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Pre-lecture brain teaser

Consider the following algorithm which takes in a undirected graph (G) and a
vertex s

FindClique (G, s)
C = s
for each vertex v ∈ V

flag = 1
for each vertex u ∈ C

if (u, v) /∈ E
flag = 0

if flag == 1
C = C ∪ {v}

return C

The algorithm is a represents a greedy
algorithm which finds a clique
depending on a start vertex s.
• How fast is this algorithm?
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The Clique-problem is NP-complete. But this algorithm provides us with the
maximal clique containing s. If we run it |V| times, does that solve the
clique-problem.
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The Satisfiability Problem (SAT)



Propositional Formulas

Definition
Consider a set of boolean variables x1, x2, . . . xn.

• A literal is either a boolean variable xi or its negation ¬xi.
• A clause is a disjunction of literals.
For example, x1 ∨ x2 ∨ ¬x4 is a clause.

• A formula in conjunctive normal form (CNF) is propositional formula which is
a conjunction of clauses

• (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is a CNF formula.

• A formula ϕ is a 3CNF:
A CNF formula such that every clause has exactly 3 literals.

• (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x1) is a 3CNF formula, but
(x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is not.
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Satisfiability

Problem: SAT

Instance: A CNF formula ϕ.
Question: Is there a truth assignment to the variable of ϕ such
that ϕ evaluates to true?

Problem: 3SAT

Instance: A 3CNF formula ϕ.
Question: Is there a truth assignment to the variable of ϕ such
that ϕ evaluates to true?
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Satisfiability

SAT
Given a CNF formula ϕ, is there a truth assignment to variables such that ϕ
evaluates to true?

Example

• (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is satisfiable; take x1, x2, . . . x5 to be all true
• (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (x1 ∨ x2) is not satisfiable.

3SAT
Given a 3CNF formula ϕ, is there a truth assignment to variables such that ϕ
evaluates to true?
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Importance of SAT and 3SAT

• SAT and 3SAT are basic constraint satisfaction problems.
• Many different problems can reduced to them because of the simple yet
powerful expressively of logical constraints.

• Arise naturally in many applications involving hardware and software
verification and correctness.

• As we will see, it is a fundamental problem in theory of NP-Completeness.
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SAT ≤P 3SAT

How SAT is different from 3SAT?
In SAT clauses might have arbitrary length: 1, 2, 3, . . . variables:(

x ∨ y ∨ z ∨ w ∨ u
)
∧
(
¬x ∨ ¬y ∨ ¬z ∨ w ∨ u

)
∧
(
¬x

)
In 3SAT every clause must have exactly 3 different literals.

To reduce from an instance of SAT to an instance of 3SAT, we must make all
clauses to have exactly 3 variables...

Basic idea

• Pad short clauses so they have 3 literals.
• Break long clauses into shorter clauses.
• Repeat the above till we have a 3CNF.
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Overview of Complexity Classes



Algorithmic Complexity Space

This represents all problems that exist.
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Algorithmic Complexity Space

P

All problems solvable in a polynomial
amount of time.

Most of the problems we discussed in
the second part of the course.

P problems:
• Longest whatever subsequence
• Various shortest path problems
• Graph connectivity
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Algorithmic Complexity Space

P

Decidable

Undecidable Set of all problems that can be
computed by a TM (or not).

Decidable problems:
• Anything you can compute

Undecidable problems:
• Halting problem
• TM equivalence
• All non-trivial programs (Rice’s
theorem)
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Algorithmic Complexity Space

P

EXPSpace

Decidable

Undecidable Set of all decision problem solvable by a
TM in Op(n) space.

EXPSPACE problems:
• Given regular expressions r1 and r2,
does L (r1) ≡ L (r2)

• Convertibility and reachability for
Petri Nets

Equivalent to NEXPSPACE (Savitch’s
theorem), and
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Algorithmic Complexity Space

P

EXPTIME

EXPSpace

Decidable

Undecidable

Set of all decision problem solvable by a
TM in Op(n) time.

