
NP-C problems & reductions 
redux 

All mistakes are my own! - Ivan Abraham (Fall 2024)

Sides based on material by Kani, Erickson, Chekuri, et. al.



Reduction from 3SAT to Hamiltonian 
cycle
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Directed Hamiltonian cycle

Input:  Given a directed graph   
with   vertices. 


Goal: Does   have a Hamiltonian cycle?  


A Hamiltonian cycle is a cycle in the 
graph that visits every vertex in   exactly 
once

G = (V, E)
n

G

G
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Question
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Is the following graph Hamiltonian?




Directed Hamiltonian cycle is NP-C

• Directed Hamiltonian Cycle is in NP: exercise 


• Hardness: We will show 


• 3-SAT   Directed Hamiltonian Cycle≤p
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Reduction

Given 3-SAT formula   create a graph    such that 


•    has a Hamiltonian cycle if and only if   is satisfiable 


•   should be constructible from   by a polynomial time algorithm


Notation:   has   variables   and   clauses  .

φ Gφ

Gφ φ

Gφ φ

φ n x1, x2, . . . , xn m C1, C2, . . . , Cm

 6



Reduction
Encoding idea I

Need to create a graph from any arbitrary boolean 
assignment. Consider the expression:


 


We create a cyclic graph that always has a 
Hamiltonian cyle.

f(X1) = 1
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 v1n−1

 v1n

…

But how do we encode the variable?



Reduction
Encoding idea I

Need to create a graph 
from any arbitrary boolean 
assignment. Consider the 
expression:


 


Maybe we can encode the 
variable   in terms of the 
cycle direction.

f(X1) = 1

X1
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If  X1 = 1
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If  X1 = 0
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Reduction
Encoding idea II

How do we encode multiple 
variables?


 


Maybe two circles?

f(X1, X2) = 1
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Reduction
Encoding idea II

How do we encode multiple 
variables?


 


Need to connect them so that 
we have a single hamiltonian 
path for each possible variable 
assignment. 

f(X1, X2) = 1
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Reduction
Encoding idea II
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How do we encode multiple 
variables?


 


Would be nice to have a single 
start/stop node.

f(X1, X2) = 1
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Reduction
Encoding idea II
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Getting a bit messy. Let’s 
reorganize:
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Reduction
Encoding idea III
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….. X1

How do we handle clauses ? 


Lets go back to our one variable 
graph.



Reduction
Encoding idea III
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How do we handle a clause ?


   


Add node for clause.


Enforces traversal in single 
direction. 

f(X1) = X1
 v11

 v12
 v13

 v14
 v1n−2

 v1n−1
 v1_n

 t

 s

….. X1

 C1



Reduction
Encoding idea III
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How do we handle a clause ?


What do we do if the clause has 
two literals?


 f(X1, X2) = (X1 ∨ X2)

 C1
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Reduction
Encoding idea III
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How do we handle clauses ?


What if the expression has multiple 
clauses?


 f(X1, X2) = (X1 ∨ X2) ∧ (X1 ∨ X2)
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The Reduction
Review I

• Traverse path   from left to right 
if and only if   is set to true 


• Each path has   nodes 
where   is number of clauses in 
 ; nodes numbered from left to 
right  

i
xi

3(m + 1)
m

φ
(1 to 3m + 3)
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The Reduction
Review II

• Add vertex   for clause   . 


• Vertex   has edge from vertex   
and to vertex   on path   if 
  appears in clause   , and


• Has edge from vertex   and 
to vertex   if   appears in   .

cj Cj

cj 3j
3j + 1 i

xi Cj

3j + 1
3j ¬xi Cj
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 x1

 x2

 x3

 x4

 x1 ∨ ¬x2 ∨ x4  ¬x1 ∨ ¬x2 ∨ ¬x3



The Reduction
Review II
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 x1

 x2

 x3

 x4

 ¬x1 ∨ ¬x2 ∨ ¬x3

• Add vertex   for clause   . 


• Vertex   has edge from vertex   
and to vertex   on path   if 
  appears in clause   , and


• Has edge from vertex   and 
to vertex   if   appears in   .

cj Cj

cj 3j
3j + 1 i

xi Cj

3j + 1
3j ¬xi Cj

 x1 ∨ ¬x2 ∨ x4



Correctness proof

• Theorem:   has a satisfying assignment iff   has a Hamiltonian cycle. 


• Based on proving if and only if part seperately. 


• Only if: If   has a satisfying assignment then   has a Hamilton cycle. 


