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Pre-lecture brain teaser

You are given a DFA describing the regular language L. Want to know if |L| is infinite.
How can we do this?
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Pre-lecture brain teaser

You are given a DFA describing the regular language L. Want to know if |L| is infinite.
How can we do this?
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Couple methods:

• Eliminate states which cannot reach an accept state.
• Run DFS with pre-post numbering
• Find all the backedges. Backedges form cycle.
• Use pre/post numbering to find if accept state is within cycle.
• If so, the language is infinite

Bigger point: [Infinite?] problem reduces to [Find cycle]!

2

AISFFENITE

i
fiIt

backedges



Pre-lecture brain teaser

You are given a DFA describing the regular language L. Want to know if |L| is infinite.
How can we do this?

q0start q1 q2

q3

q4
1 0

00

1

1

1

0 0

Couple methods:

• Eliminate states which cannot reach an accept state.
• Run DFS with pre-post numbering
• Find all the backedges. Backedges form cycle.
• Use pre/post numbering to find if accept state is within cycle.
• If so, the language is infinite

Bigger point: [Infinite?] problem reduces to [Find cycle]!

2



Pre-lecture brain teaser

You are given a DFA describing the regular language L. Want to know if |L| is infinite.
How can we do this?

q0start q1 q2

q3

q4
1 0

00

1

1

1

0 0

Couple methods:

• Eliminate states which cannot reach an accept state.
• Run DFS with pre-post numbering
• Find all the backedges. Backedges form cycle.
• Use pre/post numbering to find if accept state is within cycle.
• If so, the language is infinite

Bigger point: [Infinite?] problem reduces to [Find cycle]! 2



Last part of the course!



Finishing touches!

• Part I: models of computation (reg exps, DFA/NFA, CFGs, TMs)
• Part II: (efficient) algorithm design
• Part III: intractability via reductions

• Undecidablity: problems that have no algorithms
• NP-Completeness: problems unlikely to have efficient algorithms unless

P = NP
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Turing Machines and Church-Turing Thesis

Turing defined TMs as a machine model of computation

Church-Turing thesis: any function that is computable can be computed by TMs

Efficient Church-Turing thesis: any function that is computable can be computed by
TMs with only a polynomial slow-down
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Computability and Complexity Theory

• What functions can and cannot be computed by TMs?
• What functions/problems can and cannot be solved efficiently?

Why?

• Foundational questions about computation
• Pragmatic: Can we solve our problem or not?
• Are we not being clever enough to find an efficient algorithm or should we stop

because there isn’t one or likely to be one?
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Reductions to Prove Intractability

A general methodology to prove impossibility results.

• Start with some known hard problem X
• Reduce X to your favorite problem Y

If Y can be solved then so can X ) Y . But we know X is hard to Y has to be hard
too.

Caveat: In algorithms we reduce new problem to known solved one!

Who gives us the initial hard problem?

• Some clever person (Cantor/Gödel/Turing/Cook/Levin ...) who establish
hardness of a fundamental problem

• Assume some core problem is hard because we haven’t been able to solve it for a
long time. This leads to conditional results
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Reduction Question

A general methodology to prove impossibility results.

• Start with some known hard problem X
• Reduce X to your favorite problem Y

If Y can be solved then so can X ) Y is also hard

What if we want to prove a problem is easy?
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Decision Problems, Languages, Terminology

When proving hardness we limit attention to decision problems

• A decision problem ⇧ is a collection of instances (strings)
• For each instance I of ⇧, answer is YES or NO
• Equivalently: boolean function f⇧ : ⌃⇤ ! {0, 1} where f (I) = 1 if I is a YES

instance, f (I) = 0 if NO instance
• Equivalently: language L⇧ = {I | I is a YES instance}

Notation about encoding: distinguish I from encoding hIi

• n is an integer. hni is the encoding of n in some format (could be unary, binary,
decimal etc)

• G is a graph. hGi is the encoding of G in some format
• M is a TM. hMi is the encoding of TM as a string according to some fixed

convention
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Decision Problems, Languages, Terminology

Aside: Different problems can be formulated differently. Example: Traveling Salesman

Common Formulation: Given a list of cities and the distances between each pair of
cities, what is the shortest possible route that visits each city exactly once and
returns to the origin city?

