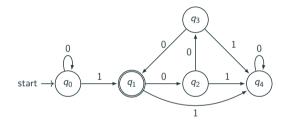
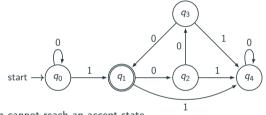
ECE-374-B: Lecture 19 - Reductions

Lecturer: Nickvash Kani

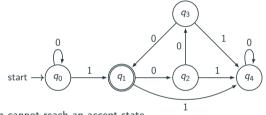
University of Illinois at Urbana-Champaign





Couple methods:

- Eliminate states which cannot reach an accept state.
- Run DFS with pre-post numbering
- Find all the backedges. Backedges form cycle.
- Use pre/post numbering to find if accept state is within cycle.
- If so, the language is infinite



Couple methods:

- Eliminate states which cannot reach an accept state.
- Run DFS with pre-post numbering
- Find all the backedges. Backedges form cycle.
- Use pre/post numbering to find if accept state is within cycle.
- If so, the language is infinite

Bigger point: [Infinite?] problem reduces to [Find cycle]!

Last part of the course!

Finishing touches!

- Part I: models of computation (reg exps, DFA/NFA, CFGs, TMs)
- Part II: (efficient) algorithm design
- Part III: intractability via reductions
 - Undecidablity: problems that have no algorithms
 - NP-Completeness: problems unlikely to have efficient algorithms unless *P* = *NP*

Turing defined TMs as a machine model of computation

Church-Turing thesis: any function that is computable can be computed by TMs

Efficient Church-Turing thesis: any function that is computable can be computed by TMs with only a polynomial slow-down

Computability and Complexity Theory

- What functions can and cannot be computed by TMs?
- What functions/problems can and cannot be solved efficiently?

Why?

- Foundational questions about computation
- Pragmatic: Can we solve our problem or not?
- Are we not being clever enough to find an efficient algorithm or should we stop because there isn't one or likely to be one?

A general methodology to prove impossibility results.

- Start with some known hard problem X
- <u>Reduce</u> X to your favorite problem Y

If Y can be solved then so can $X \Rightarrow Y$. But we know X is hard to Y has to be hard too.

Caveat: In algorithms we reduce new problem to known solved one!

Who gives us the initial hard problem?

- Some clever person (Cantor/Gödel/Turing/Cook/Levin ...) who establish hardness of a fundamental problem
- Assume some core problem is hard because we haven't been able to solve it for a long time. This leads to conditional results

A general methodology to prove impossibility results.

- Start with some known hard problem X
- <u>Reduce</u> X to your favorite problem Y

If Y can be solved then so can $X \Rightarrow Y$ is also hard

What if we want to prove a problem is easy?

When proving hardness we limit attention to decision problems

- A decision problem Π is a collection of instances (strings)
- For each instance I of Π , answer is YES or NO
- Equivalently: boolean function f_Π : Σ* → {0,1} where f(I) = 1 if I is a YES instance, f(I) = 0 if NO instance
- Equivalently: language $L_{\Pi} = \{I \mid I \text{ is a YES instance}\}$

When proving hardness we limit attention to decision problems

- A decision problem Π is a collection of instances (strings)
- For each instance I of Π , answer is YES or NO
- Equivalently: boolean function $f_{\Pi} : \Sigma^* \to \{0,1\}$ where f(I) = 1 if I is a YES instance, f(I) = 0 if NO instance
- Equivalently: language $L_{\Pi} = \{I \mid I \text{ is a YES instance}\}$

Notation about encoding: distinguish *I* from encoding $\langle I \rangle$

- n is an integer. (n) is the encoding of n in some format (could be unary, binary, decimal etc)
- G is a graph. $\langle G \rangle$ is the encoding of G in some format
- *M* is a TM. (*M*) is the encoding of TM as a string according to some fixed convention

Aside: Different problems can be formulated differently. Example: Traveling Salesman

- **Common Formulation:** Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?
- **Decision Formulation:** Given a list of cities and the distances between each pair of cities, is there a route route that visits each city exactly once and returns to the origin city while having a shorter length than integer <u>k</u>.