• By construction (we just did it)


• If: If   has a Hamilton cycle then   has a satisfying assignment.


• Far more involved … we will skip (see Kani’s archived slides). 

φ Gφ

φ Gφ

Gφ φ
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Hamiltonian cycle in undirected graphs

Problem 


Input: Given undirected graph   


Goal: Does   have a Hamiltonian cycle? 


That is, is there a cycle that visits every vertex exactly one (except start and 
end vertex)?

G = (V, E)

G
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NP-Completeness

Theorem: Hamiltonian cycle problem for undirected graphs is NP-complete. 


Proof  

• The problem is in NP; proof left as exercise. 


• Hardness proved by reducing directed Hamiltonian cycle to this problem


• Need to go from directed graph to undirected graph
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Reduction sketch
Goal: Given directed graph  , need to construct undirected graph   such that   has 
Hamiltonian cycle iff   has Hamiltonian cycle.  

• Replace each vertex   by 3 vertices:  ,  , and  


• A directed edge   is replaced by edge  

G G′ G
G′ 

v vi v vo

(a, b) {ao, bi}
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Reduction sketch
Goal: Given directed graph  , need to construct undirected graph   such that   has 
Hamiltonian cycle iff   has Hamiltonian cycle.  

• Replace each vertex   by 3 vertices:  ,  , and  


• A directed edge   is replaced by edge  

G G′ G
G′ 

v vi v vo

(a, b) {ao, bi}

a c
v

b d
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Hamiltonian cycle reduction
Directed to undirected
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 ⟹



Hamiltonian cycle reduction
Directed to undirected
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 ⟹



Hamiltonian paths

Input: Given a graph   with   vertices 


Goal: Does   have a Hamiltonian path? 


A Hamiltonian path is a path in the graph that visits every vertex in   
exactly once


Theorem:  Directed Hamiltonian Path and Undirected Hamiltonian Path are NP-
Complete. 


Easy to modify the reduction from 3-SAT to Hamiltonian Cycle or do a 
reduction from Hamiltonian Cycle

G = (V, E) n

G

G
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NP-completeness of graph coloring
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Instance:  : Undirected graph, integer  . 


Question: Can the vertices of the graph be colored using   colors so that 
vertices connected by an edge do not get the same color?

G = (V, E) k

k

Generic graph coloring
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NP-completeness of graph coloring
Graph 3-Coloring

Instance:  : Undirected graph, integer  . 


Question: Can the vertices of the graph be colored using   colors so that 
vertices connected by an edge do not get the same color?

G = (V, E) k = 3

3



Graph coloring

Observation: If   is colored with   colors then each color class (nodes of same 
color) form an independent set in  . Thus,   can be partitioned into   
independent sets iff   is  -colorable. 


Graph 2-Coloring can be decided in polynomial time. 


•   is 2-colorable iff   is bipartite! There is a linear time algorithm to check if   
is bipartite using Breadth-first-Search.

G k
G G k

G k

G G G
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Graph 2-Coloring



Problems related to graph coloring 
Graph coloring and register allocation

Register Allocation: Assign variables to (at most)   registers such that variables 
needed at the same time are not assigned to the same register 


Interference Graph: Vertices are variables, and there is an edge between two 
vertices, if the two variables are “live” at the same time. 


Observations 


• [Chaitin] Register allocation problem is equivalent to coloring the 
interference graph with   colors 


• Moreover, 3-COLOR   - Register Allocation, for any  

k

k

≤P k k ≥ 3
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Given   classes and their meeting times, are   rooms sufficient? 


Reduce to Graph  -Coloring problem 


Create graph   


•  a node   for each class   


• an edge between   and   if classes   and   conflict 


Exercise:   is  -colorable iff   rooms are sufficient

n k

k

G

vi i

vi vj i j

G k k
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Problems related to graph coloring 
Class scheduling



Cellular telephone systems that use Frequency Division Multiple Access (FDMA) 
(example: GSM in Europe and Asia and AT&T in USA) 


• Breakup a frequency range   into disjoint bands of frequencies 
 


• Each cell phone tower (simplifying) gets one band 


• Constraint: nearby towers cannot get same band, otherwise signals will interfere


Problem: given   bands and some region with   towers, is there a way to assign the 
bands to avoid interference?


Can reduce to  -coloring by creating interference/conflict graph on towers.

