
NP-C problems & reductions 
redux 

All mistakes are my own! - Ivan Abraham (Fall 2024)

Sides based on material by Kani, Erickson, Chekuri, et. al.



Reduction from 3SAT to Hamiltonian 
cycle
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Directed Hamiltonian cycle

Input:  Given a directed graph ￼  
with ￼  vertices. 


Goal: Does ￼  have a Hamiltonian cycle?  


A Hamiltonian cycle is a cycle in the 
graph that visits every vertex in ￼  exactly 
once

G = (V, E)
n

G

G
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Question
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Is the following graph Hamiltonian?




Directed Hamiltonian cycle is NP-C

• Directed Hamiltonian Cycle is in NP: exercise 


• Hardness: We will show 


• 3-SAT ￼  Directed Hamiltonian Cycle≤p
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Reduction

Given 3-SAT formula ￼  create a graph ￼   such that 


•  ￼  has a Hamiltonian cycle if and only if ￼  is satisfiable 


• ￼  should be constructible from ￼  by a polynomial time algorithm


Notation: ￼  has ￼  variables ￼  and ￼  clauses ￼ .

φ Gφ

Gφ φ

Gφ φ

φ n x1, x2, . . . , xn m C1, C2, . . . , Cm
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Reduction
Encoding idea I

Need to create a graph from any arbitrary boolean 
assignment. Consider the expression:


￼ 


We create a cyclic graph that always has a 
Hamiltonian cyle.

f(X1) = 1
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￼v11

￼v12

￼v13

￼v14
￼v1n−2

￼v1n−1

￼v1n

…

But how do we encode the variable?



Reduction
Encoding idea I

Need to create a graph 
from any arbitrary boolean 
assignment. Consider the 
expression:


￼ 


Maybe we can encode the 
variable ￼  in terms of the 
cycle direction.

f(X1) = 1

X1
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If ￼X1 = 1

￼v11

￼v12

￼v13

￼v14
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…
If ￼X1 = 0
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Reduction
Encoding idea II

How do we encode multiple 
variables?


￼ 


Maybe two circles?

f(X1, X2) = 1
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￼X1

￼v11
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￼v13
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￼v1n−1

￼v1n

…
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￼X2



Reduction
Encoding idea II

How do we encode multiple 
variables?


￼ 


Need to connect them so that 
we have a single hamiltonian 
path for each possible variable 
assignment. 

f(X1, X2) = 1
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￼v2n

￼v2n−2

￼v2n−1

￼v24

￼v23

￼v22

￼v21￼v11

￼v12

￼v13

￼v14
￼v1n−2

￼v1n−1

￼v1n

…… …

￼X1 ￼X2



Reduction
Encoding idea II
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How do we encode multiple 
variables?


￼ 


Would be nice to have a single 
start/stop node.

f(X1, X2) = 1
￼v11

￼v12

￼v13

￼v14
￼v1n−2

￼v1n−1

￼v1n

…
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￼v24
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…

￼X1 ￼X2

￼s ￼t



Reduction
Encoding idea II
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Getting a bit messy. Let’s 
reorganize:

￼v11
￼v12

￼v13
￼v14

￼v1n−2
￼v1n−1

￼v1n

￼v21
￼v22

￼v23
￼v24

￼v2n−2
￼v2n−1

￼v2n

￼t

￼s

…..

…..

￼X1

￼X2



Reduction
Encoding idea III
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￼v11
￼v12

￼v13
￼v14

￼v1n−2
￼v1n−1

￼v1n

￼t

￼s

…..￼X1

How do we handle clauses ? 


Lets go back to our one variable 
graph.



Reduction
Encoding idea III
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How do we handle a clause ?


  ￼ 


Add node for clause.


Enforces traversal in single 
direction. 

f(X1) = X1
￼v11

￼v12
￼v13

￼v14
￼v1n−2

￼v1n−1
￼v1_n

￼t
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…..￼X1

￼C1



Reduction
Encoding idea III
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How do we handle a clause ?


What do we do if the clause has 
two literals?


￼f(X1, X2) = (X1 ∨ X2)

￼C1
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Reduction
Encoding idea III
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How do we handle clauses ?


What if the expression has multiple 
clauses?