Examples

- Given directed graph G, is it strongly connected? (G) is a YES instance if it is, otherwise NO instance
- Given number *n*, is it a prime number? $L_{PRIMES} = \{ \langle n \rangle \mid n \text{ is prime} \}$
- Given number n is it a composite number?
 L_{COMPOSITE} = { (n) | n is a composite }
- Given G = (V, E), s, t, B is the shortest path distance from s to t at most B? Instance is ⟨G, s, t, B⟩

Reductions: Overview

Reductions for decision problems languages

For languages L_X, L_Y , a reduction from L_X to L_Y is:

- An algorithm ...
- Input: $w \in \Sigma^*$
- Output: $w' \in \Sigma^*$
- Such that:

$$w \in L_X \iff w' \in L_Y$$

Reductions for decision problems/languages

For decision problems X, Y, a reduction from X to Y is:

- An algorithm ...
- Input: I_X , an instance of X.
- Output: I_Y an instance of Y.
- Such that:

 I_Y is YES instance of $Y \iff I_X$ is YES instance of X

Using reductions to solve problems

- \mathcal{R} : Reduction $X \to Y$
- \mathcal{A}_Y : algorithm for Y:

Using reductions to solve problems

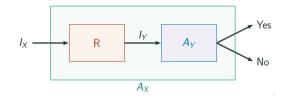
- \mathcal{R} : Reduction $X \to Y$
- \mathcal{A}_Y : algorithm for Y:
- \implies New algorithm for X:

 $\mathcal{A}_X(I_X)$: $// I_X$: instance of X. $I_Y \leftarrow \mathcal{R}(I_X)$ return $\mathcal{A}_Y(I_Y)$

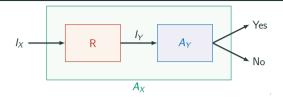
Using reductions to solve problems

- \mathcal{R} : Reduction $X \to Y$
- \mathcal{A}_Y : algorithm for Y:
- \implies New algorithm for X:

 $\mathcal{A}_X(I_X)$: $// I_X$: instance of X. $I_Y \leftarrow \mathcal{R}(I_X)$ return $\mathcal{A}_Y(I_Y)$



Reductions and running time

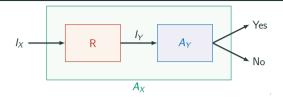


R(n): running time of \mathcal{R}

Q(n): running time of \mathcal{A}_Y

Question: What is running time of A_X ?

Reductions and running time



R(n): running time of \mathcal{R}

Q(n): running time of \mathcal{A}_Y

Question: What is running time of A_X ? O(Q(R(n))). Why?

- If I_X has size n, \mathcal{R} creates an instance I_Y of size at most R(n)
- $\mathcal{A}_{\mathcal{Y}}$'s time on I_{Y} is by definition at most $Q(|I_{Y}|) \leq Q(R(n))$.

Example: If $R(n) = n^2$ and $Q(n) = n^{1.5}$ then \mathcal{A}_X is $O(n^2 + n^3)$

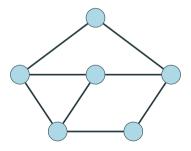
- Reductions allow us to formalize the notion of "Problem X is no harder to solve than Problem Y".
- If Problem X reduces to Problem Y (we write X ≤ Y), then X cannot be harder to solve than Y.
- More generally, if X ≤ Y, we can say that X is no harder than Y, or Y is at least as hard as X. X ≤ Y:
 - X is no harder than Y, or
 - Y is at least as hard as X.

Examples of Reductions

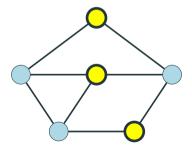
• An independent set: if no two vertices of V' are connected by an edge of G.

- An independent set: if no two vertices of V' are connected by an edge of G.
- <u>clique</u>: <u>every</u> pair of vertices in V' is connected by an edge of G.

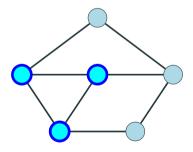
- An independent set: if no two vertices of V' are connected by an edge of G.
- <u>clique</u>: <u>every</u> pair of vertices in V' is connected by an edge of G.



- An independent set: if no two vertices of V' are connected by an edge of G.
- <u>clique</u>: <u>every</u> pair of vertices in V' is connected by an edge of G.



