorithms

Minimum Spanning Tree

Applications

 4

• Network design

• Designing networks with minimum cost but maximum connectivity

• Cluster analysis

• Social networks, epidemiological networks, etc.

• Approximation algorithms

• Can be used to bound the optimality of algorithms to approximate
Traveling Salesman Problem, Steiner Trees, etc.

Minimum Spanning Tree

Spanning Trees
Basic properties

• Subgraph of is spanning for , if and have same connected components.H G G G H

 5

Spanning Trees
Basic properties

• Subgraph of is spanning for , if and have same connected components.H G G G H

• Tree: undirected graph in which any two vertices are connected by exactly one path
 a connected (undirected) graph with no cycles. ∼

 5

MSTS

as they rooted directed trees

relate &↳ arboresence .

to directed
greeping

Spanning Trees
Basic properties

• Subgraph of is spanning for , if and have same connected components.H G G G H

• Tree: undirected graph in which any two vertices are connected by exactly one path
 a connected (undirected) graph with no cycles. ∼

• Every tree has a leaf (i.e., vertex of degree one).

 5

Spanning Trees
Basic properties

• Subgraph of is spanning for , if and have same connected components.H G G G H

• Tree: undirected graph in which any two vertices are connected by exactly one path
 a connected (undirected) graph with no cycles. ∼

• Every tree has a leaf (i.e., vertex of degree one).

• A tree on a graph is spanning if includes every node of .T G T G

 5

Spanning Trees
Basic properties

• Subgraph of is spanning for , if and have same connected components.H G G G H

• Tree: undirected graph in which any two vertices are connected by exactly one path
 a connected (undirected) graph with no cycles. ∼

• Every tree has a leaf (i.e., vertex of degree one).

• A tree on a graph is spanning if includes every node of .T G T G

• Every spanning tree of a graph on nodes has edges.n n − 1

 5

O

↓
& E

Spanning Trees
Basic properties

• Subgraph of is spanning for , if and have same connected components.H G G G H

• Tree: undirected graph in which any two vertices are connected by exactly one path
 a connected (undirected) graph with no cycles. ∼

• Every tree has a leaf (i.e., vertex of degree one).

• A tree on a graph is spanning if includes every node of .T G T G

• Every spanning tree of a graph on nodes has edges.n n − 1

• A graph is connected it has a spanning tree. G ⟺

 5

Some history

The first algorithm for MST was first published in 1926 by Otakar Borůvka as a
method of constructing an efficient electricity network for Moravia. From his
memoirs:

 6

Minimum Spanning Tree

Some history

The first algorithm for MST was first published in 1926 by Otakar Borůvka as a
method of constructing an efficient electricity network for Moravia. From his
memoirs:

My studies at poly-technical schools made me feel very close to engineering sciences and made me fully appreciate
technical and other applications of mathematics. Soon after the end of World War I, at the beginning of the 192Os,
the Electric Power Company of Western Moravia, Brno, was engaged in rural electrification of Southern Moravia.
In the framework of my friendly relations with some of their employees, I was asked to solve, from a mathematical
standpoint, the question of the most economical construction of an electric power network. I succeeded in finding a
construction-as it would be expressed today-of a maximal(ly) connected subgraph of minimum length, which I
published in 1926 (i.e., at a time when the theory of graphs did not exist).

 6

Minimum Spanning Tree

Some history

The first algorithm for MST was first published in 1926 by Otakar Borůvka as a
method of constructing an efficient electricity network for Moravia. From his
memoirs:

My studies at poly-technical schools made me feel very close to engineering sciences and made me fully appreciate
technical and other applications of mathematics. Soon after the end of World War I, at the beginning of the 192Os,
the Electric Power Company of Western Moravia, Brno, was engaged in rural electrification of Southern Moravia.
In the framework of my friendly relations with some of their employees, I was asked to solve, from a mathematical
standpoint, the question of the most economical construction of an electric power network. I succeeded in finding a
construction-as it would be expressed today-of a maximal(ly) connected subgraph of minimum length, which I
published in 1926 (i.e., at a time when the theory of graphs did not exist).

There is some work in 1909 by a Polish anthropologist Jan Czekanowski on
clustering, which is a precursor to MST.

 6

Minimum Spanning Tree

Exchanging an edge in a spanning tree
Useful lemma

Let be a spanning tree of . Then,T = (V, ET) G = (V, E)

 7

Exchanging an edge in a spanning tree
Useful lemma

Let be a spanning tree of . Then,T = (V, ET) G = (V, E)

• For every non-tree edge there is a unique cycle in . e ∈ E\ET C T + e

 7

E setmin Et

↑

Exchanging an edge in a spanning tree
Useful lemma

Let be a spanning tree of . Then,T = (V, ET) G = (V, E)

• For every non-tree edge there is a unique cycle in . e ∈ E\ET C T + e

• For every edge , is another spanning tree of .f ∈ C − {e} T − f + e G

 7

A

Cuts
Definition

• Given a graph , a cut is a
partition of the vertices of the graph
into two sets .

G = (V, E)

(S, V∖S)

 8

S V∖S

vmods
.

