

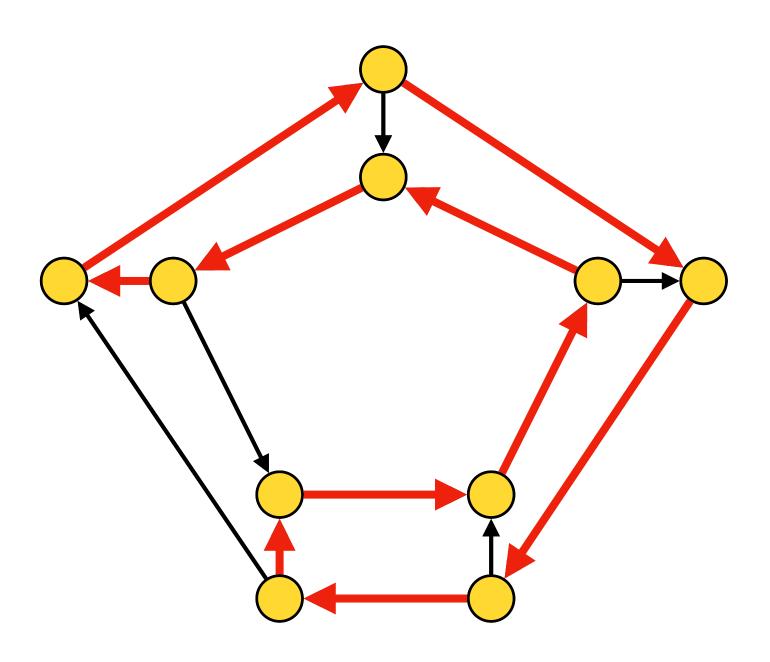
Reduction from 3SAT to Hamiltonian cycle

Directed Hamiltonian cycle

Input: Given a directed graph G = (V, E) with n vertices.

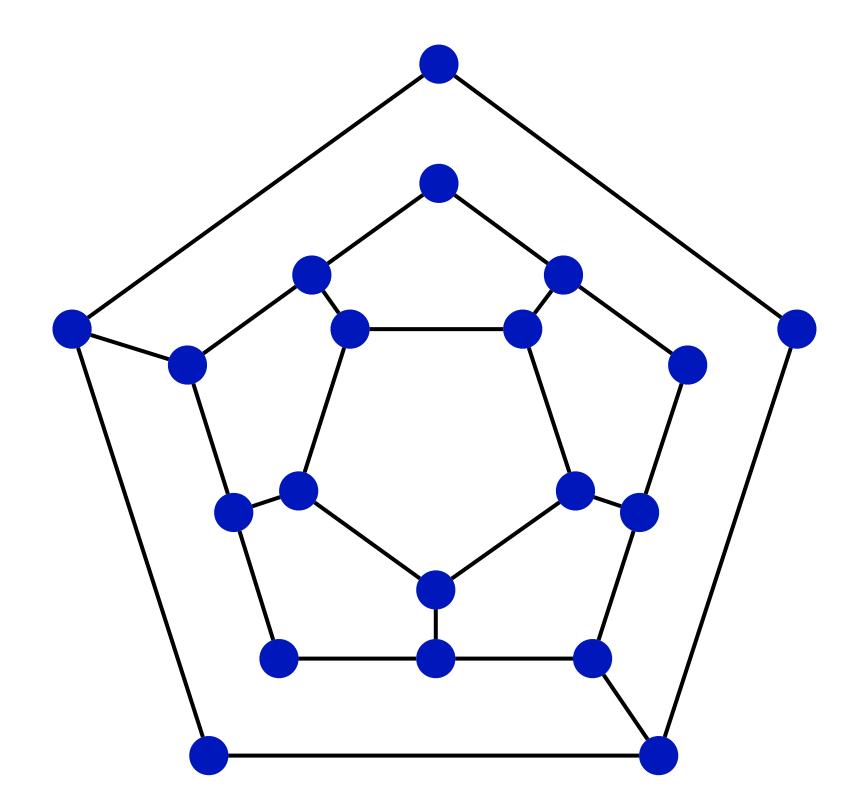
Goal: Does G have a Hamiltonian cycle?

A *Hamiltonian cycle* is a cycle in the graph that visits every vertex in *G* exactly once



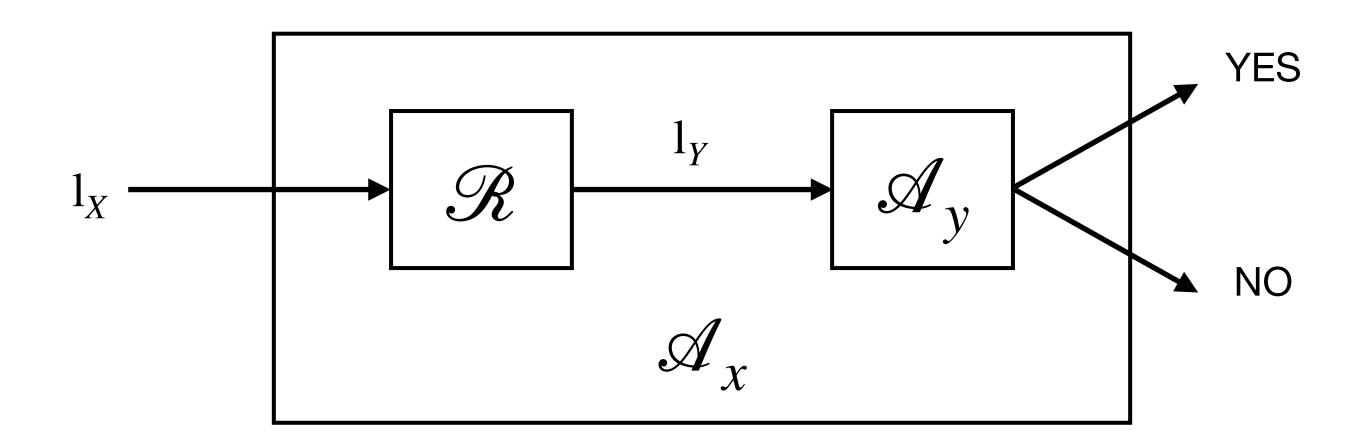
Question

Is the following graph Hamiltonian?



Directed Hamiltonian cycle is NP-C

- Directed Hamiltonian Cycle is in NP: exercise
- Hardness: We will show
- 3-SAT \leq_p Directed Hamiltonian Cycle



Given 3-SAT formula φ create a graph G_{φ} such that

- G_{φ} has a Hamiltonian cycle if and only if φ is satisfiable
- G_{φ} should be constructible from φ by a polynomial time algorithm

Notation: φ has n variables x_1, x_2, \ldots, x_n and m clauses C_1, C_2, \ldots, C_m .

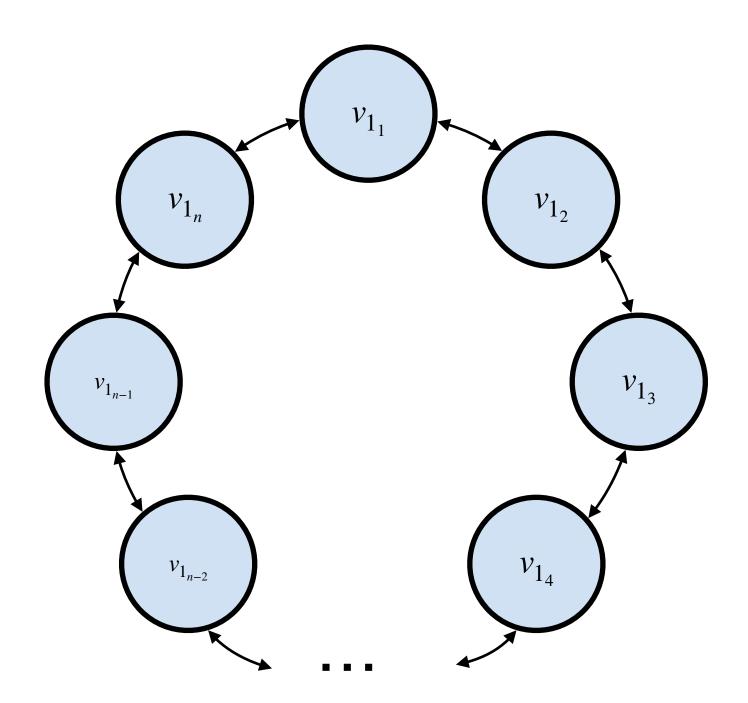
Encoding idea I

Need to create a graph from any arbitrary boolean assignment. Consider the expression:

$$f(X_1) = 1$$

We create a cyclic graph that always has a Hamiltonian cyle.

But how do we encode the variable?

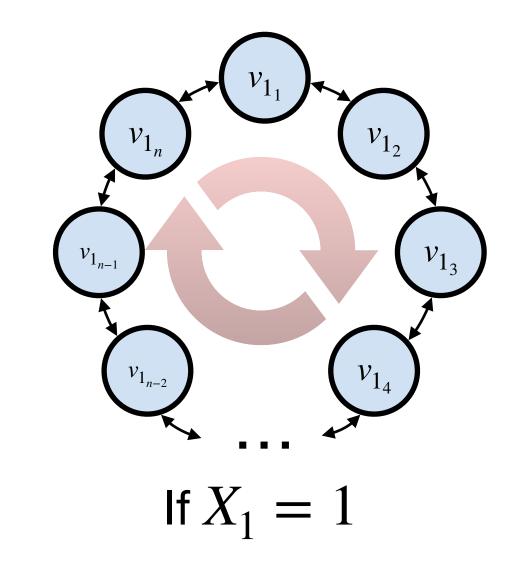


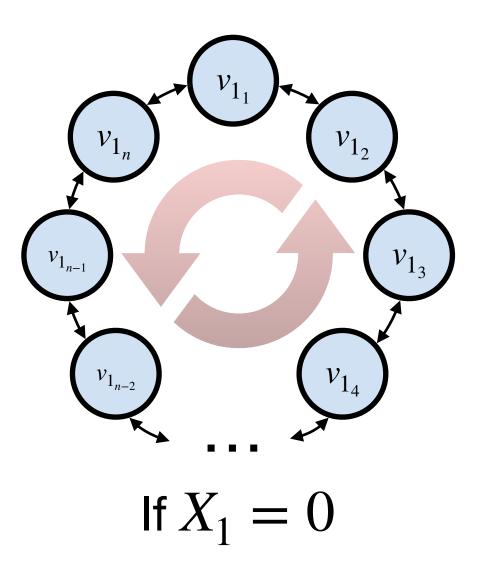
Reduction Encoding ideal

Need to create a graph from any arbitrary boolean assignment. Consider the expression:

$$f(X_1) = 1$$

Maybe we can encode the variable X_1 in terms of the cycle direction.