Decision Formulation: Given a list of cities and the distances between each pair of
cities, is there a route route that visits each city exactly once and returns to the
origin city while having a shorter length than integer k.
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Examples

• Given directed graph G, is it strongly connected? hGi is a YES instance if it is,
otherwise NO instance

• Given number n, is it a prime number? LPRIMES = {hni | n is prime}
• Given number n is it a composite number?

LCOMPOSITE = {hni | n is a composite}
• Given G = (V ,E), s, t,B is the shortest path distance from s to t at most B?

Instance is hG, s, t,Bi
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Reductions: Overview



Reductions for decision problems|languages

For languages LX , LY , a reduction from LX to LY is:

• An algorithm …
• Input: w 2 ⌃⇤

• Output: w 0 2 ⌃⇤

• Such that:
w 2 LX () w 0 2 LY
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Reductions for decision problems/languages

For decision problems X ,Y , a reduction from X to Y is:

• An algorithm …
• Input: IX , an instance of X .
• Output: IY an instance of Y .
• Such that:

IY is YES instance of Y () IX is YES instance of X
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Using reductions to solve problems

• R: Reduction X ! Y
• AY : algorithm for Y :

• =) New algorithm for X :
AX (IX ):

// IX : instance of X.
IY ( R(IX )
return AY (IY )
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AX

R AYIX
IY

Yes

No

.
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Reductions and running time

AX

R AYIX
IY

Yes

No

.

R(n): running time of R

Q(n): running time of AY

Question: What is running time of AX ?

O(Q(R(n)). Why?

• If IX has size n, R creates an instance IY of size at most R(n)
• AY ’s time on IY is by definition at most Q(|IY |)  Q(R(n)).

Example: If R(n) = n2 and Q(n) = n1.5 then AX is O(n2 + n3)
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Reductions and running time

AX

R AYIX
IY

Yes

No

.

R(n): running time of R

Q(n): running time of AY

Question: What is running time of AX ? O(Q(R(n)). Why?

• If IX has size n, R creates an instance IY of size at most R(n)
• AY ’s time on IY is by definition at most Q(|IY |)  Q(R(n)).
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Comparing Problems

• Reductions allow us to formalize the notion of “Problem X is no harder to solve
than Problem Y ”.

• If Problem X reduces to Problem Y (we write X  Y ), then X cannot be harder
to solve than Y .

• More generally, if X  Y , we can say that X is no harder than Y , or Y is at least
as hard as X . X  Y :

• X is no harder than Y , or
• Y is at least as hard as X .
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Examples of Reductions



Independent Sets and Cliques

Given a graph G, a set of vertices V 0 is:

• An independent set: if no two vertices of V 0 are connected by an edge of G.
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The Independent Set and Clique Problems

Problem: Independent Set

Instance: A graph G and an integer k.
Question: Does G has an independent set of size � k?

Problem: Clique

Instance: A graph G and an integer k.
Question: Does G has a clique of size � k?

17
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The Independent Set and Clique Problems
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Instance: A graph G and an integer k.
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Recall

For decision problems X ,Y , a reduction from X to Y is:

• An algorithm …
• that takes IX , an instance of X as input …
• and returns IY , an instance of Y as output …
• such that the solution (YES/NO) to IY is the same as the solution to IX .
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Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k.
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Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k.
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Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k.

Reduction given hG, ki outputs
⌦
G, k

↵
where G is the complement of G. G has an

edge uv () uv is not an edge of G.
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Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k.

Reduction given hG, ki outputs
⌦
G, k

↵
where G is the complement of G. G has an

edge uv () uv is not an edge of G.

A independent set of size k in G () A clique of size k in G
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Correctness of reduction

Lemma
G has an independent set of size k () G has a clique of size k.

Proof.
Need to prove two facts:
G has independent set of size at least k implies that G has a clique of size at least k.