↑

Cuts
Definition

• Given a graph , a cut is a
partition of the vertices of the graph
into two sets .

G = (V, E)

(S, V∖S)
• Edges having an endpoint on both

sides are the edges of the cut.

 8

S V∖Salso
ot

Cuts
Definition

• Given a graph , a cut is a
partition of the vertices of the graph
into two sets .

G = (V, E)

(S, V∖S)
• Edges having an endpoint on both

sides are the edges of the cut.

• A cut edge is crossing the cut.

 8

S V∖S

Safe and unsafe edges
Assumption: Edge costs are distinct, that is no two edge costs are equal.

Safe edge:

An edge is a safe edge if there is some partition of into and
and is the unique minimum cost edge crossing (one end in and the other
in).

e = (u, v) V S V \S
e S S

V \S

 9

Safe and unsafe edges
Assumption: Edge costs are distinct, that is no two edge costs are equal.

Safe edge:

An edge is a safe edge if there is some partition of into and
and is the unique minimum cost edge crossing (one end in and the other
in).

e = (u, v) V S V \S
e S S

V \S

 9

S V/S
13

7

3

5

11

Safe edge
Example

 10

S V/S
13

7

3

5

11

• Every cut identifies one safe edge …

Safe edge
Example

 10

S V/S
13

7

3

5

11

• Every cut identifies one safe edge …

• … the cheapest edge in the cut.

Safe edge
Example

 10

S V/S
13

7

3

5

11

Safe edge in the cut (S, V/S)

S V/S
13

7

3

5

11

• Every cut identifies one safe edge …

• … the cheapest edge in the cut.

• Note: An edge may be a safe edge
for many cuts!

e

Safe edge
Example

 10

S V/S
13

7

3

5

11

Safe edge in the cut (S, V/S)

jT

Safe and unsafe edges
Assumption: Edge costs are distinct, that is no two edge costs are equal.

Safe edge:

An edge is a safe edge if there is some partition of into and
and is the unique minimum cost edge crossing (one end in and the other
in).

e = (u, v) V S V \S
e S S

V \S

 11

Safe and unsafe edges
Assumption: Edge costs are distinct, that is no two edge costs are equal.

Safe edge:

An edge is a safe edge if there is some partition of into and
and is the unique minimum cost edge crossing (one end in and the other
in).

e = (u, v) V S V \S
e S S

V \S
Unsafe edge

An edge is an unsafe edge if there is some cycle such that is the
unique maximum cost edge in .

e = (u, v) C e
C

 11

5
7

2

15

3

Unsafe edge
Example

 12

5
7

2

15

3

Unsafe edge
Example

 12

• Every cycle identifies one unsafe
edge …

5
7

2

15

3

Unsafe edge
Example

 12

• Every cycle identifies one unsafe
edge …

• … the most expensive edge in the
cycle.

5
7

2

15

3

Safe and unsafe edges
Assumption: Edge costs are distinct
Proposition: Every edge is either safe or unsafe

Proof: Consider any edge . Let e = uv
G<w(e) = (V, {xy ∈ E |w(xy) < w(e)})

 13

Safe and unsafe edges
Assumption: Edge costs are distinct
Proposition: Every edge is either safe or unsafe

Proof: Consider any edge . Let e = uv
G<w(e) = (V, {xy ∈ E |w(xy) < w(e)})
• If in same connected component of , then

contains a cycle where is most expensive is unsafe.
x, y G<w(e) G<w(e) + e

e ⟹ e

 13

e
To

1):.... O

- -30
⑭

Safe and unsafe edges
Assumption: Edge costs are distinct
Proposition: Every edge is either safe or unsafe

Proof: Consider any edge . Let e = uv
G<w(e) = (V, {xy ∈ E |w(xy) < w(e)})
• If in same connected component of , then

contains a cycle where is most expensive is unsafe.
x, y G<w(e) G<w(e) + e

e ⟹ e

• If and are in different connected components of , let
be the vertices of connected component of containing .
The edge is cheapest edge in cut is safe.

x y G<w(e) S
G<w(e) x

e (S, V \S) ⟹ e

 13

i

·
&

U -

*

-

1 2

6 3

5

20

23 15

36

17 4

7
1 4

9

25 16 328

Example

Figure 1: Graph with unique edge costs.

 14

1 2

6 3

5

20

23 15

36

17 4

7
1 4

9

25 16 328

1 2

6 3

5

20

23 15

36

17 4

7
1 4

9

25 16 328

Example

Figure 1: Graph with unique edge costs.

Safe edges are red, rest are unsafe.

 14

1 2

6 3

5

20

23 15

36

17 4

7
1 4

9

25 16 328

1 2

6 3

5

20

23 15

36

17 4

7
1 4

9

25 16 328

Example

Figure 1: Graph with unique edge costs.

Safe edges are red, rest are unsafe.

And all safe edges are in the MST in this case …
 14

-

Why do we care about safety?

 15

Why do we care about safety?

Lemma: (a) If is a safe edge then every minimum spanning tree contains
and (b) if is an unsafe edge then no MST of contains .

e e
e G e

 15

Why do we care about safety?