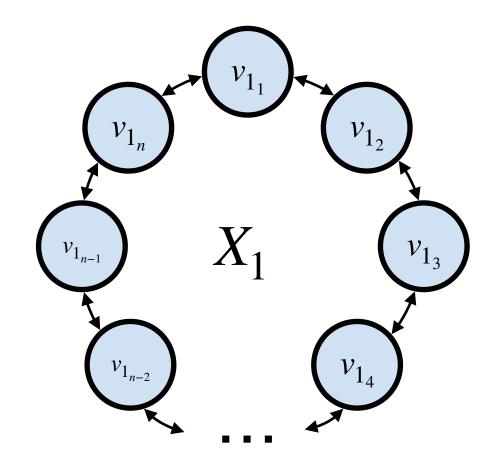


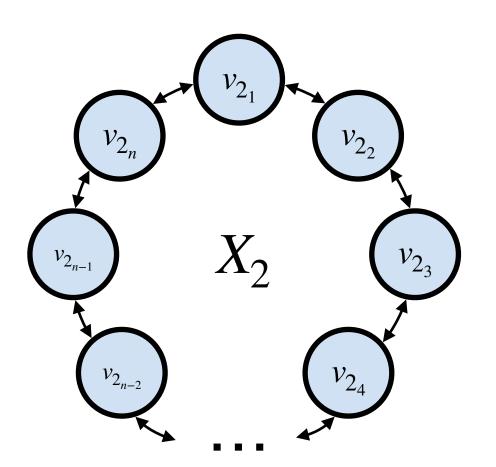
Encoding idea II

How do we encode multiple variables?

$$f(X_1, X_2) = 1$$

Maybe two circles?



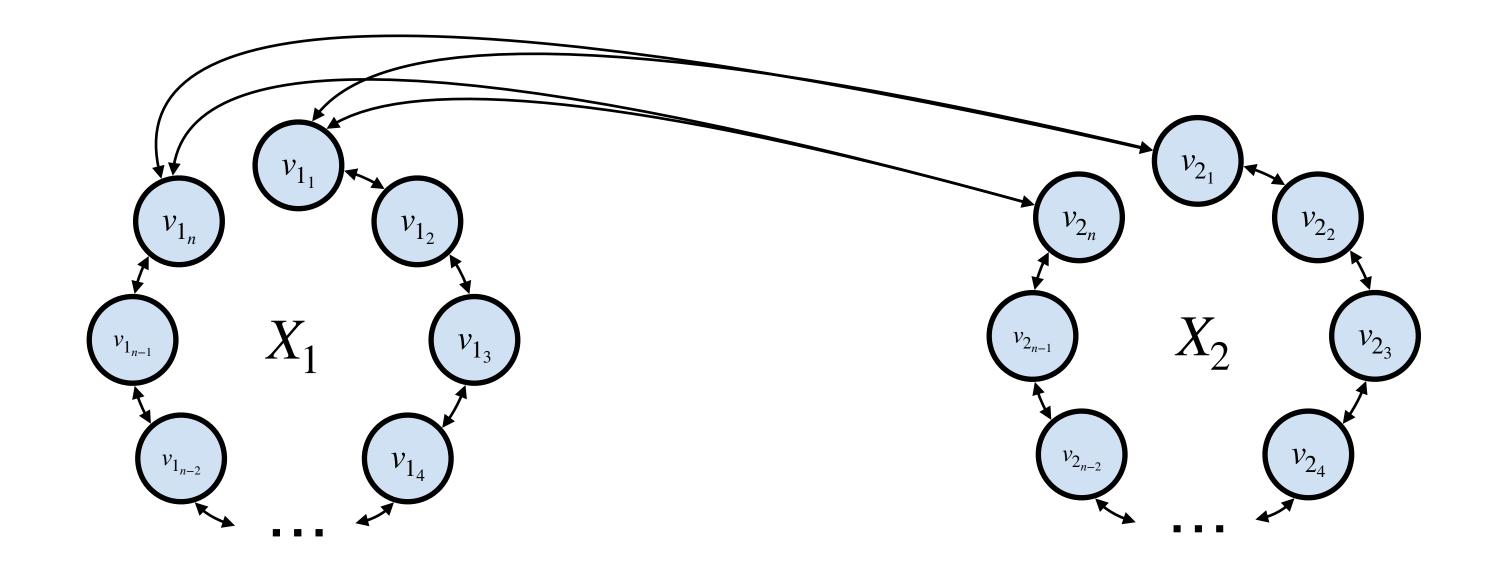


Encoding idea II

How do we encode multiple variables?

$$f(X_1, X_2) = 1$$

Need to connect them so that we have a single hamiltonian path for each possible variable assignment.

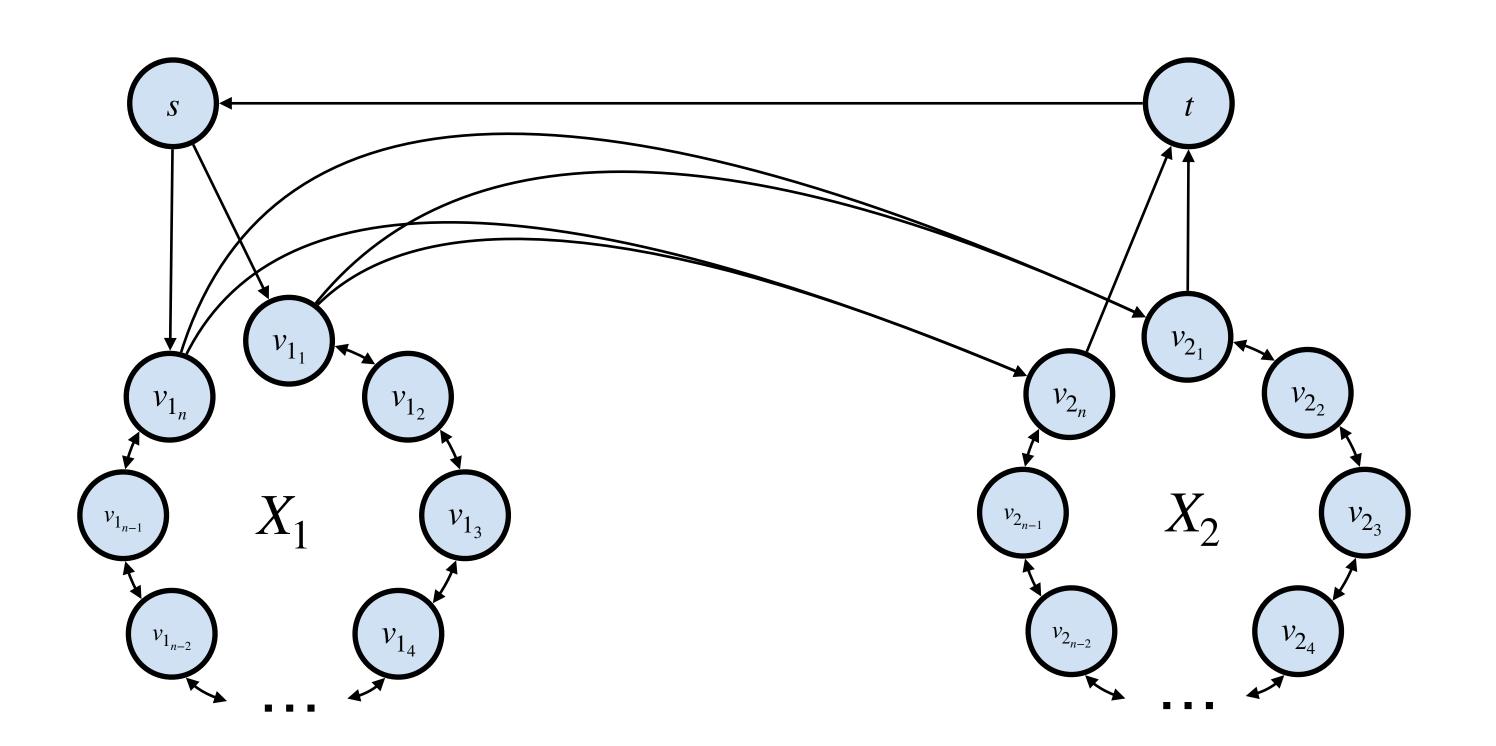


Encoding idea II

How do we encode multiple variables?