G has a clique of size at least k implies that G has an independent set of size at least k.

Since S ✓ V is an independent set in G () S is a clique in G.
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Independent Set and Clique

• Independent Set P Clique.

What does this mean?
• If have an algorithm for Clique, then we have an algorithm for Independent Set.
• Clique is at least as hard as Independent Set.
• Also... Clique P Independent Set. Why? Thus Clique and Independent Set

are polnomial-time equivalent.

21
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Visualize Clique and independent Set Reduction

I want to show Independent Set is atleast as hard as Clique.

Write out the equality: Clique P Independent Set
Draw reduction figure:

AX

R AYIX
IY

Yes

No

.

Fill in the blanks:

• IX = hGi
• AX = Clique
• IY = hGi
• AY = Independent Set
• R : G = {V ,E}
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Review: Independent Set and Clique

Assume you can solve the Clique problem in T (n) time. Then you can solve the
Independent Set problem in

(A) O(T (n)) time.
(B) O(n log n + T (n)) time.
(C) O(n2T (n2)) time.
(D) O(n4T (n4)) time.
(E) O(n2 + T (n2)) time.
(F) Does not matter - all these are polynomial if T (n) is polynomial, which is good

enough for our purposes.
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Independent Set and Vertex Cover



Vertex Cover

Given a graph G = (V ,E), a set of vertices S is:

• A vertex cover if every e 2 E has at least one endpoint in S.
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The Vertex Cover Problem

Problem (Vertex Cover)

Input: A graph G and integer k.
Goal: Is there a vertex cover of size  k in G?

Can we relate Independent Set and Vertex Cover?
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Relationship between Vertex Cover and Independent Set

Lemma
Let G = (V ,E) be a graph. S is an Independent Set () V \ S is a vertex cover.

Proof.
()) Let S be an independent set

• Consider any edge uv 2 E .
• Since S is an independent set, either u 62 S or v 62 S.
• Thus, either u 2 V \ S or v 2 V \ S.
• V \ S is a vertex cover.

(() Let V \ S be some vertex cover:
• Consider u, v 2 S
• uv is not an edge of G, as otherwise V \ S does not cover uv .
• =) S is thus an independent set.
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Independent Set P Vertex Cover

• G: graph with n vertices, and an integer k be an instance of the Independent
Set problem.

• G has an independent set of size � k () G has a vertex cover of size  n � k
• (G, k) is an instance of Independent Set, and (G, n � k) is an instance of

Vertex Cover with the same answer.
• Therefore, Independent Set P Vertex Cover. Also Vertex Cover P

Independent Set.
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Independent Set P Vertex Cover

• G: graph with n vertices, and an integer k be an instance of the Independent
Set problem.

• G has an independent set of size � k () G has a vertex cover of size  n � k

AX

R AYIX
IY

Yes

No

.

• IX = hGi
• AX = Independent Set(G, k)
• IY = hGi
• AY = Vertex Cover(G, n � k)
• R : G 0 = G
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NFAs|DFAs and Universality



DFA Accepting a String

Given DFA M and string w 2 ⌃⇤, does M accept w?

• Instance is hM,wi
• Algorithm: given hM,wi, output YES if M accepts w , else NO

q0start q1

q2 q3

0

1

10 0

1 0,1

Does above DFA accept 0010110?
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DFA Accepting a String

Given DFA M and string w 2 ⌃⇤, does M accept w?

• Instance is hM,wi
• Algorithm: given hM,wi, output YES if M accepts w , else NO

Question: Is there an (efficient) algorithm for this problem?

Yes. Simulate M on w and output YES if M reaches a final state.

Exercise: Show a linear time algorithm. Note that linear is in the input size which
includes both encoding size of M and |w |.
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NFA Accepting a String

Given NFA N and string w 2 ⌃⇤, does N accept w?

• Instance is hN,wi
• Algorithm: given hN,wi, output YES if N accepts w , else NO

q0start q1 q2 q3

0,1

1 0

"

1

0,1

Does above NFA accept 0010110?
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NFA Accepting a String

Given NFA N and string w 2 ⌃⇤, does N accept w?