Lemma: (a) If is a safe edge then every minimum spanning tree contains
and (b) if is an unsafe edge then no MST of contains .

e e
e G e

• Many different MST algorithms

 15

Why do we care about safety?

Lemma: (a) If is a safe edge then every minimum spanning tree contains
and (b) if is an unsafe edge then no MST of contains .

e e
e G e

• Many different MST algorithms

• All of them rely on some basic properties of MSTs, in particular the Cut
Property (part one of the lemma).

 15

Why do we care about safety?

Lemma: (a) If is a safe edge then every minimum spanning tree contains
and (b) if is an unsafe edge then no MST of contains .

e e
e G e

• Many different MST algorithms

• All of them rely on some basic properties of MSTs, in particular the Cut
Property (part one of the lemma).

• Part two of the lemma is called the Cycle Property.

 15

Key observation
Cut property

Lemma: If is a safe edge then every minimum spanning tree contains .e e

Proof: Suppose (for contradiction) is not in MST . e T

 16

Key observation
Cut property

Lemma: If is a safe edge then every minimum spanning tree contains .e e

Proof: Suppose (for contradiction) is not in MST . e T

• Since is safe there is an such that is the unique min cost edge
crossing .

e S ⊂ V e
S

 16

Key observation
Cut property

Lemma: If is a safe edge then every minimum spanning tree contains .e e

Proof: Suppose (for contradiction) is not in MST . e T

• Since is safe there is an such that is the unique min cost edge
crossing .

e S ⊂ V e
S

• Since is connected, there must be some edge with one end in and the
other in

T f S
V \S

 16

Key observation
Cut property

Lemma: If is a safe edge then every minimum spanning tree contains .e e

Proof: Suppose (for contradiction) is not in MST . e T

• Since is safe there is an such that is the unique min cost edge
crossing .

e S ⊂ V e
S

• Since is connected, there must be some edge with one end in and the
other in

T f S
V \S

• Since is a spanning tree of lower cost!cf > ce, T′ = (T \{f}) ∪ {e}
 16

Key observation
Cut property

Lemma: If is a safe edge then every minimum spanning tree contains .e e

Proof: Suppose (for contradiction) is not in MST . e T

• Since is safe there is an such that is the unique min cost edge
crossing .

e S ⊂ V e
S

• Since is connected, there must be some edge with one end in and the
other in

T f S
V \S

• Since is a spanning tree of lower cost!cf > ce, T′ = (T \{f}) ∪ {e}
 16

Is the proof correct?

↓
problem : Didn't
show Th is

a

spameg
tree.

Problematic example. , , . is not a spanning treeS = {1,2,7} e = (7,3) f = (1,6) T − f + e

 17

(D)

Error in proof …

1 2

6 3

5

20
23

15

36

17 4

7
1 4

9

25 16 328

-

Problematic example. , , . is not a spanning treeS = {1,2,7} e = (7,3) f = (1,6) T − f + e

 17

(A) Consider adding the edge to MST.e

(D)

Error in proof …

e

1 2

6 3

5

20
23

15

36

17 4

7
1 4

9

25 16 328

-

Problematic example. , , . is not a spanning treeS = {1,2,7} e = (7,3) f = (1,6) T − f + e

 17

(A) Consider adding the edge to MST.e
(B) It is safe because it is the cheapest edge in

the cut.

(D)

Error in proof …

e

1 2

6 3

5

20
23

15

36

17 4

7
1 4

9

25 16 328

-

Problematic example. , , . is not a spanning treeS = {1,2,7} e = (7,3) f = (1,6) T − f + e

 17

(A) Consider adding the edge to MST.e
(B) It is safe because it is the cheapest edge in

the cut.

(C) Lets throw out the edge currently in the
spanning tree which is more expensive than
and is in the same cut. Put in instead.

f
e

e
(D)

Error in proof …

e

1 2

6 3

5

20
23

15

36

17 4

7
1 4

9

25 16 328

f

-

-

Problematic example. , , . is not a spanning treeS = {1,2,7} e = (7,3) f = (1,6) T − f + e

 17

(A) Consider adding the edge to MST.e
(B) It is safe because it is the cheapest edge in

the cut.

(C) Lets throw out the edge currently in the
spanning tree which is more expensive than
and is in the same cut. Put in instead.

f
e

e
(D)

Error in proof …

e

1 2

6 3

5

20

15

36

17 4

7
1 4

9

25 16 328

Problematic example. , , . is not a spanning treeS = {1,2,7} e = (7,3) f = (1,6) T − f + e

 17

(A) Consider adding the edge to MST.e
(B) It is safe because it is the cheapest edge in

the cut.

(C) Lets throw out the edge currently in the
spanning tree which is more expensive than
and is in the same cut. Put in instead.

f
e

e
(D) New graph of selected edges is not a tree!

(D)

Error in proof …

e

1 2

6 3

5

20

15

36

17 4

7
1 4

9

25 16 328

O

Proof of Cut Property

 18

1. Suppose is not in MST and is min
weight edge in cut . Assume . It is
safe because it is the cheapest edge in the cut.

e = (v, w) T e
(S, V \S) v ∈ S1 2

6 3

5

20

23 15

36

17 4

7
1 4

9

25 16 328

e
v w

Proof of Cut Property

 18

1. Suppose is not in MST and is min
weight edge in cut . Assume . It is
safe because it is the cheapest edge in the cut.

e = (v, w) T e
(S, V \S) v ∈ S

2. is spanning tree: there is a unique path from to
 in .

