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Pre-lecture brain teaser

Given Σ = {0, 1}, find the regular expression for the language containing all
binary strings with an odd number of 0’s

Formulate a language that describes the above problem.
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A simple program

Program to check if an input string w has odd number of 0’s
int n = 0
While input is not finished

read next character c
If (c ≡'0')

n← n+ 1
endWhile
If (n is odd) output YES
Else output NO

bit x = 0
While input is not finished

read next character c
If (c ≡'0')

x ← flip(x)
endWhile
If (x = 1) output YES
Else output NO
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Another view

• Machine has input written on a read-only tape
• Start in specified start state
• Start at left, scan symbol, change state and move right
• Circled states are accepting
• Machine accepts input string if it is in an accepting state after scanning the
last symbol. 4



Deterministic-finite-automata (DFA)
Introduction



DFAs also called Finite State Machines (FSMs)

• The “simplest” model for computers?
• State machines that are common in practice.

• Vending machines
• Elevators
• Digital watches
• Simple network protocols

• Programs with fixed memory
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Graphical representation of DFA



Graphical Representation/State Machine

q0start q1

1
0

1

0

• Directed graph with nodes representing states and edge/arcs representing
transitions labeled by symbols in Σ

• For each state (vertex) q and symbol a ∈ Σ there is exactly one outgoing edge
labeled by a

• Initial/start state has a pointer (or labeled as s, q0 or “start”)
• Some states with double circles labeled as accepting/final states
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Graphical Representation
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• Where does 001 lead?

• Where does 10010 lead?
• Which strings end up in accepting state?
• Every string w has a unique walk that it follows from a given state q by
reading one letter of w from left to right.
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Graphical Representation
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Definition
A DFA M accepts a string w iff the unique walk starting at the start state and
spelling out w ends in an accepting state.

Definition
The language accepted (or recognized) by a DFA M is denote by L(M) and defined
as: L(M) = {w | M accepts w}.

8



Graphical Representation

q0start q1

1
0

1

0

Definition
A DFA M accepts a string w iff the unique walk starting at the start state and
spelling out w ends in an accepting state.

Definition
The language accepted (or recognized) by a DFA M is denote by L(M) and defined
as: L(M) = {w | M accepts w}.

8



Formal definition of DFA



Formal Tuple Notation

Definition
A deterministic finite automata (DFA) M = (Q,Σ, δ, s,A) is a five tuple where

• Q is a finite set whose elements are called states,
• Σ is a finite set called the input alphabet,
• δ : Q× Σ → Q is the transition function,
• s ∈ Q is the start state,
• A ⊆ Q is the set of accepting/final states.

Common alternate notation: q0 for start state, F for final states.
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DFA Notation

M =
( ︷︸︸︷

Q , Σ︸︷︷︸ ,
︷︸︸︷
δ , s︸︷︷︸ ,

︷︸︸︷
A

)
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Example
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• Q =

• Σ =

• δ =

• s =
• A =
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Extending the transition function to
strings



Extending the transition function to strings

Given DFA M = (Q,Σ, δ, s,A), δ(q,a) is the state that M goes to from q on reading
letter a

Useful to have notation to specify the unique state that M will reach from q on
reading string w

Transition function δ∗ : Q× Σ∗ → Q defined inductively as follows:

• δ∗(q,w) = q if w = ε

• δ∗(q,w) = δ∗(δ(q,a), x) if w = ax.
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Formal definition of language accepted by M

Definition
The language L(M) accepted by a DFA M = (Q,Σ, δ, s,A) is

{w ∈ Σ∗ | δ∗(s,w) ∈ A}.
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Example
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What is:

• δ∗(q1, ε) =

• δ∗(q0, 1011) =
• δ∗(q1, 010) =
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Constructing DFAs: Examples



DFAs: State = Memory

How do we design a DFA M for a given language L? That is L(M) = L.

• DFA is a like a program that has fixed number of states regardless of its input
size.

• The state must capture enough information from the input seen so far that it
is sufficient for the suffix that is yet to be seen (note that DFA cannot go back)
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DFA Construction: Example I: Basic languages

Assume Σ = {0, 1}.

1. L = ∅

2. L = Σ∗

3. L = {ε}

4. L = {0}
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DFA Construction: Example II: Length divisible by 5

Assume Σ = {0, 1}.

L = {w ∈ {0, 1}∗ | |w| is divisible by 5}

17



DFA Construction: Example III: Ends with 01

Assume Σ = {0, 1}.

L = {w ∈ {0, 1}∗ | w ends with 01}
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Complement language



Complement

Question: If M is a DFA, is there a DFA M′ such that L(M′) = Σ∗ \ L(M)? That is, are
languages recognized by DFAs closed under complement?
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Complement

Just flip the state of the states!
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q0start q1
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Complement

Theorem
Languages accepted by DFAs are closed under complement.

Proof.
Let M = (Q,Σ, δ, s,A) such that L = L(M).
Let M′ = (Q,Σ, δ, s,Q \ A). Claim: L(M′) = L̄. Why?
δ∗M = δ∗M′ . Thus, for every string w, δ∗M(s,w) = δ∗M′(s,w).
δ∗M(s,w) ∈ A⇒ δ∗M′(s,w) 6∈ Q \ A. δ∗M(s,w) 6∈ A⇒ δ∗M′(s,w) ∈ Q \ A.
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Product Construction



Union and Intersection

Are languages accepted by DFAs closed under union? That is, given DFAs M1 and
M2 is there a DFA that accepts L(M1) ∪ L(M2)?

How about intersection L(M1) ∩ L(M2)?

Idea from programming: on input string w

• Simulate M1 on w
• Simulate M2 on w
• If both accept than w ∈ L(M1) ∩ L(M2). If at least one accepts then
w ∈ L(M1) ∪ L(M2).

• Catch: We want a single DFA M that can only read w once.
• Solution: Simulate M1 and M2 in parallel by keeping track of states of both
machines
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Cross-Product Example
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Product construction for intersection

M1 = (Q1,Σ, δ1, s1,A1) and M2 = (Q2,Σ, δ2, s2,A2)

Theorem
L(M) = L(M1) ∩ L(M2).

Create M = (Q,Σ, δ, s,A) where

• Q =

• s =
• δ :

• A =
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Intersection vs Union

M1:
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Product construction for union

M1 = (Q1,Σ, δ1, s1,A1) and M2 = (Q2,Σ, δ2, s2,A2)

Theorem
L(M) = L(M1) ∪ L(M2).

Create M = (Q,Σ, δ, s,A) where

• Q = Q1 × Q2 = {(q1,q2) | q1 ∈ Q1,q2 ∈ Q2}
• s = (s1, s2)
• δ : Q× Σ → Q where

δ((q1,q2),a) = (δ1(q1,a), δ2(q2,a))

• A =
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The End

Wonder why we had to specify deterministic finite automata? That’s for next time.

27


	Deterministic-finite-automata (DFA) Introduction
	Graphical representation of DFA
	Formal definition of DFA
	Extending the transition function to strings
	Constructing DFAs: Examples
	Complement language
	Product Construction
	Extra Slides
	Constructing regular expressions