EXPSPACE problems:
• Succinct circuits
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Algorithmic Complexity Space

P

PSPACE

EXPTIME

EXPSpace

Decidable

Undecidable
Set of all decision problem solvable by a
TM using a polynomial amount of space.

PSPACE problems:
• Given a regular expression r1, is
L (r1) = Σ∗

• Quantified boolean problem
• Reconfiguration problems
• Various puzzle problems
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Algorithmic Complexity Space

P

NP coNP

PSPACE

EXPTIME

EXPSpace

Decidable

Undecidable

Set of all decision problem solvable by a
NTM in a polynomial amount of time.
Alternatively, NP contains the problems
whose YES instances are checkable in a
polynomial amount of time by a TM
(DTM). coNP is same for NO instances.

NP problems:
• SAT, 3SAT, ...
• Integer factorization

coNP problems:
• Tautology (opposite of SAT)
• Integer factorization 8



Algorithmic Complexity Space

NP
-h
ar
d

P

NP coNP

PSPACE

EXPTIME

EXPSpace

Decidable

Undecidable

Class of problems that are atleast as
hard as the hardest problems in NP.

NP-hard problems:
• SAT, 3SAT, ...
• Clique, Independent set
• Hamiltonian path/cycle
• 3+ Coloring
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Algorithmic Complexity Space

NP
-h
ar
d

P

NP coNP

PSPACE

EXPTIME

EXPSpace

Decidable

Undecidable
The intersection of NP-hard and NP is
called NP-complete. These are all the
NP problems which all other NP
problems can reduce to.

NP-complete problems:
• 3+ SAT, SAT
• Clique, Independent set
• 3+ Coloring
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Non-deterministic polynomial time -
NP



P and NP and Turing Machines

• P: set of decision problems that have polynomial time algorithms.
• NP: set of decision problems that have polynomial time non-deterministic
algorithms.

• Many natural problems we would like to solve are in NP.
• Every problem in NP has an exponential time algorithm
• P ⊆ NP
• Some problems in NP are in P (example, shortest path problem)

Big Question: Does every problem in NP have an efficient algorithm? Same as
asking whether P = NP.
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Problems with no known deterministic polynomial time algorithms

Problems

• Independent Set
• Vertex Cover
• Set Cover
• SAT

There are of course undecidable problems (no algorithm at all!) but many
problems that we want to solve are of similar flavor to the above.

Question: What is common to above problems?

They can all be solved via a non-deterministic computer in polynomial time!
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Non-determinism in computing

Non-determinism is a special property
of algorithms.

An algorithm that is capable of taking
multiple states concurrently. Whenever
it reaches a choice, it takes both paths.

If there is a path for the string to be
accepted by the machine, then the string
is part of the language.
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Problems with no known deterministic polynomial time algorithms

Problems

• Independent Set & Vertex Cover - Can build algorithm to check all possible
collection of vertices

• Set Cover - Can check all possible collection of sets
• SAT -Can build a non-deterministic algorithm that checks every possible
boolean assignment.

But we don’t have access to a non-deterministic computer. So how can a
deterministic computer verify that a algorithm is in NP?
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Efficient Checkability

Above problems share the following feature:

Checkability
For any YES instance IX of X there is a proof/certificate/solution that is of length
poly(|IX|) such that given a proof one can efficiently check that IX is indeed a YES
instance.

Examples:

• SAT formula ϕ: proof is a satisfying assignment.
• Independent Set in graph G and k: a subset S of vertices.
• Homework
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Certifiers

Definition
An algorithm C(·, ·) is a certifier for problem X if the following two conditions
hold:

• For every s ∈ X there is some string t such that C(s, t) = ”yes”
• If s 6∈ X, C(s, t) = ”no” for every t.