T P v
w T

1 2

6 3

5

20

23 15

36

17 4

7
1 4

9

25 16 328

P
-

Proof of Cut Property

 18

1. Suppose is not in MST and is min
weight edge in cut . Assume . It is
safe because it is the cheapest edge in the cut.

e = (v, w) T e
(S, V \S) v ∈ S

2. is spanning tree: there is a unique path from to
 in .

T P v
w T

3. Let be the first vertex in belonging to ; let
be the vertex just before it on , and let

w′ P V \S v′

P e′ = (v′ , w′)

1 2

6 3

5

20

23 15

36

17 4

7
1 4

9

25 16 328

e

vl

Ed

6

Proof of Cut Property

 18

1. Suppose is not in MST and is min
weight edge in cut . Assume . It is
safe because it is the cheapest edge in the cut.

e = (v, w) T e
(S, V \S) v ∈ S

2. is spanning tree: there is a unique path from to
 in .

T P v
w T

3. Let be the first vertex in belonging to ; let
be the vertex just before it on , and let

w′ P V \S v′

P e′ = (v′ , w′)
4. is spanning tree of lower cost.

(Why?)
T′ = (T \{e′ }) ∪ {e}

1 2

6 3

5

20

23 15

36

17 4

7
1 4

9

25 16 328

Del
O

↳ Tree not minue to

begin wor so contraction

(contd)

Observation: is a spanning tree.T′ = (T \{e′ }) ∪ {e}

 19

Proof of Cut Property

(contd)

Observation: is a spanning tree.T′ = (T \{e′ }) ∪ {e}
Proof: is connectedT′

 19

Proof of Cut Property

(contd)

Observation: is a spanning tree.T′ = (T \{e′ }) ∪ {e}
Proof: is connectedT′

Removed from but and are connected by the path
 in . Hence is connected if is.
e′ = (v′ , w′) T v′ w′

P − f + e T′ T′ T

 19

Proof of Cut Property

(contd)

Observation: is a spanning tree.T′ = (T \{e′ }) ∪ {e}
Proof: is connectedT′

Removed from but and are connected by the path
 in . Hence is connected if is.
e′ = (v′ , w′) T v′ w′

P − f + e T′ T′ T

Proof: is a treeT′

 19

Proof of Cut Property

(contd)

Observation: is a spanning tree.T′ = (T \{e′ }) ∪ {e}
Proof: is connectedT′

Removed from but and are connected by the path
 in . Hence is connected if is.
e′ = (v′ , w′) T v′ w′

P − f + e T′ T′ T

Proof: is a treeT′

 is connected and has edges (since had edges) and hence
is a tree.
T′ n − 1 T n − 1 T′

 19

Proof of Cut Property

Safe edges form a connected graph

Lemma: Let be a connected graph with distinct edge costs, then the set of
safe edges form a connected graph.

G

Proof:

 20

Safe edges form a connected graph

Lemma: Let be a connected graph with distinct edge costs, then the set of
safe edges form a connected graph.

G

Proof:

• Suppose not. Let be a connected component in the graph induced by the
safe edges.

S

 20

Safe edges form a connected graph

Lemma: Let be a connected graph with distinct edge costs, then the set of
safe edges form a connected graph.

G

Proof:

• Suppose not. Let be a connected component in the graph induced by the
safe edges.

S

• Consider the edges crossing , there must be a safe edge among them since
edge costs are distinct and so we must have picked it.

S

 20

Safe edges, cycles and MST

Lemma: Let be a connected graph with distinct edge costs, then the set of
safe edges does not contain a cycle.

G

 21

Safe edges, cycles and MST

Lemma: Let be a connected graph with distinct edge costs, then the set of
safe edges does not contain a cycle.

G

Corollary: Let be a connected graph with distinct edge costs, then set of
safe edges form the unique MST of .

G
G

 21

Safe edges, cycles and MST

Lemma: Let be a connected graph with distinct edge costs, then the set of
safe edges does not contain a cycle.

G

Corollary: Let be a connected graph with distinct edge costs, then set of
safe edges form the unique MST of .

G
G

Consequence: Every correct MST algorithm when has unique edge costs
includes exactly the safe edges.

G

 21

Borůvka’s Algorithm

Simplest to implement. Assume is a connected graph.G

 22

Borůvka’s Algorithm

Simplest to implement. Assume is a connected graph.G

 22

T is ∅ (* T will store edges of a MST *)

while T is not spanning do
X ← ∅
for each connected component S of T do

add to X the cheapest edge between S and V\S
Add edges in X to T

return the set T

 23

Borůvka’s Algorithm

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328

 23

Borůvka’s Algorithm

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328

Initialize: All vertices are singleton
connected components.

 23

Borůvka’s Algorithm

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328

Initialize: All vertices are singleton
connected components.

Heuristic: Each vertex tries to expand its
“network” (connected component) by
gaining the “least expensive friend.”

