Formulate a **language** that describes the above problem.

# ECE-374-B: Lecture 1 - Regular Languages

Lecturer: Nickvash Kani August 29, 2024

University of Illinois at Urbana-Champaign

Formulate a **language** that describes the above problem.

Formulate a **language** that describes the above problem.

$$L_{AND_N} = \begin{cases} 0|0, & 1|1, \\ 0 \cdot 0|0, & 0 \cdot 1|0, & 1 \cdot 0|0, & 1 \cdot 1|1 \\ \vdots & \vdots & \vdots & \vdots \\ (0 \cdot)^n |0, & (0 \cdot)^{n-1} 1|0, & \dots & (1 \cdot)^n |1 \dots \end{cases}$$

(1)

Formulate a **language** that describes the above problem.

$$L_{AND_N} = \begin{cases} 0|0, & 1|1, \\ 0 \cdot 0|0, & 0 \cdot 1|0, & 1 \cdot 0|0, & 1 \cdot 1|1 \\ \vdots & \vdots & \vdots & \vdots \\ (0 \cdot)^n |0, & (0 \cdot)^{n-1} 1|0, & \dots & (1 \cdot)^n |1 \dots \end{cases}$$

This is an example of a regular language which we'll be discussing today.

(1)

## Terminology Review

- A character(*a*, *b*, *c*, *x*) is a unit of information represented by a symbol: (letters, digits, whitespace)
- A  $alphabet(\Sigma)$  is a set of characters
- A string(w) is a sequence of characters
- A language(A, B, C, L) is a set of strings

L= Il string.

## Terminology Review

- A character(a, b, c, x) is a unit of information represented by a symbol: (letters, digits, whitespace)
- A  $alphabet(\Sigma)$  is a set of characters
- A string(w) is a sequence of characters
- A language(A, B, C, L) is a set of strings

How do we define a language? Through grammars!

What is a grammar?

# Grammar ( **G**) Definition

### **Definition** A $\bigcirc$ G is a quadruple G = (V, T, P, S)

• *V* is a finite set of non-terminal (variable) symbols

$$G = \begin{pmatrix} Variables, Terminals, Productions, Start var \end{pmatrix}$$

# Grammar (CFG) Definition

**Definition** A CFG is a quadruple G = (V, T, P, S)

- *V* is a finite set of non-terminal (variable) symbols
- *T* is a finite set of terminal symbols (alphabet)

$$G = \left( Variables, Terminals, Productions, Start var \right)$$

# Grammar (CFG) Definition

**Definition** A CFG is a quadruple G = (V, T, P, S)

- *V* is a finite set of non-terminal (variable) symbols
- *T* is a finite set of terminal symbols (alphabet)
- *P* is a finite set of productions, each of the form

```
A \to \alpha
```

where  $A \in V$  and  $\alpha$  is a string in  $(V \cup T)^*$ . Formally,  $P \subset V \times (V \cup T)^*$ .

$$G = \left( Variables, Terminals, Productions, Start var \right)$$

# Grammar (🥰) Definition

**Definition** A  $\swarrow$  G is a quadruple G = (V, T, P, S)

- *V* is a finite set of non-terminal (variable) symbols
- *T* is a finite set of terminal symbols (alphabet)
- *P* is a finite set of productions, each of the form

 $\mathsf{A} \to \alpha$ 

where  $A \in V$  and  $\alpha$  is a string in  $(V \cup T)^*$ .

Formally,  $P \subset V \times (V \cup T)^*$ .

•  $S \in V$  is a start symbol

$$G = \begin{pmatrix} Variables, Terminals, Productions, Start var \end{pmatrix}$$

### L = all strings with 000 as a substring

 $V = \{S, A, B\}$   $T = \{0, 1\}$   $P = \begin{cases} S \to 0S|1S|A \\ A \to 000B \\ B \to 0B|1B|\epsilon \end{cases}$   $(A \to B|C \text{ is abbreviation for } A \to B, A \to C)$ 

L = all strings with 000 as a substring

 $V = \{S, A, B\}$   $T = \{0, 1\}$   $P = \begin{cases} S \to 0S|1S|A \\ A \to 000B \\ B \to 0B|1B|\epsilon \end{cases}$   $(A \to B|C \text{ is abbreviation for } A \to B, A \to C)$ 

What strings can S generate like this?