• Instance is hN,wi
• Algorithm: given hN,wi, output YES if N accepts w , else NO

Question: Is there an algorithm for this problem?

• Convert N to equivalent DFA M and use previous algorithm!
• Hence a reduction that takes hN,wi to hM,wi
• Is this reduction efficient? No, because |M| is exponential in |N| in the worst case.

Exercise: Describe a polynomial-time algorithm.

Hence reduction may allow you to see an easy algorithm but not necessarily best
algorithm!
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DFA Universality

A DFA M is universal if it accepts every string.

That is, L(M) = ⌃⇤, the set of all strings.

Problem (DFA universality)

Input: A DFA M.
Goal: Is M universal?

How do we solve DFA Universality?

We check if M has any reachable non-final state.
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NFA Universality

An NFA N is said to be universal if it accepts every string. That is, L(N) = ⌃⇤, the set
of all strings.
Problem (NFA universality)

Input: A NFA M.
Goal: Is M universal?

How do we solve NFA Universality?

Reduce it to DFA Universality?

Given an NFA N, convert it to an equivalent DFA M, and use the DFA Universality
Algorithm.

What is the problem with this reduction? The reduction takes exponential time!
NFA Universality is known to be PSPACE-Complete.
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Polynomial time reductions



Polynomial-time reductions

We say that an algorithm is efficient if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in polynomial-time
reductions. Reductions that take longer are not useful.

If we have a polynomial-time reduction from problem X to problem Y (we write
X P Y ), and a poly-time algorithm AY for Y , we have a polynomial-time/efficient
algorithm for X .

Ax

R AYIX IY YES

NO
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Polynomial-time Reduction

A polynomial time reduction from a decision problem X to a decision problem Y is an
algorithm A that has the following properties:

• given an instance IX of X , A produces an instance IY of Y
• A runs in time polynomial in |IX |.
• Answer to IX YES () answer to IY is YES.

Lemma
If X P Y then a polynomial time algorithm for Y implies a polynomial time
algorithm for X.

Such a reduction is called a Karp reduction. Most reductions we will need are Karp
reductions.Karp reductions are the same as mapping reductions when specialized to
polynomial time for the reduction step.
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Review question: Reductions again...

Let X and Y be two decision problems, such that X can be solved in polynomial time,
and X P Y . Then

(A) Y can be solved in polynomial time.
(B) Y can NOT be solved in polynomial time.
(C) If Y is hard then X is also hard.
(D) None of the above.
(E) All of the above.
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Be careful about reduction direction

Note: X P Y does not imply that Y P X and hence it is very important to know
the FROM and TO in a reduction.

To prove X P Y you need to show a reduction FROM X TO Y

That is, show that an algorithm for Y implies an algorithm for X .
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The Satisfiability Problem (SAT)



Propositional Formulas

Definition
Consider a set of boolean variables x1, x2, . . . xn.

• A literal is either a boolean variable xi or its negation ¬xi .
• A clause is a disjunction of literals.

For example, x1 _ x2 _ ¬x4 is a clause.
• A formula in conjunctive normal form (CNF) is propositional formula which is a

conjunction of clauses
• (x1 _ x2 _ ¬x4) ^ (x2 _ ¬x3) ^ x5 is a CNF formula.

• A formula ' is a 3CNF:
A CNF formula such that every clause has exactly 3 literals.

• (x1 _ x2 _ ¬x4) ^ (x2 _ ¬x3 _ x1) is a 3CNF formula, but
(x1 _ x2 _ ¬x4) ^ (x2 _ ¬x3) ^ x5 is not.
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CNF is universal

Every boolean formula f : {0, 1}n ! {0, 1} can be written as a CNF formula.

x1 x2 x3 x4 x5 x6 f (x1, x2, . . . , x6) x1 _ x2x3 _ x4 _ x5 _ x6

0 0 0 0 0 0 f (0, . . . , 0, 0) 1
0 0 0 0 0 1 f (0, . . . , 0, 1) 1
... ... ... ... ... ... ... ...
1 0 1 0 0 1 ? 1
1 0 1 0 1 0 0 0
1 0 1 0 1 1 ? 1
... ... ... ... ... ... ...
1 1 1 1 1 1 f (1, . . . , 1) 1

For every row that f is zero compute corresponding CNF clause.