 23

Borůvka’s Algorithm

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328

Initialize: All vertices are singleton
connected components.

Heuristic: Each vertex tries to expand its
“network” (connected component) by
gaining the “least expensive friend.”

Iterate until a spanning tree is formed.

 23

Borůvka’s Algorithm

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328

Initialize: All vertices are singleton
connected components.

Heuristic: Each vertex tries to expand its
“network” (connected component) by
gaining the “least expensive friend.”

Iterate until a spanning tree is formed.

↑
-I

 24

Borůvka’s Algorithm

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328

 25

Borůvka’s Algorithm

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328 3,4,5

1,2,6,7

9

 26

Borůvka’s Algorithm

3,4,5

1,2,6,7

9

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328

 27

Borůvka’s Algorithm

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16
328

T is ∅ (* T will store edges of a MST *)
while T is not spanning do

X ← ∅
for each connected component S of T
do

add to X the cheapest edge
between S and V\S

Add edges in X to T
return the set T

Implementing Borůvka’s Algorithm

 28

• iterations of while loop.
Why?
O(log n)

T is ∅ (* T will store edges of a MST *)
while T is not spanning do

X ← ∅
for each connected component S of T
do

add to X the cheapest edge
between S and V\S

Add edges in X to T
return the set T

Implementing Borůvka’s Algorithm

 28

• iterations of while loop.
Why?
O(log n)

• Number of connected
components shrink by at least
half since each component
merges with one or more other
components.

T is ∅ (* T will store edges of a MST *)
while T is not spanning do

X ← ∅
for each connected component S of T
do

add to X the cheapest edge
between S and V\S

Add edges in X to T
return the set T

Implementing Borůvka’s Algorithm

 28

• iterations of while loop.
Why?
O(log n)

• Number of connected
components shrink by at least
half since each component
merges with one or more other
components.

• Each iteration can be
implemented in time.O(m)

T is ∅ (* T will store edges of a MST *)
while T is not spanning do

X ← ∅
for each connected component S of T
do

add to X the cheapest edge
between S and V\S

Add edges in X to T
return the set T

Implementing Borůvka’s Algorithm

 28

• iterations of while loop.
Why?
O(log n)

• Number of connected
components shrink by at least
half since each component
merges with one or more other
components.

• Each iteration can be
implemented in time.O(m)

• Running time: timeO(m log n)

T is ∅ (* T will store edges of a MST *)
while T is not spanning do

X ← ∅
for each connected component S of T
do

add to X the cheapest edge
between S and V\S

Add edges in X to T
return the set T

Mininimum Spanning Trees
Greedy template

 29

Initially E is the set of all edges in G

T is empty (*T will store edges of a MST*)

while E is not empty do
choose e E
if (e satisfies condition)
add e to T

return the set T

∈

- -> remove e famE

Mininimum Spanning Trees
Greedy template

• In what order should the
edges be processed?

 29

Initially E is the set of all edges in G

T is empty (*T will store edges of a MST*)

while E is not empty do
choose e E
if (e satisfies condition)
add e to T

return the set T

∈

Mininimum Spanning Trees
Greedy template

• In what order should the
edges be processed?

• When should we add
edget to spanning tree?

 29

Initially E is the set of all edges in G

T is empty (*T will store edges of a MST*)

while E is not empty do
choose e E
if (e satisfies condition)
add e to T

return the set T

∈
-

Mininimum Spanning Trees
Greedy template

• In what order should the
edges be processed?

• When should we add
edget to spanning tree?

 29

Initially E is the set of all edges in G

T is empty (*T will store edges of a MST*)

while E is not empty do
choose e E
if (e satisfies condition)
add e to T

return the set T

∈

Mininimum Spanning Trees
Greedy template

• In what order should the
edges be processed?

• When should we add
edget to spanning tree?

• Leads to Kruskal’s and
Prim’s algorithms.

 29

Initially E is the set of all edges in G

T is empty (*T will store edges of a MST*)

while E is not empty do
choose e E
if (e satisfies condition)
add e to T

return the set T

∈

Kruskal’s Algorithm
Process edges in the order of their costs (starting from the least) and add edges
to as long as they don’t form a cycle.T

 30

1 2

6 3

5

20

23 15

36

17 4

7
1 4

9

25 16 328

Graph G

Kruskal’s Algorithm
Process edges in the order of their costs (starting from the least) and add edges
to as long as they don’t form a cycle.T

 30

1 2

6 3

5

20

23 15

36

17 4

7
1 4

9

25 16 328

Graph G

1 2

6 3

5 4

7

MST of G

Kruskal’s Algorithm

 31

1 2

6 3

5

20

23 15

36

17 4

7
1 4

9

25 16 328

Graph G

1 2

6 3

5 4

7

MST of G

1

Process edges in the order of their costs (starting from the least) and add edges
to as long as they don’t form a cycle.T

Kruskal’s Algorithm

 32

1 2

6 3

5

20

23 15

36

17 4

7
1 4

9

25 16 328

Graph G

1 2

6 3

5 4

7

MST of G

3

1

Process edges in the order of their costs (starting from the least) and add edges
to as long as they don’t form a cycle.T