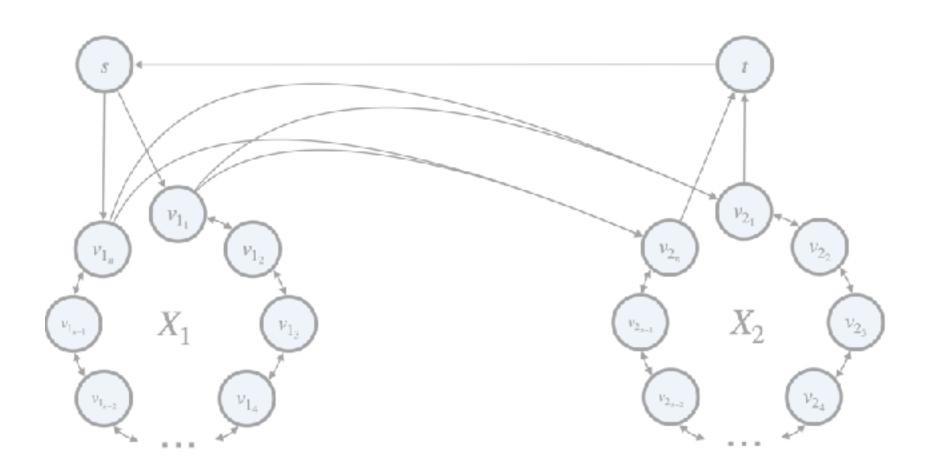
$$f(X_1, X_2) = 1$$

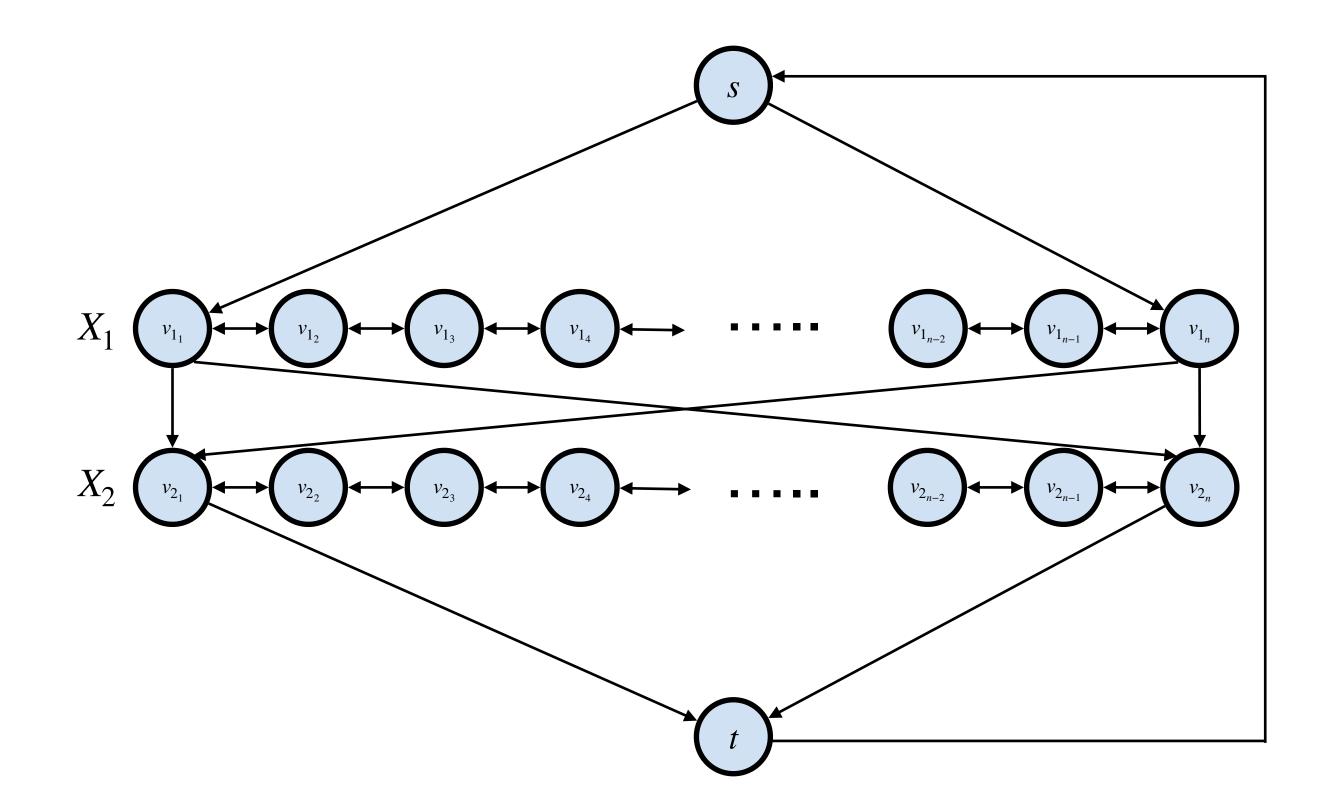
Would be nice to have a single start/stop node.



Encoding idea II

Getting a bit messy. Let's reorganize:

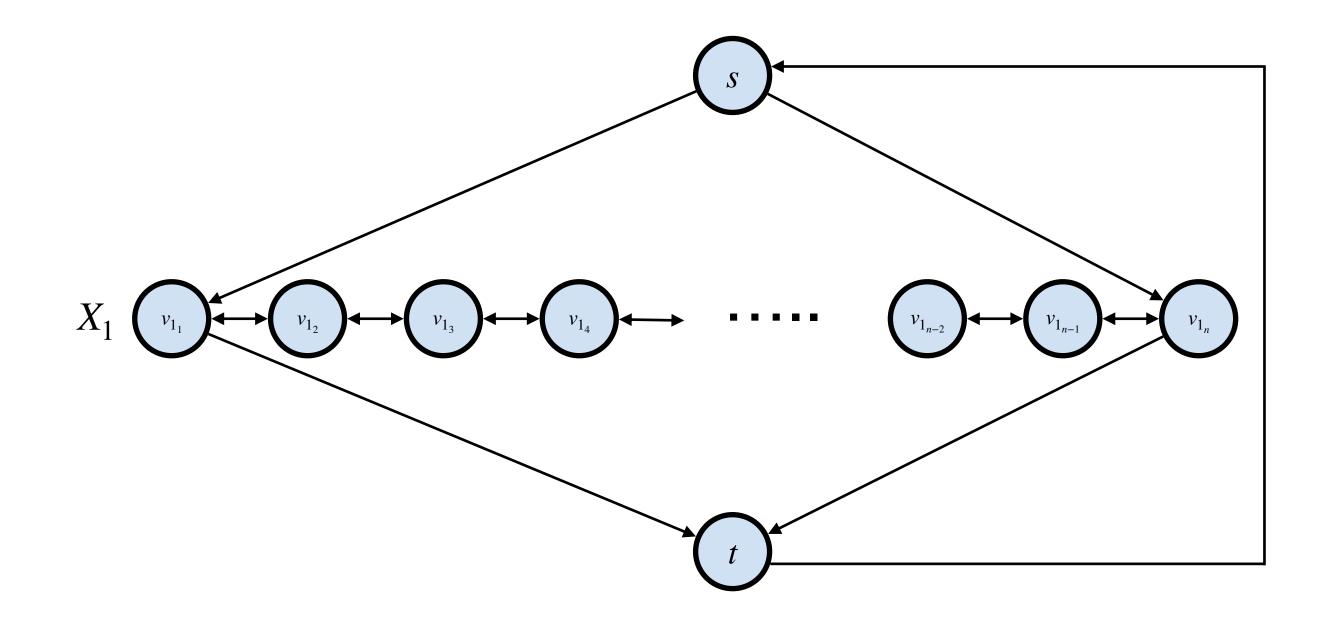




Reduction Encoding idea III

How do we handle clauses?

Lets go back to our one variable graph.



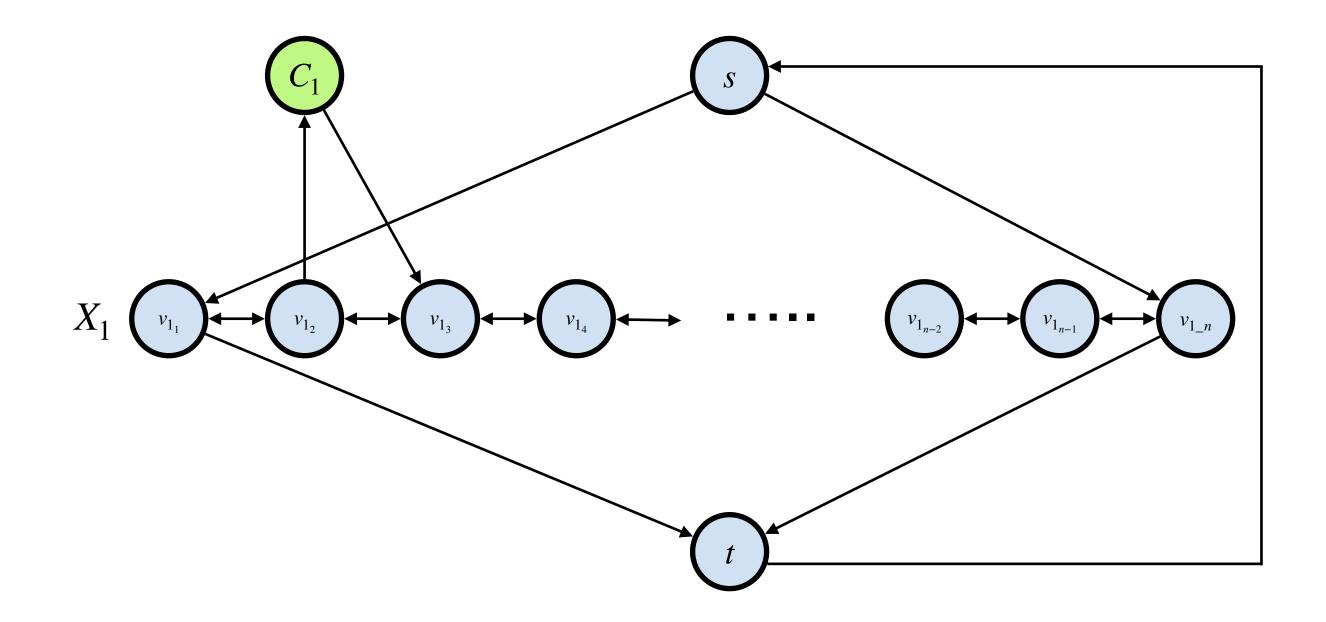
Encoding idea III

How do we handle a clause?

$$f(X_1) = X_1$$

Add node for clause.

Enforces traversal in single direction.

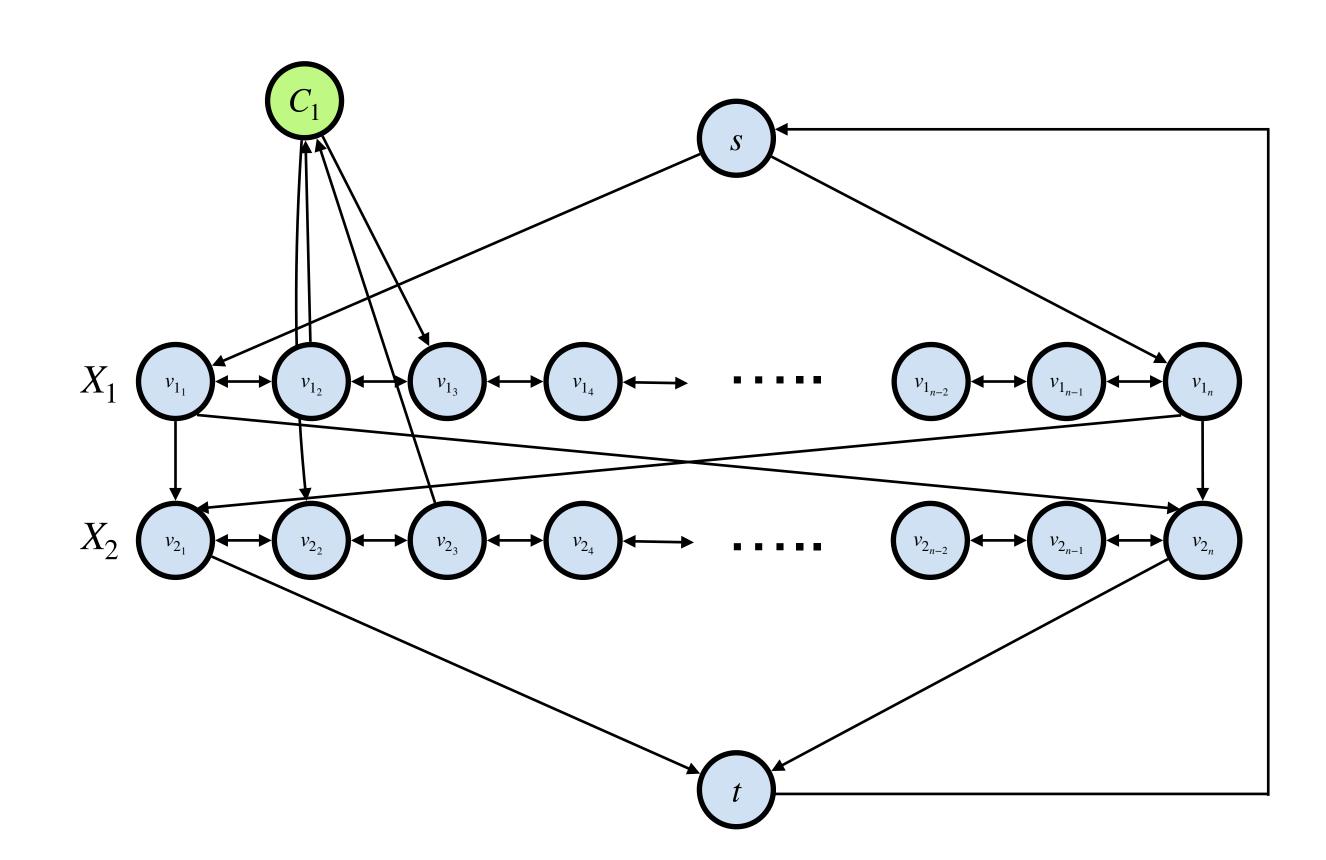


Encoding idea III

How do we handle a clause?