- An independent set: if no two vertices of V' are connected by an edge of G.
- <u>clique</u>: <u>every</u> pair of vertices in V' is connected by an edge of G.



Problem: Independent Set

Instance: A graph G and an integer k. **Question:** Does G has an independent set of size $\geq k$?

Problem: Independent Set

Instance: A graph G and an integer k. **Question:** Does G has an independent set of size > k?

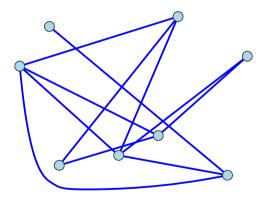
Problem: Clique

Instance: A graph G and an integer k. **Question:** Does G has a clique of size > k? For decision problems X, Y, a reduction from X to Y is:

- An algorithm ...
- that takes I_X , an instance of X as input ...
- and returns I_Y, an instance of Y as output ...
- such that the solution (YES/NO) to I_Y is the same as the solution to I_X .

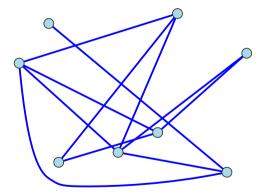
Reducing Independent Set to Clique

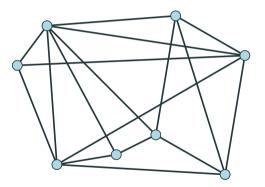
An instance of **Independent Set** is a graph G and an integer k.



Reducing Independent Set to Clique

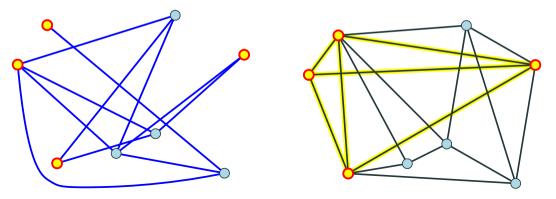
An instance of **Independent Set** is a graph G and an integer k.





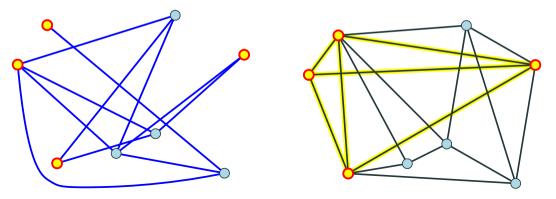
An instance of **Independent Set** is a graph G and an integer k.

Reduction given $\langle G, k \rangle$ outputs $\langle \overline{G}, k \rangle$ where \overline{G} is the <u>complement</u> of G. \overline{G} has an edge $uv \iff uv$ is not an edge of G.



An instance of **Independent Set** is a graph G and an integer k.

Reduction given $\langle G, k \rangle$ outputs $\langle \overline{G}, k \rangle$ where \overline{G} is the <u>complement</u> of G. \overline{G} has an edge $uv \iff uv$ is not an edge of G.



Lemma

G has an independent set of size $k \iff \overline{G}$ has a clique of size k.

Proof.

Need to prove two facts:

G has independent set of size at least k implies that \overline{G} has a clique of size at least k.

 \overline{G} has a clique of size at least k implies that G has an independent set of size at least k.

Since $S \subseteq V$ is an independent set in $G \iff S$ is a clique in \overline{G} .

• Independent Set \leq_P Clique.

• Independent Set \leq_P Clique.

What does this mean?

• If have an algorithm for **Clique**, then we have an algorithm for **Independent Set**.

• Independent Set \leq_P Clique.

What does this mean?

- If have an algorithm for **Clique**, then we have an algorithm for **Independent Set**.
- Clique is at least as hard as Independent Set.

• Independent Set \leq_P Clique.

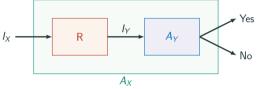
What does this mean?

- If have an algorithm for **Clique**, then we have an algorithm for **Independent Set**.
- Clique is at least as hard as Independent Set.
- Also... Clique ≤_P Independent Set. Why? Thus Clique and Independent Set are polnomial-time equivalent.

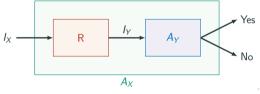
Visualize Clique and independent Set Reduction

I want to show Independent Set is atleast as hard as Clique.