Kruskal’s Algorithm

 33

1 2

6 3

5

20

23 15

36

17 4

7
1 4

9

25 16 328

Graph G

1 2

6 3

5 4

7

MST of G

3

1 4

Process edges in the order of their costs (starting from the least) and add edges
to as long as they don’t form a cycle.T

Kruskal’s Algorithm

 34

1 2

6 3

5

20

23 15

36

17 4

7
1 4

9

25 16 328

Graph G

1 2

6 3

5 4

7

MST of G

3

1 4

9

Process edges in the order of their costs (starting from the least) and add edges
to as long as they don’t form a cycle.T

Kruskal’s Algorithm

 35

1 2

6 3

5

20

23 15

36

17 4

7
1 4

9

25 16 328

Graph G

1 2

6 3

5 4

7

MST of G

3

1 4

9

15

Process edges in the order of their costs (starting from the least) and add edges
to as long as they don’t form a cycle.T

Kruskal’s Algorithm

 36

1 2

6 3

5

20

23 15

36

17 4

7
1 4

9

25 16 328

Graph G

1 2

6 3

5 4

7

MST of G

3

1 4

9

Process edges in the order of their costs (starting from the least) and add edges
to as long as they don’t form a cycle.T

Kruskal’s Algorithm

 37

1 2

6 3

5

20

23 15

36

17 4

7
1 4

9

25 16 328

Graph G

1 2

6 3

5 4

7

MST of G

3

1 4

9

Process edges in the order of their costs (starting from the least) and add edges
to as long as they don’t form a cycle.T

Kruskal’s Algorithm

 39

1 2

6 3

5

20

23 15

36

17 4

7
1 4

9

25 16 328

Graph G

1 2

6 3

5 4

7

MST of G

3

1 4

9

Process edges in the order of their costs (starting from the least) and add edges
to as long as they don’t form a cycle.T

Correctness of Kruskal’s Algorithm
Kruskal’s Algorithm: Picking the edge of lowest cost and adding if it does not
form a cycle with existing edges generates a MST.

Proof: If is added to tree, then is safe

• When algorithm adds let and be the connected components containing
 and respectively

• is the lowest cost edge crossing (and also).

• If there is an edge crossing and has lower cost than , then would
come before in the sorted order and would be added by the algorithm to

• Set of edges output is a spanning tree

e = (u, v) e

e S S⊆

u v

e S S⊆

e⊆ S e e⊆

e T

 40

 41

Kruskal’s Algorithm
Kruskal_ComputeMST

Initially E is the set of all edges in G
T is empty (* T will store edges of a MST *)
while E is not empty do

choose e E of minimum cost
remove e from E
if (T ∪ {e} does not have cycles)
add e to T

return the set T

∼

I answered a student question

incorrectly in class .
Faizi asked

"Why out we store a
list of

vertices from elses
added to

Tm a list Land check for a

cele from
an incoming edge

quivy by seeing of
UEL

,
+L

.

"

Because : 1= 11 , 2 , 3 , 4 , 5, 7,8]

See f us e .itedetective 2 3
-

I
· f
4t
go

• Presort edges based on cost. Choosing minimum can be done in time

• Do BFS/DFS on . Takes time

• Total time

O(1)
T − {e} O(n)

O(m log m) + O(mn) = O(mn)
 41

Kruskal’s Algorithm
Kruskal_ComputeMST

Initially E is the set of all edges in G
T is empty (* T will store edges of a MST *)
while E is not empty do

choose e E of minimum cost
remove e from E
if (T ∪ {e} does not have cycles)
add e to T

return the set T

∼

 42

Kruskal’s Algorithm (efficiently)
Kruskal_ComputeMST

Sort edges in E based on cost
T is empty (* T will store edges of a MST *)
each vertex u is placed in a set by itself
while E is not empty do

pick e = (u,v) E of minimum cost
if u and v belong to different sets
add e to T
merge the sets containing u and v

return the set T

∼

• Need a data structure to check if two elements belong to same set and to merge two sets.

• Using Union-Find (disjoint-set) data structure can implement Kruskal’s algorithm in
 time.O((m + n)log m)-

Prim’s algorithm
 maintained by algorithm will be a tree. Start with a node in . In each iteration, pick
edge with least attachment cost to .
T T

T

 43

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16 328

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16 328

-

Prim’s algorithm

 44

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16 328

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16 328

 maintained by algorithm will be a tree. Start with a node in . In each iteration, pick
edge with least attachment cost to .
T T

T

Prim’s algorithm

 45

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16 328

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16 328

 maintained by algorithm will be a tree. Start with a node in . In each iteration, pick
edge with least attachment cost to .
T T

T

Prim’s algorithm

 46

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16 328

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16 328

 maintained by algorithm will be a tree. Start with a node in . In each iteration, pick
edge with least attachment cost to .
T T

T

Prim’s algorithm

 47

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16 328

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16 328

 maintained by algorithm will be a tree. Start with a node in . In each iteration, pick
edge with least attachment cost to .
T T

T

Prim’s algorithm

 48

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16 328

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16 328

 maintained by algorithm will be a tree. Start with a node in . In each iteration, pick
edge with least attachment cost to .
T T