### Example

$$V = \{S, A, B\}$$

$$T = \{0, 1\}$$

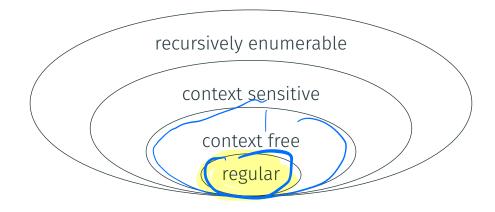
$$P = \begin{cases} S \to 0S|1S|A \\ A \to 000B \\ B \to 0B|1B|\epsilon \end{cases}$$

$$S \to IS$$

$$A \to B|C \text{ is abbreviation for } A \to B, A \to C \end{cases}$$

 $S \rightsquigarrow 1S \rightsquigarrow 10S \rightsquigarrow 10A \rightsquigarrow 10000B \rightsquigarrow 10000\varepsilon \rightsquigarrow 10000$ 

## Chomsky Hierarchy



| Grammar | Languages              | Production Rules                             | Automation                                            | Examples                                                               |
|---------|------------------------|----------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------|
| Type-0  | Recursively enumerable | $\gamma \rightarrow \alpha$ (no constraints) | Turing machine                                        | $L = \{ \langle M, w \rangle   M \text{ is a TM which halts on } w \}$ |
| Type-1  | Context-sensitive      | $lpha A eta 	o lpha \gamma eta$              | Linear bounded<br>Non-deterministic<br>Turing machine | $L = \{a^n b^n c^n   n > 0\}$                                          |
| Type-2  | Context-free           | $A  ightarrow \alpha$                        | Non-deterministic<br>Push-down automata               | $L = \{a^n b^n   n > 0\}$                                              |
| Type-3  | Regular                | $A \rightarrow aB$                           | Finite State Machine -                                | $-L = \{a^n   n > 0\}$                                                 |

Meaning of symbols:  $\cdot a$  = terminal  $\cdot A, B$  = variables  $\cdot \alpha, \beta, \gamma$  = string of  $\{a \cup A\}^* \cdot \alpha, \beta$  = maybe empty  $--\gamma$  = never empty

• Table borrowed from wikipedia: https://en.wikipedia.org/wiki/Chomsky\_hierarchy

Regular Languages

### Theorem (Kleene's Theorem )

A language is regular if and only if it can be obtained from finite languages by applying the three operations:

- Union
- Concatenation
- Repetition

a finite number of times.

A class of simple but useful languages.

The set of regular languages over some alphabet  $\Sigma$  is defined inductively.

### Base Case

- $\cdot \ \emptyset$  is a regular language.
- $\{\epsilon\}$  is a regular language.
- {*a*} is a regular language for each  $a \in \Sigma$ . Interpreting *a* as string of length 1.

### **Regular Languages**

Inductive step:

# L1 = ZEZ

We can build up languages using a few basic operations:

- If  $L_1, L_2$  are regular then  $L_1 \cup L_2$  is regular.
- If  $L_1, L_2$  are regular then  $L_1L_2$  is regular.
- If *L* is regular, then  $L^* = \bigcup_{n \ge 0} L^n$  is regular. The  $\cdot^*$  operator name is <u>Kleene star</u>.

• If *L* is regular, then so is  $\overline{L} = \Sigma^* \setminus L$ .

Regular languages are closed under operations of union, concatenation and Kleene star.  $L_4 = L_1 \cdot L_1 = \xi_{a}$ 

 $L_{1}^{\#} = \begin{cases} \xi, \alpha, \alpha \alpha, \alpha \alpha \alpha, \alpha, \alpha \alpha \alpha, \gamma \\ \alpha \alpha \alpha \alpha \alpha \alpha, \dots \end{cases}$ 

4 · Eaz Lz = 36]

 $L_{UL}^{z} \{a, b\}$ 

La U Lg = {a, b anyab

ム・レマ = { ab } = レス しっとしいしょ = { a, b, ab

### Some simple regular languages

**Lemma** If w is a string then  $L = \{w\}$  is regular.

**Example:** {*aba*} or {*abbabbab*}. Why?

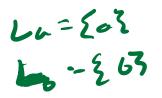
2: 20,63 Lu= {az 16 = 363



· L. · La

**Lemma** If w is a string then  $L = \{w\}$  is regular.

**Example:** {*aba*} or {*abbabbab*}. Why?



**Lemma** Every finite language L is regular.

Examples:  $L = \{a, abaab, aba\}$ .  $L = \{w \mid |w| \le 100\}$ . Why?

Lobado Lailo Lailo Labor Lailo La Le U Labord U Labor Have basic operations to build regular languages.