The string s is the problem instance. (Example: particular graph in independent
set problem) The string t is called a certificate or proof for s.
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Efficient (polynomial time) Certifiers

Definition (Efficient Certifier.)
A certifier C is an efficient certifier for problem X if there is a polynomial p(·) such
that the following conditions hold:

• For every s ∈ X there is some string t such that C(s, t) = ”yes” and |t| ≤ p(|s|).
• If s 6∈ X, C(s, t) = ”no” for every t.
• C(·, ·) runs in polynomial time.
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Example: Independent Set

• Problem: Does G = (V, E) have an independent set of size ≥ k?
• Certificate: Set S ⊆ V .
• Certifier: Check |S| ≥ k and no pair of vertices in S is connected by an edge.
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Example: SAT

• Problem: Does formula ϕ have a satisfying truth assignment?
• Certificate: Assignment a of 0/1 values to each variable.
• Certifier: Check each clause under a and say “yes” if all clauses are true.
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Why is it called Nondeterministic Polynomial Time

A certifier is an algorithm C(I, c) with two inputs:

• I: instance.
• c: proof/certificate that the instance is indeed a YES instance of the given
problem.

One can think about C as an algorithm for the original problem, if:

• Given I, the algorithm guesses (non-deterministically, and who knows how) a
certificate c.

• The algorithm now verifies the certificate c for the instance I.

NP can be equivalently described using Turing machines.
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Polynomial-time reductions

We say that an algorithm is efficient if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in
polynomial-time reductions. Reductions that take longer are not useful.

If we have a polynomial-time reduction from problem X to problem Y (we write
X ≤P Y), and a poly-time algorithm AY for Y , we have a polynomial-time/efficient
algorithm for X.

AX

R AYIX
IY

Yes

No

.
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Polynomial-time Reduction

A polynomial time reduction from a decision problem X to a decision problem Y is
an algorithm A that has the following properties:

• given an instance IX of X, A produces an instance IY of Y
• A runs in time polynomial in |IX|.
• Answer to IX YES ⇐⇒ answer to IY is YES.

Lemma
If X ≤P Y then a polynomial time algorithm for Y implies a polynomial time
algorithm for X.

Such a reduction is called a Karp reduction. Most reductions we will need are
Karp reductions.Karp reductions are the same as mapping reductions when
specialized to polynomial time for the reduction step.
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Review question: Reductions again...

Let X and Y be two decision problems, such that X can be solved in polynomial
time, and X ≤P Y . Then

(A) Y can be solved in polynomial time.
(B) Y can NOT be solved in polynomial time.
(C) If Y is hard then X is also hard.
(D) None of the above.
(E) All of the above.
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Cook-Levin Theorem



“Hardest” Problems

Question
What is the hardest problem in NP? How do we define it?

Towards a definition

• Hardest problem must be in NP.
• Hardest problem must be at least as “difficult” as every other problem in NP.
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NP-Complete Problems

Definition
A problem X is said to be NP-Complete if

• X ∈ NP, and
• (Hardness) For any Y ∈ NP, Y ≤P X.

23



Solving NP-Complete Problems

Lemma
Suppose X is NP-Complete. Then X can be solved in polynomial time if and only if
P = NP.

Proof.

⇒ Suppose X can be solved in polynomial time
• Let Y ∈ NP. We know Y ≤P X.
• We showed that if Y ≤P X and X can be solved in polynomial time, then Y can be
solved in polynomial time.

• Thus, every problem Y ∈ NP is such that Y ∈ P; NP ⊆ P.
• Since P ⊆ NP, we have P = NP.

⇐ Since P = NP, and X ∈ NP, we have a polynomial time algorithm for X.
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NP-Hard Problems

Definition
A problem Y is said to be NP-Hard if

• (Hardness) For any X ∈ NP, we have that X ≤P Y .

An NP-Hard problem need not be in NP!

Example: Halting problem is NP-Hard (why?) but not NP-Complete.
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Consequences of proving NP-Completeness

If X is NP-Complete

• Since we believe P 6= NP,
• and solving X implies P = NP.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient
algorithm for X.

(This is proof by mob opinion — take with a grain of salt.)
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NP-Complete Problems

Question
Are there any problems that are NP-Complete?