T

Prim’s algorithm

 49

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16 328

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16 328

 maintained by algorithm will be a tree. Start with a node in . In each iteration, pick
edge with least attachment cost to .
T T

T

Prim’s algorithm

 50

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16 328

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16 328

 maintained by algorithm will be a tree. Start with a node in . In each iteration, pick
edge with least attachment cost to .
T T

T

Prim’s algorithm

 51

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16 328

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16 328

 maintained by algorithm will be a tree. Start with a node in . In each iteration, pick
edge with least attachment cost to .
T T

T

Prim’s algorithm

 52

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16 328

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16 328

 maintained by algorithm will be a tree. Start with a node in . In each iteration, pick
edge with least attachment cost to .
T T

T

Prim’s algorithm

 53

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16 328

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16 328

 maintained by algorithm will be a tree. Start with a node in . In each iteration, pick
edge with least attachment cost to .
T T

T

Prim’s algorithm

 54

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16 328

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16 328

 maintained by algorithm will be a tree. Start with a node in . In each iteration, pick
edge with least attachment cost to .
T T

T

Prim’s algorithm

 55

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16 328

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16 328

 maintained by algorithm will be a tree. Start with a node in . In each iteration, pick
edge with least attachment cost to .
T T

T

Prim’s algorithm

 56

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16 328

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16 328

 maintained by algorithm will be a tree. Start with a node in . In each iteration, pick
edge with least attachment cost to .
T T

T

Prim’s algorithm

 57

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16 328

1 2

6 3

5

20

23 15

36

17 4

7

1 4

9

25 16 328

 maintained by algorithm will be a tree. Start with a node in . In each iteration, pick
edge with least attachment cost to .
T T

T

Correctness of Prim’s Algorithm

Prim’s Algorithm: Picking edge with minimum attachment cost to current tree, and
adding to current tree generates a MST.

Proof: If is added to tree, then is safe and belongs to every MST. e e

 58

Correctness of Prim’s Algorithm

Prim’s Algorithm: Picking edge with minimum attachment cost to current tree, and
adding to current tree generates a MST.

Proof: If is added to tree, then is safe and belongs to every MST. e e

• Let be the vertices connected by edges in when is added. S T e

 58

Correctness of Prim’s Algorithm

Prim’s Algorithm: Picking edge with minimum attachment cost to current tree, and
adding to current tree generates a MST.

Proof: If is added to tree, then is safe and belongs to every MST. e e

• Let be the vertices connected by edges in when is added. S T e

• is edge of lowest cost with one end in and the other in and hence is safe. e S V \S e

 58

Correctness of Prim’s Algorithm

Prim’s Algorithm: Picking edge with minimum attachment cost to current tree, and
adding to current tree generates a MST.

Proof: If is added to tree, then is safe and belongs to every MST. e e

• Let be the vertices connected by edges in when is added. S T e

• is edge of lowest cost with one end in and the other in and hence is safe. e S V \S e
• Set of edges output is a spanning tree

 58

Correctness of Prim’s Algorithm

Prim’s Algorithm: Picking edge with minimum attachment cost to current tree, and
adding to current tree generates a MST.

Proof: If is added to tree, then is safe and belongs to every MST. e e

• Let be the vertices connected by edges in when is added. S T e

• is edge of lowest cost with one end in and the other in and hence is safe. e S V \S e
• Set of edges output is a spanning tree

• Set of edges output forms a connected graph: by induction, is connected in each
iteration and eventually .

S
S = V

 58

Correctness of Prim’s Algorithm

Prim’s Algorithm: Picking edge with minimum attachment cost to current tree, and
adding to current tree generates a MST.

Proof: If is added to tree, then is safe and belongs to every MST. e e

• Let be the vertices connected by edges in when is added. S T e

• is edge of lowest cost with one end in and the other in and hence is safe. e S V \S e
• Set of edges output is a spanning tree

• Set of edges output forms a connected graph: by induction, is connected in each
iteration and eventually .

S
S = V

• Only safe edges added and they do not have a cycle
 58

Implementing Prim’s Algorithm

Analysis

 59

Prim_ComputeMST
E is the set of all edges in G
S = {1}
T is empty (* T will store edges of a MST *)
while S V do

pick e =(v,w) E such that
v ∈ S and w ∈ V\S
e has minimum cost

T = T e
S = S w

return the set T

⟺
∼

−
−

Implementing Prim’s Algorithm

Analysis

• Number of iterations =
, where is number of

vertices
O(n) n

 59

Prim_ComputeMST
E is the set of all edges in G
S = {1}
T is empty (* T will store edges of a MST *)
while S V do

pick e =(v,w) E such that
v ∈ S and w ∈ V\S
e has minimum cost

T = T e
S = S w

return the set T

⟺
∼

−
−

Implementing Prim’s Algorithm

Analysis

• Number of iterations =
, where is number of

vertices
O(n) n

• Picking is where
is the number of edges

e O(m) m

 59

Prim_ComputeMST
E is the set of all edges in G
S = {1}
T is empty (* T will store edges of a MST *)
while S V do

pick e =(v,w) E such that
v ∈ S and w ∈ V\S
e has minimum cost

T = T e
S = S w

return the set T

⟺
∼

−
−

Implementing Prim’s Algorithm

Analysis

• Number of iterations =
, where is number of

vertices
O(n) n

• Picking is where
is the number of edges

e O(m) m

• Total time O(nm)