I want to show **Independent Set** is atleast as hard as **Clique**. Write out the equality: **Clique** \leq_P **Independent Set** I want to show **Independent Set** is atleast as hard as **Clique**. Write out the equality: **Clique** \leq_P **Independent Set** Draw reduction figure:



I want to show **Independent Set** is atleast as hard as **Clique**. Write out the equality: **Clique** \leq_P **Independent Set** Draw reduction figure:



Fill in the blanks:

- $I_X = \langle \overline{G} \rangle$
- $A_X = \text{Clique}$
- $I_Y = \langle G \rangle$
- $A_Y =$ Independent Set
- $R:\overline{G} = \{V,\overline{E}\}$

Assume you can solve the **Clique** problem in T(n) time. Then you can solve the **Independent Set** problem in

- (A) O(T(n)) time.
- (B) $O(n \log n + T(n))$ time.
- (C) $O(n^2 T(n^2))$ time.
- (D) $O(n^4 T(n^4))$ time.
- (E) $O(n^2 + T(n^2))$ time.
- (F) Does not matter all these are polynomial if T(n) is polynomial, which is good enough for our purposes.

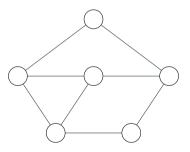
Independent Set and Vertex Cover

Given a graph G = (V, E), a set of vertices S is:

Given a graph G = (V, E), a set of vertices S is:

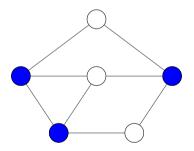
Vertex Cover

Given a graph G = (V, E), a set of vertices S is:



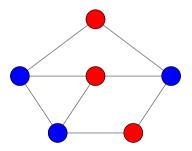
Vertex Cover

Given a graph G = (V, E), a set of vertices S is:



Vertex Cover

Given a graph G = (V, E), a set of vertices S is:



Problem (Vertex Cover)

Input: A graph G and integer k.

Goal: Is there a vertex cover of size $\leq k$ in G?

Problem (Vertex Cover)

Input: A graph G and integer k.

Goal: Is there a vertex cover of size $\leq k$ in G?

Can we relate Independent Set and Vertex Cover?

Lemma Let G = (V, E) be a graph. S is an Independent Set $\iff V \setminus S$ is a vertex cover.

Lemma

Let G = (V, E) be a graph. S is an Independent Set $\iff V \setminus S$ is a vertex cover.

Proof.

- (\Rightarrow) Let S be an independent set
 - Consider any edge $uv \in E$.
 - Since S is an independent set, either $u \notin S$ or $v \notin S$.
 - Thus, either $u \in V \setminus S$ or $v \in V \setminus S$.
 - $V \setminus S$ is a vertex cover.

Lemma

Let G = (V, E) be a graph. S is an Independent Set $\iff V \setminus S$ is a vertex cover.

Proof.

- (\Rightarrow) Let S be an independent set
 - Consider any edge $uv \in E$.
 - Since S is an independent set, either $u \notin S$ or $v \notin S$.
 - Thus, either $u \in V \setminus S$ or $v \in V \setminus S$.
 - $V \setminus S$ is a vertex cover.
- (\Leftarrow) Let $V \setminus S$ be some vertex cover:
 - Consider $u, v \in S$
 - uv is not an edge of G, as otherwise $V \setminus S$ does not cover uv.
 - \implies *S* is thus an independent set.

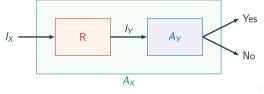
G: graph with n vertices, and an integer k be an instance of the Independent
 Set problem.

- G: graph with n vertices, and an integer k be an instance of the Independent
 Set problem.
- G has an independent set of size $\geq k \iff$ G has a vertex cover of size $\leq n k$

- *G*: graph with *n* vertices, and an integer *k* be an instance of the **Independent** Set problem.
- G has an independent set of size $\geq k \iff$ G has a vertex cover of size $\leq n k$
- (G, k) is an instance of Independent Set, and (G, n − k) is an instance of Vertex Cover with the same answer.

- G: graph with n vertices, and an integer k be an instance of the Independent
 Set problem.
- G has an independent set of size $\geq k \iff G$ has a vertex cover of size $\leq n-k$
- (G, k) is an instance of Independent Set, and (G, n − k) is an instance of Vertex Cover with the same answer.
- Therefore, Independent Set ≤_P Vertex Cover. Also Vertex Cover ≤_P Independent Set.