￼f(X1, X2) = (X1 ∨ X2) ∧ (X1 ∨ X2)

￼v11
￼v12

￼v13
￼v14

￼v1n−2
￼v1n−1

￼v1n

￼v21
￼v22

￼v23
￼v24
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The Reduction
Review I

• Traverse path ￼ from left to right 
if and only if ￼  is set to true 


• Each path has ￼  nodes 
where ￼  is number of clauses in 
￼ ; nodes numbered from left to 
right ￼

i
xi

3(m + 1)
m

φ
(1 to 3m + 3)

￼17

￼x1

￼x2

￼x3

￼x4



The Reduction
Review II

• Add vertex ￼  for clause ￼  . 


• Vertex ￼  has edge from vertex ￼  
and to vertex ￼  on path ￼ if 
￼  appears in clause ￼  , and


• Has edge from vertex ￼  and 
to vertex ￼  if ￼  appears in ￼  .

cj Cj

cj 3j
3j + 1 i

xi Cj

3j + 1
3j ¬xi Cj
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￼x1

￼x2

￼x3

￼x4

￼x1 ∨ ¬x2 ∨ x4 ￼¬x1 ∨ ¬x2 ∨ ¬x3



The Reduction
Review II
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￼x1

￼x2

￼x3

￼x4

￼¬x1 ∨ ¬x2 ∨ ¬x3

• Add vertex ￼  for clause ￼  . 


• Vertex ￼  has edge from vertex ￼  
and to vertex ￼  on path ￼ if 
￼  appears in clause ￼  , and


• Has edge from vertex ￼  and 
to vertex ￼  if ￼  appears in ￼  .

cj Cj

cj 3j
3j + 1 i

xi Cj

3j + 1
3j ¬xi Cj

￼x1 ∨ ¬x2 ∨ x4



Correctness proof

• Theorem: ￼  has a satisfying assignment iff ￼  has a Hamiltonian cycle. 


• Based on proving if and only if part seperately. 


• Only if: If ￼  has a satisfying assignment then ￼  has a Hamilton cycle. 


• By construction (we just did it)


• If: If ￼  has a Hamilton cycle then ￼  has a satisfying assignment.


• Far more involved … we will skip (see Kani’s archived slides). 

φ Gφ

φ Gφ

Gφ φ
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Hamiltonian cycle in undirected graphs

Problem 


Input: Given undirected graph ￼  


Goal: Does ￼  have a Hamiltonian cycle? 


That is, is there a cycle that visits every vertex exactly one (except start and 
end vertex)?

G = (V, E)

G

￼21



NP-Completeness

Theorem: Hamiltonian cycle problem for undirected graphs is NP-complete. 


Proof  

• The problem is in NP; proof left as exercise. 


• Hardness proved by reducing directed Hamiltonian cycle to this problem


• Need to go from directed graph to undirected graph

￼22



Reduction sketch
Goal: Given directed graph ￼ , need to construct undirected graph ￼  such that ￼  has 
Hamiltonian cycle iff ￼  has Hamiltonian cycle.  

• Replace each vertex ￼  by 3 vertices: ￼ , ￼ , and ￼ 


• A directed edge ￼  is replaced by edge ￼

G G′￼ G
G′￼

v vi v vo

(a, b) {ao, bi}
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a c
v

b d

￼a0

￼b

￼vi ￼v ￼v0

￼c

￼d

￼ai

￼a

￼bo

￼bi

￼ci

￼co

￼di

￼do



Reduction sketch
Goal: Given directed graph ￼ , need to construct undirected graph ￼  such that ￼  has 
Hamiltonian cycle iff ￼  has Hamiltonian cycle.  

• Replace each vertex ￼  by 3 vertices: ￼ , ￼ , and ￼ 


• A directed edge ￼  is replaced by edge ￼

G G′￼ G
G′￼

v vi v vo

(a, b) {ao, bi}

a c
v

b d
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￼a0

￼b

￼vi ￼v ￼v0

￼c

￼d

￼ai

￼a

￼bo

￼bi

￼ci

￼co

￼di

￼do



Hamiltonian cycle reduction
Directed to undirected
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￼⟹



Hamiltonian cycle reduction
Directed to undirected
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￼⟹



Hamiltonian paths

Input: Given a graph ￼  with ￼  vertices 


Goal: Does ￼  have a Hamiltonian path? 


A Hamiltonian path is a path in the graph that visits every vertex in ￼  
exactly once


Theorem:  Directed Hamiltonian Path and Undirected Hamiltonian Path are NP-
Complete. 