What do we do if the clause has two literals?

$$f(X_1, X_2) = (X_1 \vee \overline{X_2})$$

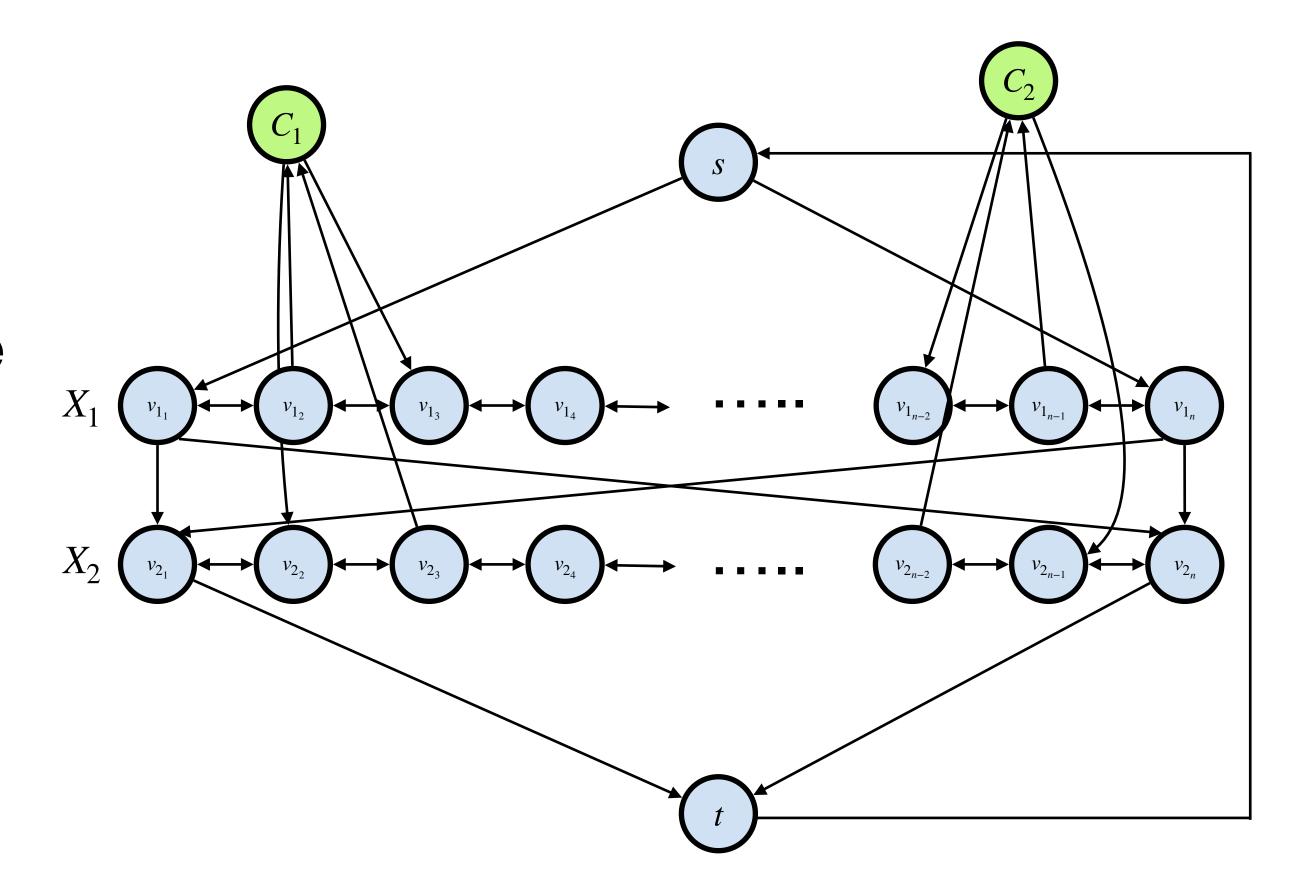


Encoding idea III

How do we handle clauses?

What if the expression has multiple clauses?

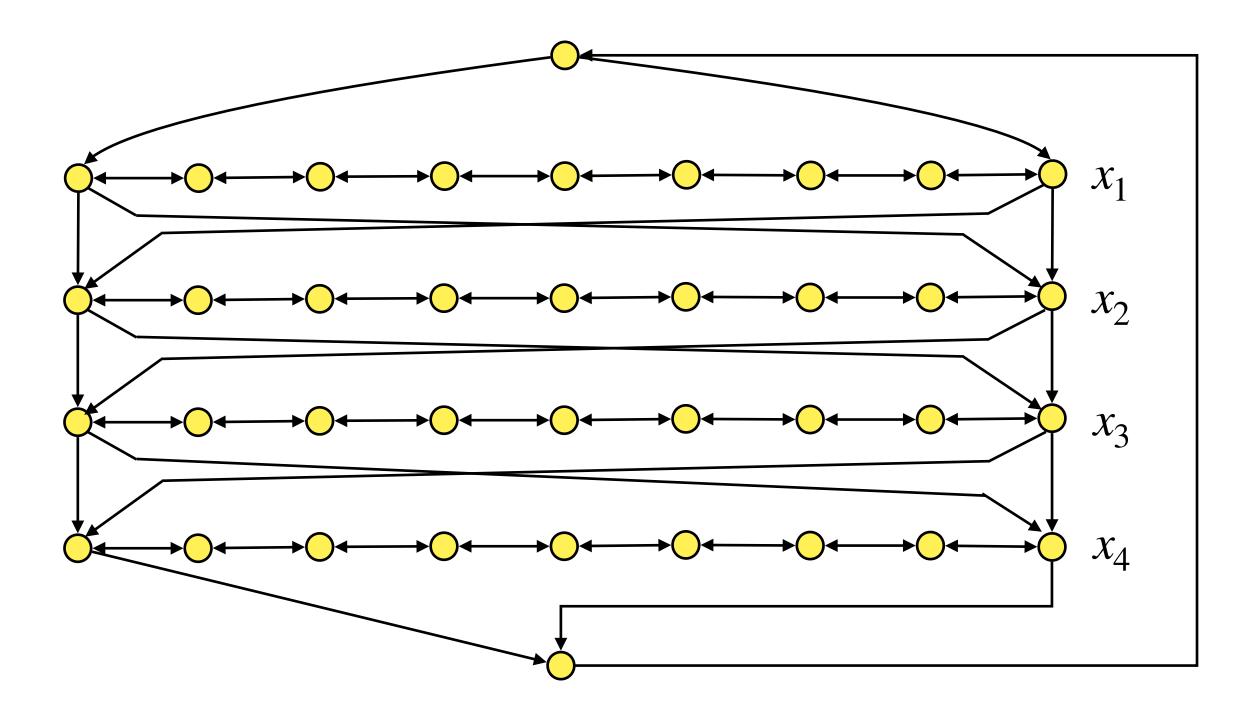
$$f(X_1, X_2) = (X_1 \vee \overline{X_2}) \wedge (\overline{X_1} \vee X_2)$$



The Reduction

Review I

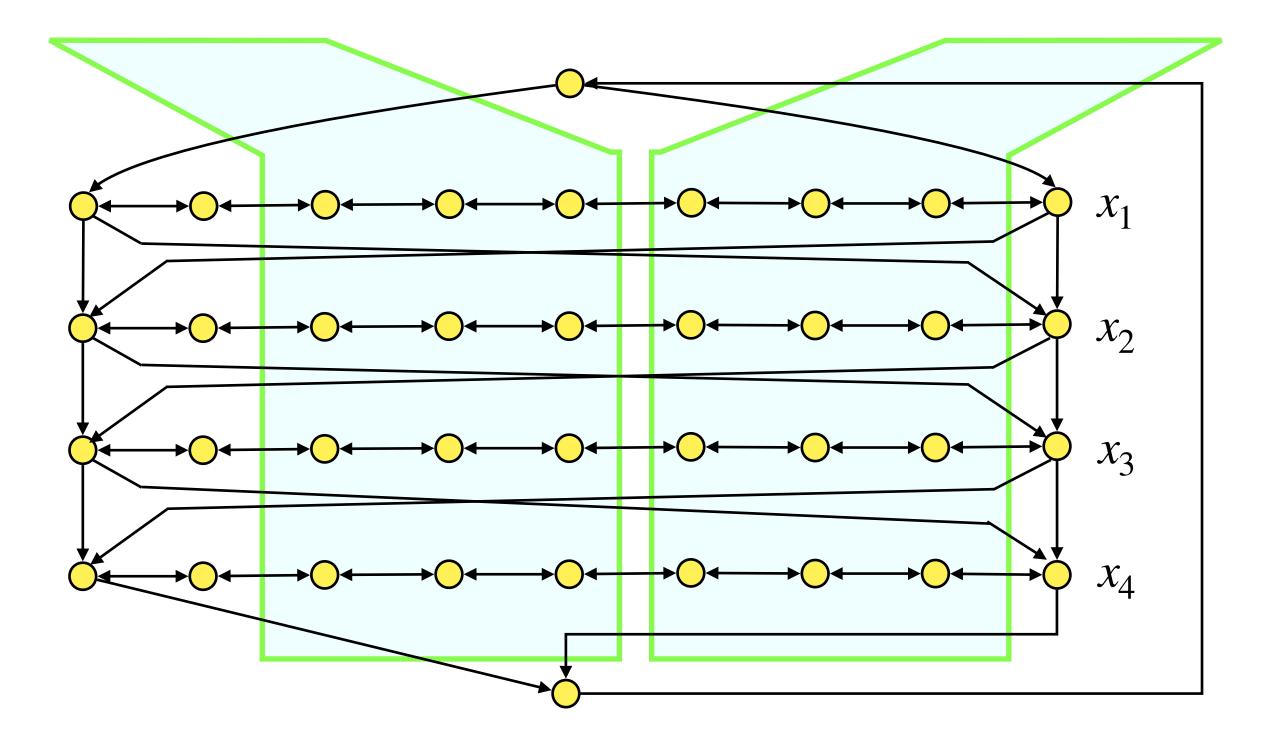
- Traverse path i from left to right if and only if x_i is set to true
- Each path has 3(m + 1) nodes where m is number of clauses in φ ; nodes numbered from left to right (1 to 3m + 3)