Important: Any language generated by a finite sequence of such operations is regular.

### Lemma

Let  $L_1, L_2, \ldots$ , be regular languages over alphabet  $\Sigma$ . Then the language  $\cup_{i=1}^{\infty} L_i$  is not necessarily regular.

Have basic operations to build regular languages.

Important: Any language generated by a finite sequence of such operations is regular.

#### Lemma

Let  $L_1, L_2, \ldots$ , be regular languages over alphabet  $\Sigma$ . Then the language  $\cup_{i=1}^{\infty} L_i$  is not necessarily regular.

Note:Kleene star (repetition) is a **single** operation!

### Regular Languages - Example

**Example:** The language  $L_{01} = 0^{i}1^{j}$  for all  $i, j \ge 0$  is regular:  $\mathbf{\Sigma} \succeq \mathbf{\xi} \circ, \mathbf{\zeta}$ 

$$L_0 = \{0\} \quad L_{0S} = L_0^* \quad L_{01} = L_{0S}^* L_{1S}$$
  
 $L_1 = \{1\} \quad L_{S} = L_1^*$ 

$$L_{0} = \begin{cases} \epsilon \\ 0 & 00 \\ 0 & 00 \\ 0 & 00 \\ 0 & 00 \\ 0 & 00 \\ 0 & 00 \\ 0 & 00 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 14 \\ 14 \end{cases}$$

1. 
$$L_1 = \{ 0^i \mid i = [0, 1, \dots, 3] \}$$
. The language  $L_1$  is regular.  $P$ ?

L

1. 
$$L_1 = \left\{ \begin{array}{c} 0^i \mid i = 0, 1, \dots, \infty \right\}$$
. The language  $L_1$  is regular. T/F?  
2.  $L_2 = \left\{ \begin{array}{c} 0^{17i} \mid i = 0, 1, \dots, \infty \right\}$ . The language  $L_2$  is regular. T/F?  
3.  $L_3 = \left\{ \begin{array}{c} 0^i \mid i \text{ is divisible by } 2, 3, \text{ or } 5 \right\}$ .  $L_3$  is regular. T/F?  

$$\int \left\{ \begin{array}{c} L_{q_0 Z} = (L_0 \cdot L_0 \cdot L_0) \right\}^{*} \\ L_{q_0 Z} = (L_0 \cdot L_0 \cdot L_0) \right\}^{*} \\ L_{q_0 Z} = (L_0 \cdot L_0 \cdot L_0) \right\}^{*}$$

1. 
$$L_1 = \{0^i \mid i = 0, 1, ..., \infty\}$$
. The language  $L_1$  is regular. T/F?  
2.  $L_2 = \{0^{17i} \mid i = 0, 1, ..., \infty\}$ . The language  $L_2$  is regular. T/F?  
3.  $L_3 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ or } 5\}$ .  $L_3$  is regular. T/F?  
4.  $L_4 = \{w \in \{0, 1\}^* \mid w \text{ has at most } 2 \text{ 1s}\}$ .  $L_4$  is regular  $\bigcirc$  F?  $\leq c \leq 0/1$   
 $L_4 = \{w \in \{0, 1\}^* \mid w \text{ has at most } 2 \text{ 1s}\}$ .  $L_4$  is regular  $\bigcirc$  F?  $\leq c \leq 0/1$   
 $L_4 = \{w \in \{0, 1\}^* \mid w \text{ has at most } 2 \text{ 1s}\}$ .  $L_4$  is regular  $\bigcirc$  F?  $\leq c \leq 0/1$   
 $L_4 = \{w \in \{0, 1\}^* \mid w \text{ has at most } 2 \text{ 1s}\}$ .  $L_4$  is regular  $\bigcirc$  F?  $\leq c \leq 0/1$   
 $L_4 = \{w \in \{0, 1\}^* \mid w \text{ has at most } 2 \text{ 1s}\}$ .  $L_4$  is regular  $\bigcirc$  F?  $\leq c \leq 0/1$   
 $L_4 = \{w \in \{0, 1\}^* \mid w \text{ has at most } 2 \text{ 1s}\}$ .  $L_4$  is regular  $\bigcirc$  F?  $\leq c \leq 0/1$   
 $L_4 = \{w \in \{0, 1\}^* \mid w \text{ has at most } 2 \text{ 1s}\}$ .  $L_4$  is regular  $\bigcirc$  F?  $\leq c \leq 0/1$   
 $L_4 = \{w \in \{0, 1\}^* \mid w \text{ has at most } 2 \text{ 1s}\}$ .  $L_4$  is regular  $\bigcirc$  F?  $\leq c \leq 0/1$   
 $L_6 = \{c, 1, c, 5\}$  =  $L_6 \cup U_1$ ,  $L_6 = \{c, 1, c, 5\}$ .  $L_6 = \{c, 1, c, 5\}$ .