- G: graph with n vertices, and an integer k be an instance of the Independent
 Set problem.
- G has an independent set of size $\geq k \iff$ G has a vertex cover of size $\leq n-k$



- $I_X = \langle G \rangle$
- $A_X =$ Independent Set(G, k)
- $I_Y = \langle G \rangle$
- $A_Y = \text{Vertex Cover}(G, n k)$
- *R* : *G'* = *G*

NFAs|DFAs and Universality

DFA Accepting a String

Given DFA M and string $w \in \Sigma^*$, does M accept w?

- Instance is $\langle M, w \rangle$
- Algorithm: given $\langle M, w \rangle$, output YES if M accepts w, else NO



Given DFA M and string $w \in \Sigma^*$, does M accept w?

- Instance is $\langle M, w \rangle$
- Algorithm: given $\langle M, w \rangle$, output YES if M accepts w, else NO

Question: Is there an (efficient) algorithm for this problem?

Given DFA M and string $w \in \Sigma^*$, does M accept w?

- Instance is $\langle M, w \rangle$
- Algorithm: given $\langle M, w \rangle$, output YES if M accepts w, else NO

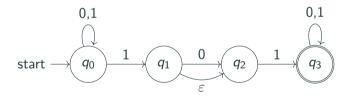
Question: Is there an (efficient) algorithm for this problem?

Yes. Simulate M on w and output YES if M reaches a final state.

Exercise: Show a linear time algorithm. Note that linear is in the input size which includes both encoding size of M and |w|.

Given NFA N and string $w \in \Sigma^*$, does N accept w?

- Instance is $\langle N, w \rangle$
- Algorithm: given $\langle N, w \rangle$, output YES if N accepts w, else NO



Does above NFA accept 0010110?

Given NFA N and string $w \in \Sigma^*$, does N accept w?

- Instance is $\langle N, w \rangle$
- Algorithm: given $\langle N, w \rangle$, output YES if N accepts w, else NO

Question: Is there an algorithm for this problem?

Given NFA N and string $w \in \Sigma^*$, does N accept w?

- Instance is $\langle N, w \rangle$
- Algorithm: given $\langle N, w \rangle$, output YES if N accepts w, else NO

Question: Is there an algorithm for this problem?

- Convert *N* to equivalent DFA *M* and use previous algorithm!
- Hence a reduction that takes $\langle N,w
 angle$ to $\langle M,w
 angle$
- Is this reduction efficient?

Given NFA N and string $w \in \Sigma^*$, does N accept w?

- Instance is $\langle N, w \rangle$
- Algorithm: given $\langle N, w \rangle$, output YES if N accepts w, else NO

Question: Is there an algorithm for this problem?

- Convert *N* to equivalent DFA *M* and use previous algorithm!
- Hence a reduction that takes $\langle N, w \rangle$ to $\langle M, w \rangle$
- Is this reduction efficient? No, because |M| is exponential in |N| in the worst case.

Exercise: Describe a polynomial-time algorithm.

Hence reduction may allow you to see an easy algorithm but not necessarily best algorithm!

DFA Universality

A DFA *M* is universal if it accepts every string.

```
That is, L(M) = \Sigma^*, the set of all strings.
```

```
Problem (DFA universality)
```

Input: A DFA M.

Goal: Is M universal?

How do we solve **DFA Universality**?

We check if M has any reachable non-final state.

Problem (NFA universality)

Input: A NFA M.

Goal: Is M universal?

How do we solve NFA Universality?

Problem (NFA universality)

Input: A NFA M.

Goal: Is M universal?

How do we solve NFA Universality?

Reduce it to **DFA Universality**?

Problem (NFA universality)

Input: A NFA M.

Goal: Is M universal?

How do we solve NFA Universality?

Reduce it to DFA Universality?

Given an NFA N, convert it to an equivalent DFA M, and use the **DFA Universality** Algorithm.

What is the problem with this reduction?

Problem (NFA universality)

Input: A NFA M.

Goal: Is M universal?

How do we solve NFA Universality?