 59

Prim_ComputeMST
E is the set of all edges in G
S = {1}
T is empty (* T will store edges of a MST *)
while S V do

pick e =(v,w) E such that
v ∈ S and w ∈ V\S
e has minimum cost

T = T e
S = S w

return the set T

⟺
∼

−
−

MST algorithm for negative
weights, and non-distinct costs

 60

When edge costs are not distinct

Heuristic argument: Make edge costs distinct by adding a small tiny and different cost to
each edge

 61

-

When edge costs are not distinct

Heuristic argument: Make edge costs distinct by adding a small tiny and different cost to
each edge

Formal argument: Order edges lexicographically to break ties

 61

When edge costs are not distinct

Heuristic argument: Make edge costs distinct by adding a small tiny and different cost to
each edge

Formal argument: Order edges lexicographically to break ties

• if either or (and) ei ∈ ej c(ei) < c(ej) c(ei) = c(ej) i < j

 61

-

When edge costs are not distinct

Heuristic argument: Make edge costs distinct by adding a small tiny and different cost to
each edge

Formal argument: Order edges lexicographically to break ties

• if either or (and) ei ∈ ej c(ei) < c(ej) c(ei) = c(ej) i < j

• Lexicographic ordering extends to sets of edges. If , then if
either or (and has a lower indexed edge than).

A, B ⟹ E A ⟺ B A ∈ B
c(A) < c(B) c(A) = c(B) A\B B\A

 61

When edge costs are not distinct

Heuristic argument: Make edge costs distinct by adding a small tiny and different cost to
each edge

Formal argument: Order edges lexicographically to break ties

• if either or (and) ei ∈ ej c(ei) < c(ej) c(ei) = c(ej) i < j

• Lexicographic ordering extends to sets of edges. If , then if
either or (and has a lower indexed edge than).

A, B ⟹ E A ⟺ B A ∈ B
c(A) < c(B) c(A) = c(B) A\B B\A

• Can order all spanning trees according to lexicographic order of their edge sets. Hence
there is a unique MST.

 61

-

When edge costs are not distinct

Heuristic argument: Make edge costs distinct by adding a small tiny and different cost to
each edge

Formal argument: Order edges lexicographically to break ties

• if either or (and) ei ∈ ej c(ei) < c(ej) c(ei) = c(ej) i < j

• Lexicographic ordering extends to sets of edges. If , then if
either or (and has a lower indexed edge than).

A, B ⟹ E A ⟺ B A ∈ B
c(A) < c(B) c(A) = c(B) A\B B\A

• Can order all spanning trees according to lexicographic order of their edge sets. Hence
there is a unique MST.

Prim’s and Kruskal’s Algorithms are optimal with respect to lexicographic ordering.
 61

-

Edge Costs: Positive and Negative

 62

Edge Costs: Positive and Negative

• Algorithms and proofs don’t assume that edge costs are non-negative! MST
algorithms work for arbitrary edge costs.

 62

Edge Costs: Positive and Negative

• Algorithms and proofs don’t assume that edge costs are non-negative! MST
algorithms work for arbitrary edge costs.

• Another way to see this: make edge costs non-negative by adding to each
edge a large enough positive number. Why does this work for MSTs but not
for shortest paths?

 62

Edge Costs: Positive and Negative

• Algorithms and proofs don’t assume that edge costs are non-negative! MST
algorithms work for arbitrary edge costs.

• Another way to see this: make edge costs non-negative by adding to each
edge a large enough positive number. Why does this work for MSTs but not
for shortest paths?

• Can compute maximum weight spanning tree by negating edge costs and
then computing an MST.

 62

Edge Costs: Positive and Negative

• Algorithms and proofs don’t assume that edge costs are non-negative! MST
algorithms work for arbitrary edge costs.

• Another way to see this: make edge costs non-negative by adding to each
edge a large enough positive number. Why does this work for MSTs but not
for shortest paths?

• Can compute maximum weight spanning tree by negating edge costs and
then computing an MST.

Question: Why does this not work for shortest paths?

 62

MST: An epilogue
Best Known Asymptotic Running Times for MST

Prim’s algorithm using Fibonacci heaps: .

If is then running time is .

Question: Is there a linear time (time) algorithm for MST?

• time [Fredman and Tarjan 1987]

• time using bit operations in RAM model [Fredman, Willard 1994]

• expected time (randomized algorithm) [Karger, Klein, Tarjan 1995]

• time [Chazelle 2000]

• Still open: Is there an time deterministic algorithm in the comparison model?

O(n log n + m)
m O(n) ⊂(n log n)

O(m + n)
O(m log* m)
O(m + n)
O(m + n)
O((n + m)α(m, n))

O(n + m)
 63

we discussed

Kosanago's

↑
& same guy known for strongly

connected

& component
algorithm

-