The Reduction

Review II

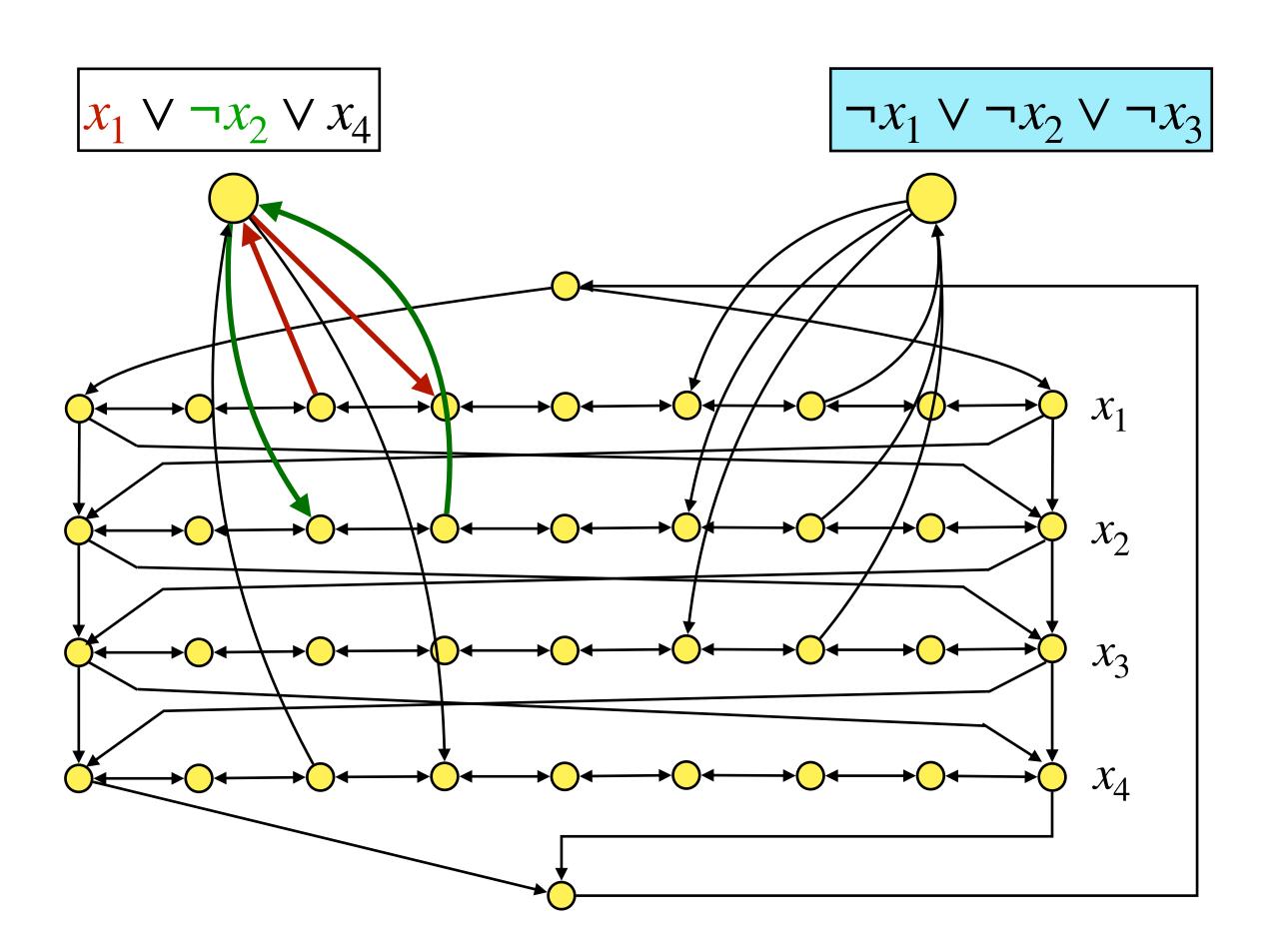
- Add vertex c_j for clause C_j .
- Vertex c_j has edge from vertex 3_j and to vertex $3_j + 1$ on path i if x_i appears in clause C_j , and
- Has edge from vertex $3_j + 1$ and to vertex 3_j if $\neg x_i$ appears in C_j .



The Reduction

Review II

- Add vertex c_j for clause C_j .
- Vertex c_j has edge **from** vertex 3_j and **to** vertex $3_j + 1$ on path i if x_i appears in clause C_j , and
- Has edge *from* vertex $3_j + 1$ and to vertex 3_j if $\neg x_i$ appears in C_j .



Correctness proof

- Theorem: φ has a satisfying assignment iff G_{φ} has a Hamiltonian cycle.
 - Based on proving if and only if part seperately.
- Only if: If φ has a satisfying assignment then G_{φ} has a Hamilton cycle.
 - By construction (we just did it)
- If: If G_{φ} has a Hamilton cycle then φ has a satisfying assignment.
 - Far more involved ... we will skip (see Kani's archived slides).

Hamiltonian cycle in undirected graphs

Problem

Input: Given undirected graph G = (V, E)

Goal: Does G have a Hamiltonian cycle?

That is, is there a cycle that visits every vertex exactly one (except start and end vertex)?

NP-Completeness

Theorem: Hamiltonian cycle problem for undirected graphs is NP-complete.

Proof

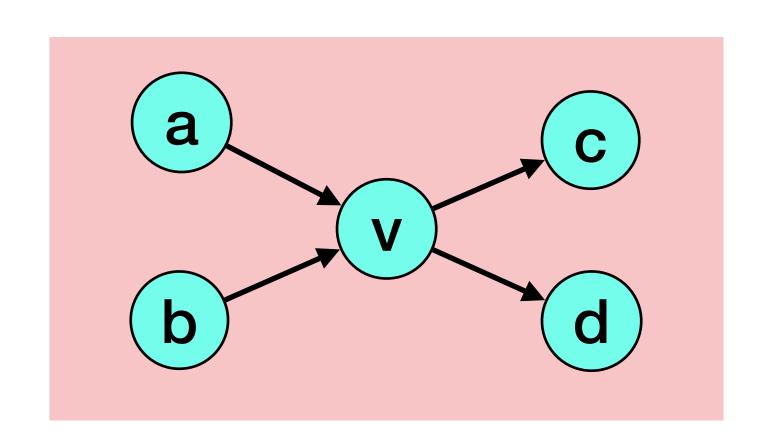
- The problem is in **NP**; proof left as exercise.
- Hardness proved by reducing directed Hamiltonian cycle to this problem
 - Need to go from directed graph to undirected graph

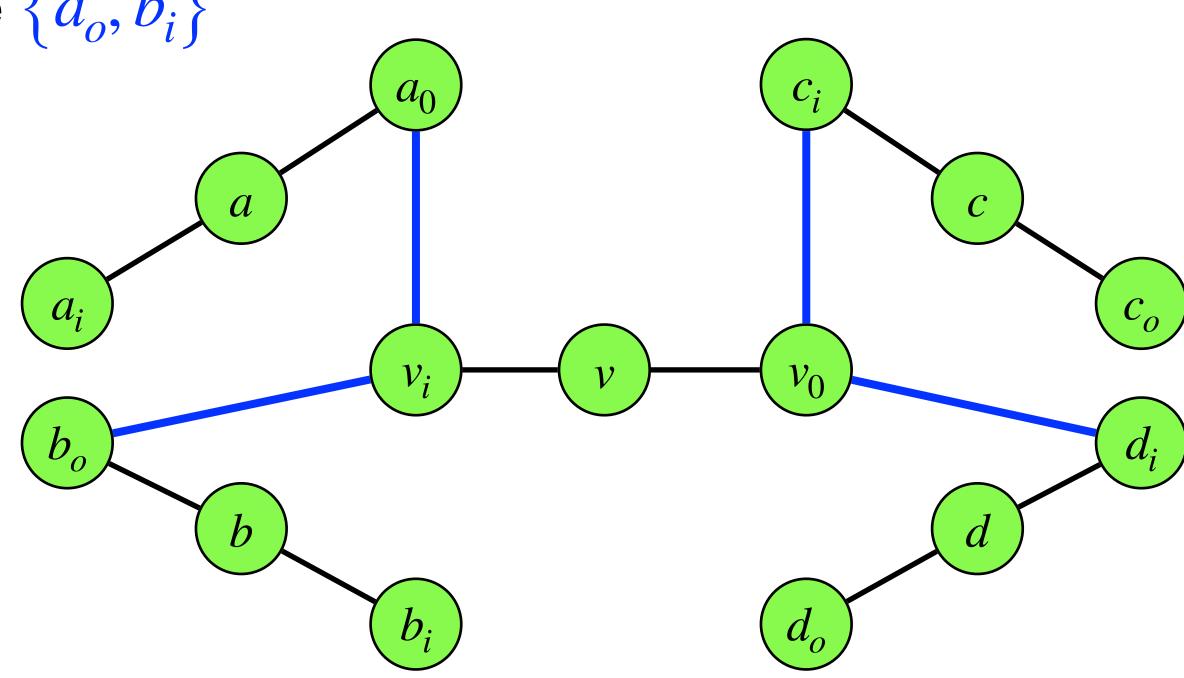
Reduction sketch

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian cycle iff G' has Hamiltonian cycle.