[a, b]
[a0, b0], [a1, b1], . . . , [ak, bk]

k n

k
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Problems related to graph coloring 
Frequency assignments in cellular networks



Showing hardness of 3-COLORING
3-Coloring is NP-Complete

• 3-Coloring is in NP


• Non-deterministically guess a 3-coloring for each node 


• Check if for each edge  , the color of   is different from that of  


• Hardness: We will show 3-SAT   3-Coloring.

(u, v) u v

≤P
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Reduction idea I - Simple 3-color gadget

We want to create a gadget that: 


• Is 3 colorable if at least one of the literals is true 


• Not 3-colorable if none of the literals are true 


Let’s start off with the simplest SAT we can think of:


 


Assume green=true and red=false, essentially need to create an OR-gate with 
graph coloring. 

f(X1, X2) = (X1 ∨ X2)

 35



 


• Is 3 colorable if at least one of the literals is true 


• Not 3-colorable if none of the literals are true 

f(X1, X2) = (X1 ∨ X2)

Reduction Idea I - simple 3-color gadget

 36 Fix output to be green



Reduction Idea I - Simple 3-color gadget

We want to create a gadget that: 


• Is 3 colorable if at least one of the literals is true 


• Not 3-colorable if none of the literals are true 


How do we do the same thing for 3 variables?:


 


Assume green=true and red=false.

f(X1, X2, X3) = (X1 ∨ X2 ∨ X3)

 37



3-color this gadget I

You are given three colors: red, green and blue. Can the following graph be 
three colored in a valid way (assuming that some of the nodes are already 
colored as indicated).
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A. Yes


B. No



3-color this gadget II

You are given three colors: red, green and blue. Can the following graph be 
three colored in a valid way (assuming that some of the nodes are already 
colored as indicated).
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A. Yes


B. No



Clause satisfiability gadget
For each clause  , create a small 
gadget graph 


• gadget graph connects to nodes corresponding 
to   


• needs to implement OR 


OR-gadget-graph

Cj = (a ∨ b ∨ c)

a, b, c
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a

b

c

 a ∨ b

 a ∨ b ∨ c

If a, b, c are colored False 
in a 3-coloring then 
output node of OR-
gadget has to be colored 
False.

If one of a, b, c is colored 
True then OR-gadget can 
be 3-colored such that 
output node of OR-gadget 
is colored True.



Reduction Idea II
Literal assignment I

Next we need a gadget that assigns literals. 
Our previously constructed gadget 
assumes: 


• All literals are either red or green. 


• Need to limit graph so only   or   is 
green. Other must be red.

x1 x̄1
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Reduction idea
Start with 3SAT formula (i.e., 3CNF formula)   with   
variables   and  clauses  . Create 
graph   such that   is 3-colorable iff   is satisfiable 


• need to establish truth assignment for   
via colors for some nodes in   


• create triangle with nodes: True, False, Base 


• for each variable   two nodes   and   connected 
in a triangle with common Base 


• If graph is 3-colored, either   or   gets the same 
color as True. Interpret this as a truth assignment 
to   

φ n
X1, . . . , Xn m C1, . . . , Cm

Gφ Gφ φ

X1, . . . , Xn
Gφ

Xi vi v̄i

vi v̄i

vi
 42

T F

BASE
 vn

 vn

 v2
 v2

 v1

 v1



Reduction

• For each clause  , add OR-gadget graph with input nodes 
  and connect output node of gadget to both False and Base.


• Claim: No legal 3-coloring of below graph (with coloring of nodes T, F, B fixed) 
in which a, b, c are colored False. If any of a, b, c are colored True then there 
is a legal 3-coloring of below graph.

Cj = (a ∨ b ∨ c)
a, b, c
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a

b

c

 a ∨ b

 a ∨ b ∨ c

BASE

T

F



Reduction Outline

Example:  


 φ = (u ∨ ¬v ∨ w) ∧ (v ∨ x ∨ ¬y)
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Palette

Variable and 
negation have 

complementary 
colors      

iterals get color 
T or F 



Correctness of reduction
  is satisfiable implies   is 3-colorable 


•  if   is assigned True, color   True and   False 


• for each clause   at least one of   is colored True. OR-gadget 
for   can be 3-colored such that output is True.


  is 3-colorable implies   is satisfiable 


•  if   is colored True then set   to be True, this is a legal truth assignment 


• consider any clause  . it cannot be that all   are False. If so, 
output of OR-gadget for   has to be colored False but output is connected to 
Base and False

φ Gφ

xi vi v̄i

Cj = (a ∨ b ∨ c) a, b, c
Cj

Gφ φ

vi xi

Cj = (a ∨ b ∨ c) a, b, c
Cj
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