Take the and (V) of all the CNF clauses computed

Resulting CNF formula equivalent to f .
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Satisfiability

Problem: SAT

Instance: A CNF formula '.
Question: Is there a truth assignment to the variable of ' such that
' evaluates to true?

Problem: 3SAT

Instance: A 3CNF formula '.
Question: Is there a truth assignment to the variable of ' such that
' evaluates to true?
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Satisfiability

SAT
Given a CNF formula ', is there a truth assignment to variables such that ' evaluates
to true?

Example
• (x1 _ x2 _ ¬x4) ^ (x2 _ ¬x3) ^ x5 is satisfiable; take x1, x2, . . . x5 to be all true
• (x1 _ ¬x2) ^ (¬x1 _ x2) ^ (¬x1 _ ¬x2) ^ (x1 _ x2) is not satisfiable.

3SAT
Given a 3CNF formula ', is there a truth assignment to variables such that '
evaluates to true?

(More on 2SAT in a bit...)
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Importance of SAT and 3SAT

• SAT and 3SAT are basic constraint satisfaction problems.
• Many different problems can reduced to them because of the simple yet powerful

expressively of logical constraints.
• Arise naturally in many applications involving hardware and software verification

and correctness.
• As we will see, it is a fundamental problem in theory of NPCompleteness.
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z = x

Given two bits x , z which of the following SAT formulas is equivalent to the formula
z = x :

(A) (z _ x) ^ (z _ x).
(B) (z _ x) ^ (z _ x).
(C) (z _ x) ^ (z _ x) ^ (z _ x).
(D) z � x .
(E) (z _ x) ^ (z _ x) ^ (z _ x) ^ (z _ x).
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z = x: Solution

Given two bits x , z which of the following
SAT formulas is equivalent to the formula
z = x :
(A) (z _ x) ^ (z _ x).
(B) (z _ x) ^ (z _ x).
(C) (z _ x) ^ (z _ x) ^ (z _ x).
(D) z � x .
(E) (z _ x) ^ (z _ x) ^ (z _ x) ^ (z _ x).

x y z = x
0 0 0
0 1 1
1 0 1
1 1 0
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z = x ^ y

Given three bits x , y , z which of the following SAT formulas is equivalent to the
formula z = x ^ y :

(A) (z _ x _ y) ^ (z _ x _ y).
(B) (z _ x _ y) ^ (z _ x _ y) ^ (z _ x _ y).
(C) (z _ x _ y) ^ (z _ x _ y) ^ (z _ x _ y) ^ (z _ x _ y).
(D) (z _ x _ y) ^ (z _ x _ y) ^ (z _ x _ y) ^ (z _ x _ y).
(E) (z _ x _ y) ^ (z _ x _ y) ^ (z _ x _ y) ^ (z _ x _ y) ^ (z _ x _ y) ^ (z _ x _ y) ^

(z _ x _ y) ^ (z _ x _ y).
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z = x ^ y

Given three bits x , y , z which of the follow-
ing SAT formulas is equivalent to the for-
mula z = x ^ y :
(A) (z _ x _ y) ^ (z _ x _ y).
(B) (z _ x _ y)^ (z _ x _ y)^ (z _ x _ y).
(C) (z _ x _ y) ^ (z _ x _ y) ^

(z _ x _ y) ^ (z _ x _ y).
(D) (z _ x _ y) ^ (z _ x _ y) ^

(z _ x _ y) ^ (z _ x _ y).
(E) (z _ x _ y) ^ (z _ x _ y) ^

(z _ x _ y)^(z _ x _ y)^(z _ x _ y)^
(z _ x _ y)^ (z _ x _ y)^ (z _ x _ y).

x y z z = x ^ y
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1
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Exercise

What is a non-satisfiable SAT assignment?
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Fin