• Replace each vertex v by 3 vertices: v_i , v, and v_o

• A directed edge (a,b) is replaced by edge $\{a_o,b_i\}$



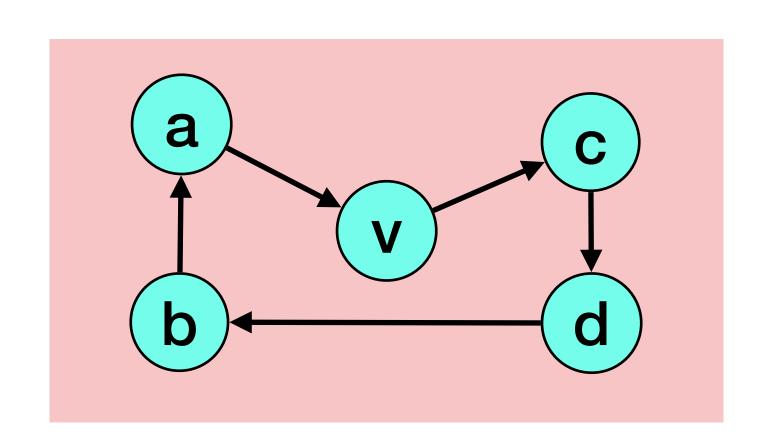


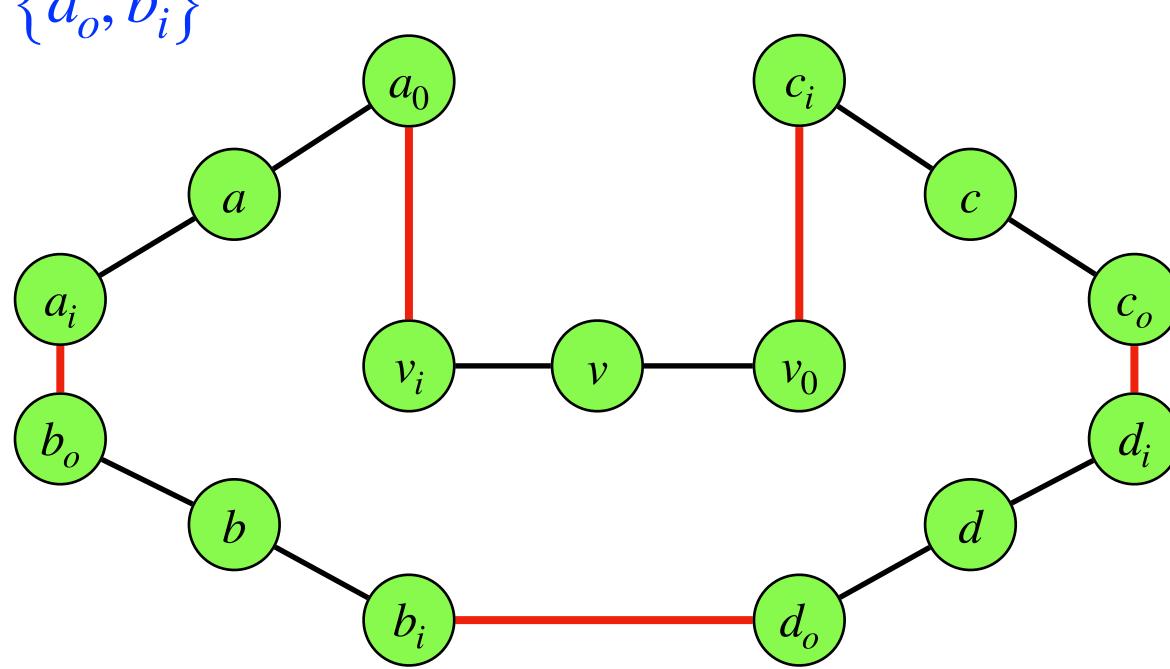
Reduction sketch

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian cycle iff G' has Hamiltonian cycle.

• Replace each vertex v by 3 vertices: v_i , v, and v_o

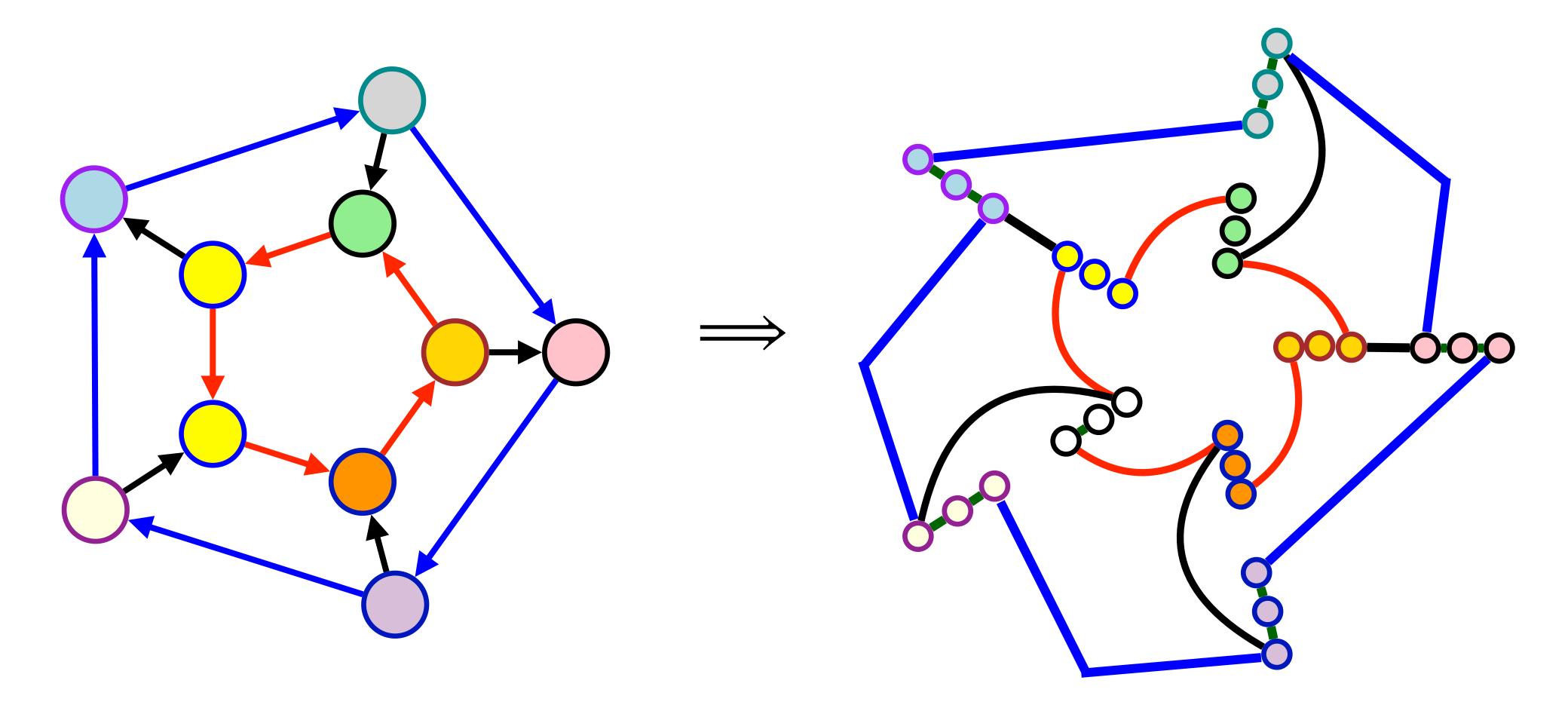
• A directed edge (a,b) is replaced by edge $\{a_o,b_i\}$





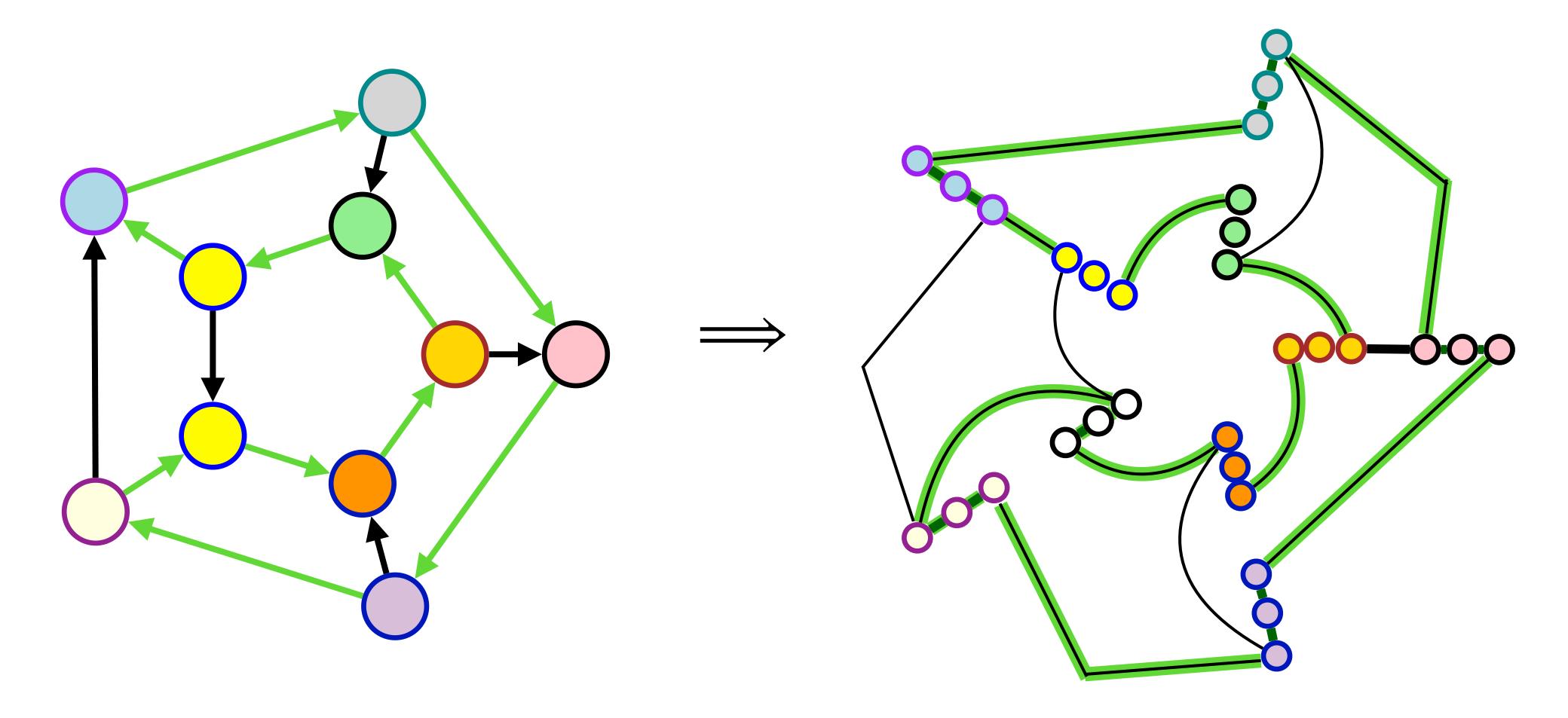
Hamiltonian cycle reduction

Directed to undirected



Hamiltonian cycle reduction

Directed to undirected



Hamiltonian paths

Input: Given a graph G = (V, E) with n vertices

Goal: Does G have a Hamiltonian path?

A $Hamiltonian\ path$ is a path in the graph that visits every vertex in G exactly once

Theorem: Directed Hamiltonian Path and Undirected Hamiltonian Path are NP-Complete.

Easy to modify the reduction from 3-SAT to Hamiltonian Cycle or do a reduction from Hamiltonian Cycle

NP-completeness of graph coloring Generic graph coloring

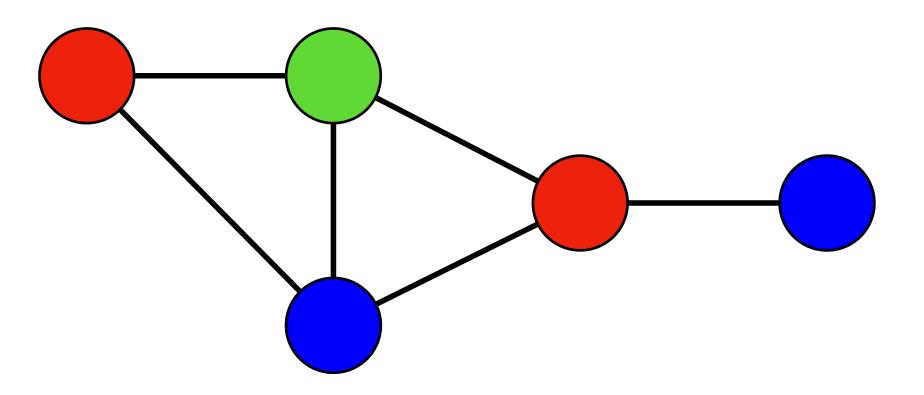
Instance: G = (V, E): Undirected graph, integer k.