Answer
Yes! Many, many problems are NP-Complete.

27



Cook-Levin Theorem

Theorem (Cook-Levin)
SAT is NP-Complete.

Need to show

• SAT is in NP.
• every NP problem X reduces to SAT.

Steve Cook won the Turing award for his theorem.
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Proving that a problem X is NP-Complete

To prove X is NP-Complete, show

• Show that X is in NP.
• Give a polynomial-time reduction from a known NP-Complete problem such
as SAT to X

SAT ≤P X implies that every NP-complete problem Y ≤P X. Why?
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3-SAT is NP-Complete

• 3-SAT is in NP
• SAT ≤P 3-SAT as we saw
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NP-Completeness via Reductions

• SAT is NP-Complete due to Cook-Levin theorem
• SAT ≤P 3-SAT
• 3-SAT ≤P Independent Set
• Independent Set ≤P Vertex Cover
• Independent Set ≤P Clique
• 3-SAT ≤P 3-Color
• 3-SAT ≤P Hamiltonian Cycle

Hundreds and thousands of different problems from many areas of science and
engineering have been shown to be NP-Complete.

A surprisingly frequent phenomenon!
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Reducing 3-SAT to Independent Set



Independent Set

Problem: Independent Set

Instance: A graph G, integer k.
Question: Is there an independent set in G of size k?
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Interpreting 3SAT

There are two ways to think about 3SAT

• Find a way to assign 0/1 (false/true) to the variables such that the formula
evaluates to true, that is each clause evaluates to true.

• Pick a literal from each clause and find a truth assignment to make all of
them true. You will fail if two of the literals you pick are in conflict, i.e., you
pick xi and ¬xi

We will take the second view of 3SAT to construct the reduction.
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The Reduction

• Gϕ will have one vertex for each literal in a clause
• 2- Connect the 3 literals in a clause to form a triangle; the independent set
will pick at most one vertex from each clause, which will correspond to the
literal to be set to true

• 4- Connect 2 vertices if they label complementary literals; this ensures that
the literals corresponding to the independent set do not have a conflict

• 5- Take k to be the number of clauses

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

Figure 1: Graph for ϕ = (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x4) 34
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Correctness

Lemma
ϕ is satisfiable iff Gϕ has an independent set of size k (= number of clauses in ϕ).

Proof.

⇒ Let a be the truth assignment satisfying ϕ
• 2- Pick one of the vertices, corresponding to true literals under a, from each
triangle. This is an independent set of the appropriate size. Why?
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Correctness (contd)

Lemma
ϕ is satisfiable iff Gϕ has an independent set of size k (= number of clauses in ϕ).

Proof.

⇐ Let S be an independent set of size k
• S must contain exactly one vertex from each clause triangle
• S cannot contain vertices labeled by conflicting literals
• Thus, it is possible to obtain a truth assignment that makes in the literals in S
true; such an assignment satisfies one literal in every clause
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Other NP-Complete problems



Graph Coloring



Graph Coloring

Problem: Graph Coloring

Instance: G = (V, E): Undirected graph, integer k.
Question: Can the vertices of the graph be colored using k colors
so that vertices connected by an edge do not get the same color?
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Graph 3-Coloring

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph.
Question: Can the vertices of the graph be colored using 3 colors
so that vertices connected by an edge do not get the same color?

‘
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Graph Coloring

Observation: If G is colored with k colors then each color class (nodes of same
color) form an independent set in G. Thus, G can be partitioned into k
independent sets iff G is k-colorable.

Graph 2-Coloring can be decided in polynomial time.

G is 2-colorable iff G is bipartite! There is a linear time algorithm to check if G is
bipartite using Breadth-first-Search
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Hamiltonian Cycle



Directed Hamiltonian Cycle

Input Given a directed graph G = (V, E) with n vertices
Goal Does G have a Hamiltonian cycle?

• 2- A Hamiltonian cycle is a cycle in the graph that visits every
vertex in G exactly once
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