**Regular Expressions** 

A way to denote regular languages

- simple patterns to describe related strings
- useful in
  - text search (editors, Unix/grep, emacs)
  - compilers: lexical analysis
  - compact way to represent interesting/useful languages
  - dates back to 50's: Stephen Kleene
     who has a star names after him <sup>1</sup>.

A regular expression **r** over an alphabet  $\Sigma$  is one of the following: Base cases:

- $\cdot \ \emptyset$  denotes the language  $\emptyset$
- $\epsilon$  denotes the language  $\{\epsilon\}$ .
- *a* denote the language  $\{a\}$ .

**Inductive cases:** If  $\mathbf{r}_1$  and  $\mathbf{r}_2$  are regular expressions denoting languages  $R_1$  and  $R_2$  respectively then,

- $(\mathbf{r_1} + \mathbf{r_2})$  denotes the language  $R_1 \cup R_2$
- $(\mathbf{r_1} \cdot \mathbf{r_2}) = r_1 \cdot r_2 = (\mathbf{r_1} \mathbf{r_2})$  denotes the language  $R_1 R_2$
- $(\mathbf{r}_1)^*$  denotes the language  $R_1^*$

### **Regular Languages**

 $\emptyset$  regular  $\{\epsilon\}$  regular  $\{a\}$  regular for  $a \in \Sigma$  $R_1 \cup R_2$  regular if both are  $R_1R_2$  regular if both are  $R^*$  is regular if R is

### **Regular Expressions**

 $\emptyset$  denotes  $\emptyset$   $\epsilon$  denotes  $\{\epsilon\}$  **a** denote  $\{a\}$   $\mathbf{r_1} + \mathbf{r_2}$  denotes  $R_1 \cup R_2$   $\mathbf{r_1} \cdot \mathbf{r_2}$  denotes  $R_1R_2$  $\mathbf{r}^*$  denote  $R^*$ 

Regular expressions denote regular languages — they explicitly show the operations that were used to form the language

### Notation and Parenthesis

For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language!
 Example: (0 + 1) and (1 + 0) denotes same language {0,1}

L= {"", "1"}

### Notation and Parenthesis

- For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language!
   Example: (0 + 1) and (1 + 0) denotes same language {0,1}
- Two regular expressions  $\mathbf{r}_1$  and  $\mathbf{r}_2$  are equivalent if  $L(\mathbf{r}_1) = L(\mathbf{r}_2)$ .

- For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language!
   Example: (0 + 1) and (1 + 0) denotes same language {0,1}
- Two regular expressions  $\mathbf{r}_1$  and  $\mathbf{r}_2$  are equivalent if  $L(\mathbf{r}_1) = L(\mathbf{r}_2)$ .
- Omit parenthesis by adopting precedence order:  $*, \cdot, +$ . **Example:**  $r^*s + t = ((r^*)s) + t$

- For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language!
   Example: (0 + 1) and (1 + 0) denotes same language {0,1}
- Two regular expressions  $\mathbf{r}_1$  and  $\mathbf{r}_2$  are equivalent if  $L(\mathbf{r}_1) = L(\mathbf{r}_2)$ .
- Omit parenthesis by adopting precedence order:  $*, \cdot, +$ . **Example:**  $r^*s + t = ((r^*)s) + t$
- Omit parenthesis by associativity of each operation.

**Example:** rst = (rs)t = r(st), r + s + t = r + (s + t) = (r + s) + t.

- For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language!
   Example: (0 + 1) and (1 + 0) denotes same language {0,1}
- Two regular expressions  $\mathbf{r}_1$  and  $\mathbf{r}_2$  are equivalent if  $L(\mathbf{r}_1) = L(\mathbf{r}_2)$ .
- Omit parenthesis by adopting precedence order:  $*, \cdot, +$ . **Example:**  $r^*s + t = ((r^*)s) + t$
- Omit parenthesis by associativity of each operation. **Example:** rst = (rs)t = r(st), r + s + t = r + (s + t) = (r + s) + t.
- Superscript +. For convenience, define  $r^+ = rr^*$ . Hence if L(r) = R then  $L(r^+) = R^+$ .