Question: Can the vertices of the graph be colored using k colors so that vertices connected by an edge **do not** get the same color?

NP-completeness of graph coloring Graph 3-Coloring

Instance: G = (V, E): Undirected graph, integer k = 3.

Question: Can the vertices of the graph be colored using 3 colors so that vertices connected by an edge do not get the same color?



Graph coloring

Graph 2-Coloring

Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G. Thus, G can be partitioned into k independent sets *iff* G is k-colorable.

Graph 2-Coloring can be decided in polynomial time.

• G is 2-colorable iff G is bipartite! There is a linear time algorithm to check if G is bipartite using Breadth-first-Search.

Problems related to graph coloring

Graph coloring and register allocation

Register Allocation: Assign variables to (at most) k registers such that variables needed at the same time are not assigned to the same register

Interference Graph: Vertices are variables, and there is an edge between two vertices, if the two variables are "live" at the same time.

Observations

- [Chaitin] Register allocation problem is equivalent to coloring the interference graph with k colors
- Moreover, 3-COLOR $\leq_P k$ Register Allocation, for any $k \geq 3$

Problems related to graph coloring Class scheduling

Given n classes and their meeting times, are k rooms sufficient?

Reduce to Graph k-Coloring problem

Create graph G

- a node v_i for each class i
- an edge between v_i and v_j if classes i and j conflict

Exercise: G is k-colorable *iff* k rooms are sufficient

Problems related to graph coloring

Frequency assignments in cellular networks

Cellular telephone systems that use Frequency Division Multiple Access (FDMA) (example: GSM in Europe and Asia and AT&T in USA)

- Breakup a frequency range [a, b] into disjoint <u>bands</u> of frequencies $[a_0, b_0], [a_1, b_1], \dots, [a_k, b_k]$
- Each cell phone tower (simplifying) gets one band
- Constraint: nearby towers cannot get same band, otherwise signals will interfere

Problem: given k bands and some region with n towers, is there a way to assign the bands to avoid interference?

Can reduce to k-coloring by creating interference/conflict graph on towers.

Showing hardness of 3-COLORING3-Coloring is NP-Complete

- 3-Coloring is in NP
 - Non-deterministically guess a 3-coloring for each node
 - Check if for each edge (u, v), the color of u is different from that of v
- Hardness: We will show 3-SAT \leq_P 3-Coloring.

Reduction idea I - Simple 3-color gadget

We want to create a gadget that:

- Is 3 colorable if at least one of the literals is true
- Not 3-colorable if none of the literals are true

Let's start off with the simplest SAT we can think of:

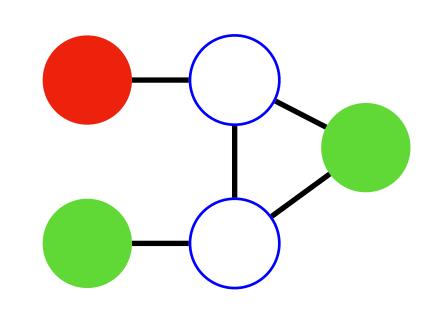
$$f(X_1, X_2) = (X_1 \lor X_2)$$

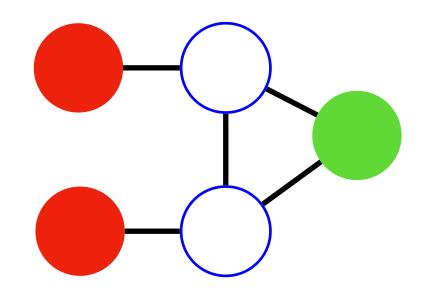
Assume green=true and red=false, essentially need to create an OR-gate with graph coloring.

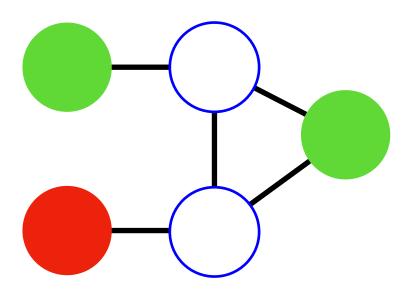
Reduction Idea I - simple 3-color gadget

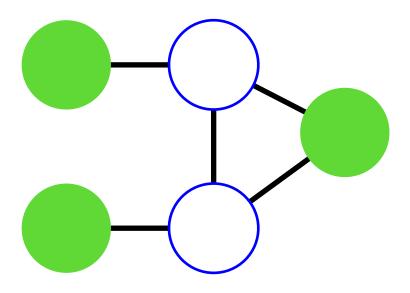
$$f(X_1, X_2) = (X_1 \lor X_2)$$

- Is 3 colorable if at least one of the literals is true
- Not 3-colorable if none of the literals are true









Reduction Idea I - Simple 3-color gadget

We want to create a gadget that:

- Is 3 colorable if at least one of the literals is true
- Not 3-colorable if none of the literals are true

How do we do the same thing for 3 variables?:

$$f(X_1, X_2, X_3) = (X_1 \lor X_2 \lor X_3)$$

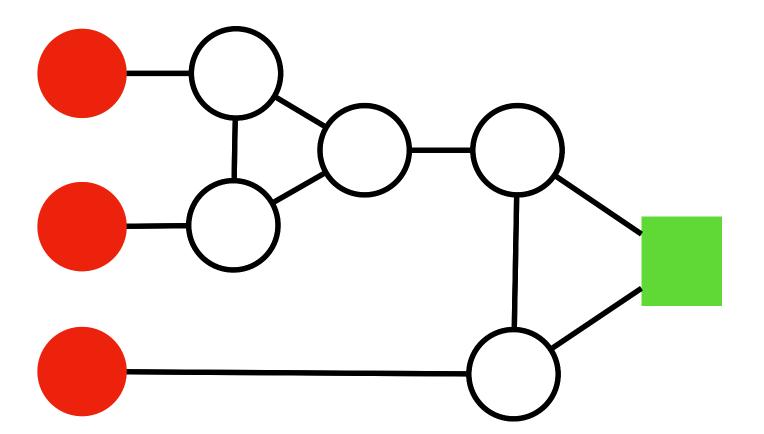
Assume green=true and red=false.

3-color this gadget I

You are given three colors: red, green and blue. Can the following graph be three colored in a valid way (assuming that some of the nodes are already colored as indicated).

A. Yes

B. No

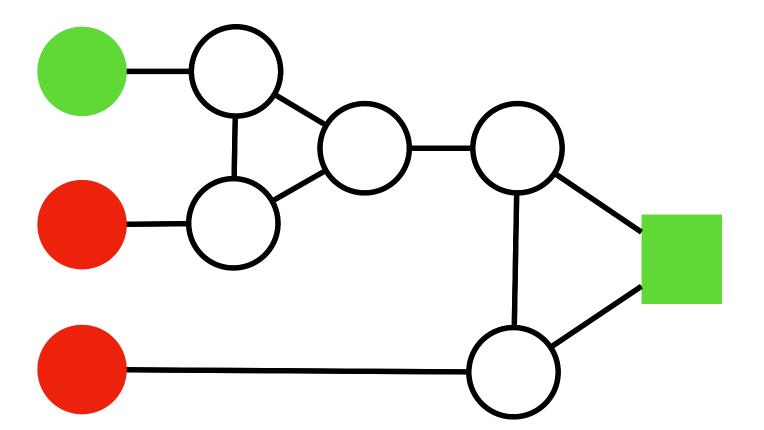


3-color this gadget II

You are given three colors: red, green and blue. Can the following graph be three colored in a valid way (assuming that some of the nodes are already colored as indicated).

A. Yes

B. No



Clause satisfiability gadget

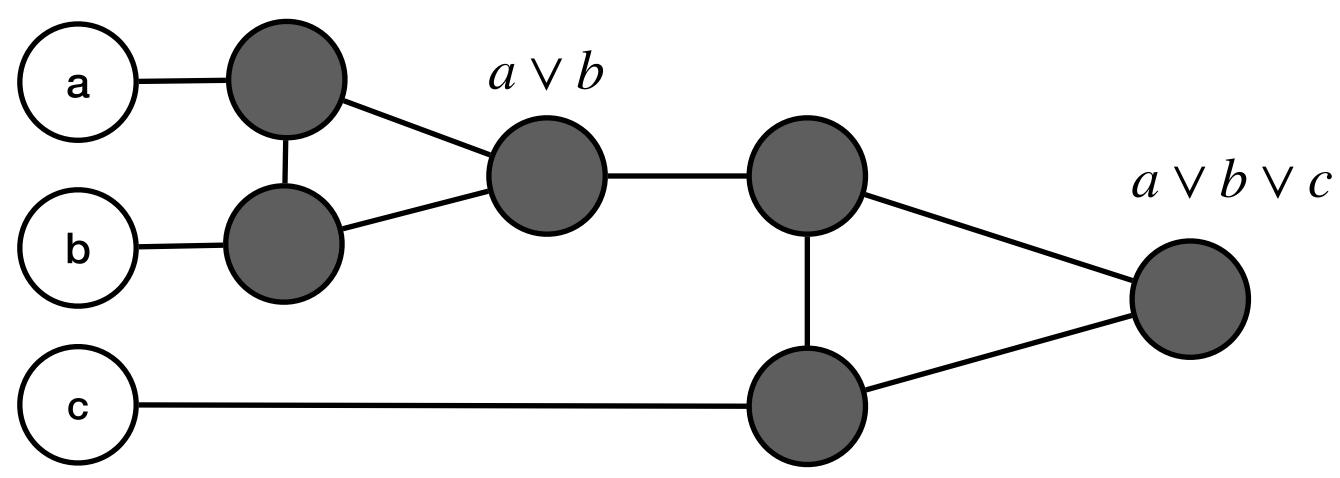
For each clause $C_j = (a \lor b \lor c)$, create a small gadget graph

- gadget graph connects to nodes corresponding to a, b, c
- needs to implement OR

OR-gadget-graph

If a, b, c are colored False in a 3-coloring then output node of OR-gadget has to be colored False.

If one of a, b, c is colored True then OR-gadget can be 3-colored such that output node of OR-gadget is colored True.