Reduce it to **DFA Universality**?

Given an NFA N, convert it to an equivalent DFA M, and use the **DFA Universality** Algorithm.

What is the problem with this reduction? The reduction takes exponential time! **NFA Universality** is known to be PSPACE-Complete.

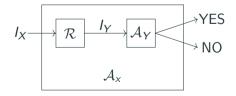
34

Polynomial time reductions

We say that an algorithm is efficient if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in polynomial-time reductions. Reductions that take longer are not useful.

If we have a polynomial-time reduction from problem X to problem Y (we write $X \leq_P Y$), and a poly-time algorithm \mathcal{A}_Y for Y, we have a polynomial-time/efficient algorithm for X.



A polynomial time reduction from a decision problem X to a decision problem Y is an algorithm A that has the following properties:

- given an instance I_X of X, A produces an instance I_Y of Y
- \mathcal{A} runs in time polynomial in $|I_X|$.
- Answer to I_X YES \iff answer to I_Y is YES.

Lemma

If $X \leq_P Y$ then a polynomial time algorithm for Y implies a polynomial time algorithm for X.

Such a reduction is called a <u>Karp reduction</u>. Most reductions we will need are Karp reductions.Karp reductions are the same as mapping reductions when specialized to polynomial time for the reduction step.

Let X and Y be two decision problems, such that X can be solved in polynomial time, and $X \leq_P Y$. Then

- (A) Y can be solved in polynomial time.
- (B) Y can NOT be solved in polynomial time.
- (C) If Y is hard then X is also hard.
- (D) None of the above.
- (E) All of the above.

Note: $X \leq_P Y$ does not imply that $Y \leq_P X$ and hence it is very important to know the FROM and TO in a reduction.

To prove $X \leq_P Y$ you need to show a reduction FROM X TO Y

That is, show that an algorithm for Y implies an algorithm for X.

The Satisfiability Problem (SAT)

Definition

Consider a set of boolean variables $x_1, x_2, \ldots x_n$.

- A literal is either a boolean variable x_i or its negation $\neg x_i$.
- A <u>clause</u> is a disjunction of literals.
 For example, x₁ ∨ x₂ ∨ ¬x₄ is a clause.
- A <u>formula in conjunctive normal form</u> (CNF) is propositional formula which is a conjunction of clauses
 - $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is a CNF formula.

Definition

Consider a set of boolean variables $x_1, x_2, \ldots x_n$.

- A literal is either a boolean variable x_i or its negation $\neg x_i$.
- A <u>clause</u> is a disjunction of literals.
 For example, x₁ ∨ x₂ ∨ ¬x₄ is a clause.
- A <u>formula in conjunctive normal form</u> (CNF) is propositional formula which is a conjunction of clauses
 - $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is a CNF formula.
- A formula φ is a 3CNF:

A CNF formula such that every clause has **exactly** 3 literals.

• $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3 \lor x_1)$ is a 3CNF formula, but $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is not.

CNF is universal

Every boolean formula $f: \{0,1\}^n \rightarrow \{0,1\}$ can be written as a CNF formula.

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> 4	<i>X</i> 5	<i>x</i> ₆	$f(x_1, x_2, \ldots, x_6)$	$\overline{x_1} \lor x_2 \overline{x_3} \lor x_4 \lor \overline{x_5} \lor x_6$
0	0	0	0	0	0	$f(0,\ldots,0,0)$	1
0	0	0	0	0	1	$f(0,\ldots,0,1)$	1
:	:	÷	÷	÷	÷	:	:
1	0	1	0	0	1	?	1
1	0	1	0	1	0	0	0
1	0	1	0	1	1	?	1
:	:	:	:	÷	÷	:	
1	1	1	1	1	1	$f(1,\ldots,1)$	1

Problem: SAT

```
Instance: A CNF formula \varphi.
```

Question: Is there a truth assignment to the variable of φ such that φ evaluates to true?

Problem: 3SAT

Instance: A 3CNF formula φ .

Question: Is there a truth assignment to the variable of φ such that φ evaluates to true?

SAT

Given a CNF formula φ , is there a truth assignment to variables such that φ evaluates to true?

Example

- $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is satisfiable; take $x_1, x_2, \ldots x_5$ to be all true
- $(x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2) \land (x_1 \lor x_2)$ is not satisfiable.