- For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language!
   Example: (0 + 1) and (1 + 0) denotes same language {0,1}
- Two regular expressions  $\mathbf{r}_1$  and  $\mathbf{r}_2$  are equivalent if  $L(\mathbf{r}_1) = L(\mathbf{r}_2)$ .
- Omit parenthesis by adopting precedence order:  $*, \cdot, +$ . **Example:**  $r^*s + t = ((r^*)s) + t$
- Omit parenthesis by associativity of each operation. **Example:** rst = (rs)t = r(st), r + s + t = r + (s + t) = (r + s) + t.
- Superscript +. For convenience, define  $r^+ = rr^*$ . Hence if L(r) = R then  $L(r^+) = R^+$ .
- Other notation: r + s, r ∪ s, r|s all denote union. rs is sometimes written as r•s.

Some examples of regular expressions

All strings that end in 1011?
 €<sup>\*</sup> · lol ·

(0+1)\* 1011

# Creating regular expressions

- 1. All strings that end in 1011?
- 2. All strings except 11?

$$r = E - 0 + 1 + 00 + 01 + 10 + E E E E^{*}$$

$$I = E^{*} - 11$$

$$E = E^{*} - 11$$

11 1

# Creating regular expressions

- 1. All strings that end in 1011?
- 2. All strings except 11?
- 3. All strings that do not contain 000 as a subsequence?

# Creating regular expressions

- 1. All strings that end in 1011?
- 2. All strings except 11?
- 3. All strings that do not contain 000 as a subsequence?
- 4. All strings that do not contain the substring 10?

# Interpreting regular expressions

1. (0 + 1)\*:

# Interpreting regular expressions

1.  $(0 + 1)^*$ : 2.  $(0 + 1)^* 001(0 + 1)^*$ :

21

2. (0+1)\*001(0+1)\*:

3. **0**\* + (**0**\***10**\***10**\***10**\*)\*:

1.  $(0 + 1)^*$ :

21

3. **0**\* + (**0**\***10**\***10**\***10**\*)\*:

2.  $(0+1)^*001(0+1)^*$ :

1.  $(0+1)^*$ :

Consider the problem of a n-input <u>AND</u> function. The input (x) is a string n-digits long with an input alphabet  $\Sigma_i = \{0, 1\}$  and has an output (y) which is the logical <u>AND</u> of all the elements of x. We know the language used to describe it is:

$$L_{AND_N} = \begin{cases} 0 \cdot |0, & 1 \cdot |1, \\ 0 \cdot 0 \cdot |0, & 0 \cdot 1 \cdot |0, & 1 \cdot 0 \cdot |0, & 1 \cdot 1 \cdot |1 \\ \vdots & \vdots & \vdots & \vdots \\ (0 \cdot)^n |0, & (0 \cdot)^{n-1} 1 |0, & \dots & (1 \cdot)^n |1 \dots \end{cases}$$

Formulate the regular expression which describes the above language:

Consider the problem of a n-input <u>AND</u> function. The input (x) is a string n-digits long with an input alphabet  $\Sigma_i = \{0, 1\}$  and has an output (y) which is the logical <u>AND</u> of all the elements of x. We know the language used to describe it is:

$$L_{AND_N} = \begin{cases} 0 \cdot |0, & 1 \cdot |1, \\ 0 \cdot 0 \cdot |0, & 0 \cdot 1 \cdot |0, & 1 \cdot 0 \cdot |0, & 1 \cdot 1 \cdot |1 \\ \vdots & \vdots & \vdots & \vdots \\ (0 \cdot)^n |0, & (0 \cdot)^{n-1} 1 |0, & \dots & (1 \cdot)^n |1 \dots \end{cases}$$

Formulate the regular expression which describes the above language:

all output 1 instances

$$\Sigma = \{0, 1, `\cdot', `|'\} r_{AND_N} = \underbrace{("0." + "1.")^* "0." ("0." + "1.")^* "|0"}_{\text{all output 0 instances}} + \underbrace{("1.")^* "|1"}_{\text{all output 0 instances}}$$

Regular expressions in programming

One last expression....

# Bit strings with odd number of 0s and 1s

The regular expression is

$$(00 + 11)^*(01 + 10)$$
  
 $(00 + 11 + (01 + 10)(00 + 11)^*(01 + 10))^*$ 

The regular expression is

$$ig(00+11ig)^*(01+10)\ ig(00+11+(01+10)(00+11)^*(01+10)ig)^*$$

(Solved using techniques to be presented in the following lectures...)