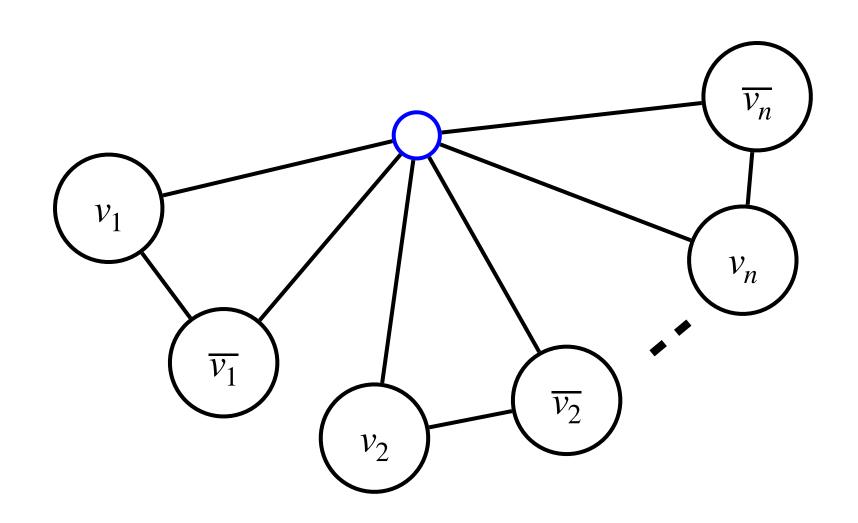


Reduction Idea II

Literal assignment I

Next we need a gadget that assigns literals. Our previously constructed gadget assumes:

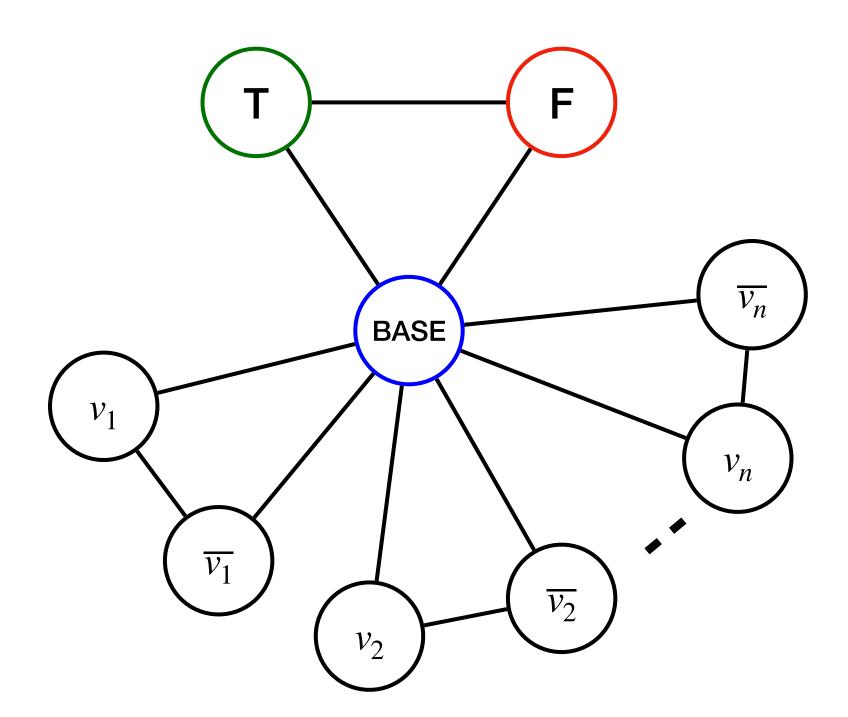
- All literals are either red or green.
- Need to limit graph so only x_1 or $\bar{x_1}$ is green. Other must be red.



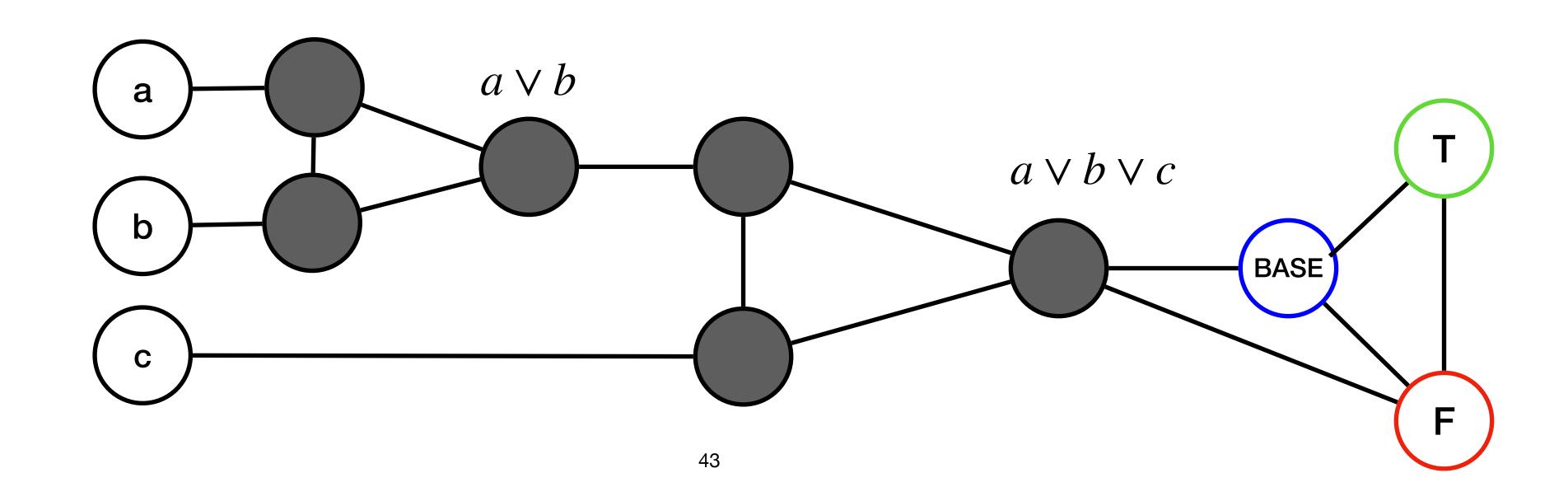
Reduction idea

Start with **3SAT** formula (i.e., 3CNF formula) φ with n variables X_1, \ldots, X_n and m clauses C_1, \ldots, C_m . Create graph G_{φ} such that G_{φ} is 3-colorable iff φ is satisfiable

- need to establish truth assignment for X_1, \dots, X_n via colors for some nodes in G_{φ}
- create triangle with nodes: True, False, Base
- for each variable X_i two nodes v_i and \bar{v}_i connected in a triangle with common Base
- If graph is 3-colored, either v_i or \bar{v}_i gets the same color as True. Interpret this as a truth assignment to v_i



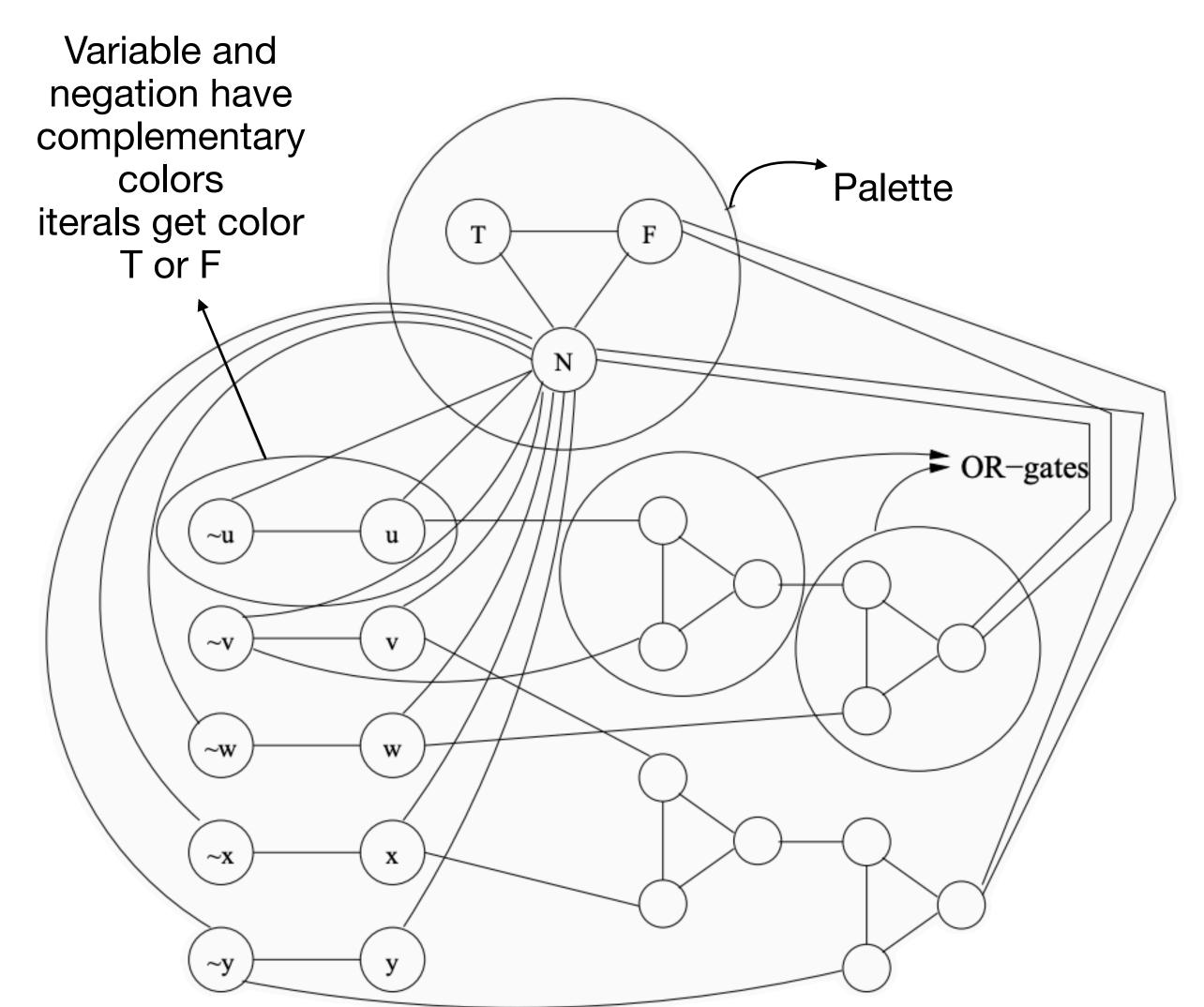
- For each clause $C_j = (a \lor b \lor c)$, add OR-gadget graph with input nodes a, b, c and connect output node of gadget to both False and Base.
- Claim: No legal 3-coloring of below graph (with coloring of nodes T, F, B fixed) in which a, b, c are colored False. If any of a, b, c are colored True then there is a legal 3-coloring of below graph.



Reduction Outline

Example:

$$\varphi = (u \lor \neg v \lor w) \land (v \lor x \lor \neg y)$$



Correctness of reduction

 φ is satisfiable implies G_{φ} is 3-colorable

- if x_i is assigned True, color v_i True and \bar{v}_i False
- for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_i can be 3-colored such that output is True.

 G_{φ} is 3-colorable implies φ is satisfiable

- if v_i is colored True then set x_i to be True, this is a legal truth assignment
- consider any clause $C_j = (a \lor b \lor c)$. it cannot be that all a, b, c are False. If so, output of OR-gadget for C_j has to be colored False but output is connected to Base and False