3SAT Given a 3CNF formula φ , is there a truth assignment to variables such that φ evaluates to true?

(More on **2SAT** in a bit...)

Importance of SAT and 3SAT

- SAT and 3SAT are basic constraint satisfaction problems.
- Many different problems can reduced to them because of the simple yet powerful expressively of logical constraints.
- Arise naturally in many applications involving hardware and software verification and correctness.
- As we will see, it is a fundamental problem in theory of NPCompleteness.

Given two bits x, z which of the following **SAT** formulas is equivalent to the formula $z = \overline{x}$:

- (A) $(\overline{z} \lor x) \land (z \lor \overline{x}).$ (B) $(z \lor x) \land (\overline{z} \lor \overline{x}).$ (C) $(\overline{z} \lor x) \land (\overline{z} \lor \overline{x}) \land (\overline{z} \lor \overline{x}).$ (D) $z \oplus x.$
- (E) $(z \lor x) \land (\overline{z} \lor \overline{x}) \land (z \lor \overline{x}) \land (\overline{z} \lor x).$

$\mathbf{z} = \overline{\mathbf{x}}$: Solution

Given two bits x, z which of the following **SAT** formulas is equivalent to the formula $z = \overline{x}$:

(A) $(\overline{z} \lor x) \land (z \lor \overline{x}).$

- (B) $(z \lor x) \land (\overline{z} \lor \overline{x}).$
- (C) $(\overline{z} \lor x) \land (\overline{z} \lor \overline{x}) \land (\overline{z} \lor \overline{x}).$

(D) $z \oplus x$.

(E) $(z \lor x) \land (\overline{z} \lor \overline{x}) \land (z \lor \overline{x}) \land (\overline{z} \lor x).$

X	y	$z = \overline{x}$
0	0	0
0	1	1
1	0	1
1	1	0

Given three bits x, y, z which of the following **SAT** formulas is equivalent to the formula $z = x \land y$:

(A) $(\overline{z} \lor x \lor y) \land (z \lor \overline{x} \lor \overline{y}).$

(B) $(\overline{z} \lor x \lor y) \land (\overline{z} \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor \overline{y}).$

(C) $(\overline{z} \lor x \lor y) \land (\overline{z} \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor \overline{y}).$

(D) $(z \lor x \lor y) \land (\overline{z} \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor \overline{y}).$

(E) $(z \lor x \lor y) \land (z \lor x \lor \overline{y}) \land (z \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor \overline{y}) \land (\overline{z} \lor x \lor y) \land (\overline{z} \lor x \lor \overline{y}) \land (\overline{z} \lor \overline{x} \lor \overline{y}) \land (\overline{z} \lor \overline{x} \lor \overline{y}) \land (\overline{z} \lor \overline{x} \lor \overline{y}).$

$z = x \wedge y$

Given three bits x, y, z which of the following **SAT** formulas is equivalent to the formula $z = x \land y$:

(A) $(\overline{z} \lor x \lor y) \land (z \lor \overline{x} \lor \overline{y}).$

(B) $(\overline{z} \lor x \lor y) \land (\overline{z} \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor \overline{y})$

(C) $(\overline{z} \lor x \lor y) \land (\overline{z} \lor \overline{x})$ $(z \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor \overline{y}).$

(D) $(z \lor x \lor y) \land (\overline{z} \lor \overline{x} \lor y) \land$ $(z \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor \overline{y}).$

(E) $(z \lor x \lor y) \land (z \lor x \lor \overline{y}) \land$

V	y,) /	\land	(<i>z</i>	/	/	Χ	V		y,)	Λ
. ,	`	、		1		,	_		,	_`	`	

 $(z \lor \overline{x} \lor v) \land (z \lor \overline{x} \lor \overline{v}) \land (\overline{z} \lor x \lor v) \land$ $(\overline{z} \lor x \lor \overline{v}) \land (\overline{z} \lor \overline{x} \lor v) \land (\overline{z} \lor \overline{x} \lor \overline{v}).$

y)/	(~)	~ ~	y).	
/ y) /	\			

Х	y	z	$z = x \wedge y$
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

. . .

What is a non-satisfiable SAT assignment?

Fin