Easy to modify the reduction from 3-SAT to Hamiltonian Cycle or do a 
reduction from Hamiltonian Cycle

G = (V, E) n

G

G
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NP-completeness of graph coloring
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Instance: ￼ : Undirected graph, integer ￼ . 


Question: Can the vertices of the graph be colored using ￼  colors so that 
vertices connected by an edge do not get the same color?

G = (V, E) k

k

Generic graph coloring
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NP-completeness of graph coloring
Graph 3-Coloring

Instance: ￼ : Undirected graph, integer ￼ . 


Question: Can the vertices of the graph be colored using ￼  colors so that 
vertices connected by an edge do not get the same color?

G = (V, E) k = 3

3



Graph coloring

Observation: If ￼  is colored with ￼  colors then each color class (nodes of same 
color) form an independent set in ￼ . Thus, ￼  can be partitioned into ￼  
independent sets iff ￼  is ￼ -colorable. 


Graph 2-Coloring can be decided in polynomial time. 


• ￼  is 2-colorable iff ￼  is bipartite! There is a linear time algorithm to check if ￼  
is bipartite using Breadth-first-Search.

G k
G G k

G k

G G G
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Graph 2-Coloring



Problems related to graph coloring 
Graph coloring and register allocation

Register Allocation: Assign variables to (at most) ￼  registers such that variables 
needed at the same time are not assigned to the same register 


Interference Graph: Vertices are variables, and there is an edge between two 
vertices, if the two variables are “live” at the same time. 


Observations 


• [Chaitin] Register allocation problem is equivalent to coloring the 
interference graph with ￼  colors 


• Moreover, 3-COLOR ￼  - Register Allocation, for any ￼

k

k

≤P k k ≥ 3
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Given ￼  classes and their meeting times, are ￼  rooms sufficient? 


Reduce to Graph ￼ -Coloring problem 


Create graph ￼  


•  a node ￼  for each class ￼ 


• an edge between ￼  and ￼  if classes ￼ and ￼ conflict 


Exercise: ￼  is ￼ -colorable iff ￼  rooms are sufficient

n k

k

G

vi i

vi vj i j

G k k

￼32

Problems related to graph coloring 
Class scheduling



Cellular telephone systems that use Frequency Division Multiple Access (FDMA) 
(example: GSM in Europe and Asia and AT&T in USA) 


• Breakup a frequency range ￼  into disjoint bands of frequencies 
￼ 


• Each cell phone tower (simplifying) gets one band 


• Constraint: nearby towers cannot get same band, otherwise signals will interfere


Problem: given ￼  bands and some region with ￼  towers, is there a way to assign the 
bands to avoid interference?


Can reduce to ￼ -coloring by creating interference/conflict graph on towers.

[a, b]
[a0, b0], [a1, b1], . . . , [ak, bk]

k n

k
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Problems related to graph coloring 
Frequency assignments in cellular networks



Showing hardness of 3-COLORING
3-Coloring is NP-Complete

• 3-Coloring is in NP


• Non-deterministically guess a 3-coloring for each node 


• Check if for each edge ￼ , the color of ￼  is different from that of ￼ 


• Hardness: We will show 3-SAT ￼  3-Coloring.

(u, v) u v

≤P
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Reduction idea I - Simple 3-color gadget

We want to create a gadget that: 


• Is 3 colorable if at least one of the literals is true 


• Not 3-colorable if none of the literals are true 


Let’s start off with the simplest SAT we can think of:


￼ 


Assume green=true and red=false, essentially need to create an OR-gate with 
graph coloring. 

f(X1, X2) = (X1 ∨ X2)
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￼ 


• Is 3 colorable if at least one of the literals is true 


• Not 3-colorable if none of the literals are true 

f(X1, X2) = (X1 ∨ X2)

Reduction Idea I - simple 3-color gadget

￼36 Fix output to be green



Reduction Idea I - Simple 3-color gadget

We want to create a gadget that: 


• Is 3 colorable if at least one of the literals is true 


• Not 3-colorable if none of the literals are true 


How do we do the same thing for 3 variables?:


￼ 


Assume green=true and red=false.

f(X1, X2, X3) = (X1 ∨ X2 ∨ X3)
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3-color this gadget I

You are given three colors: red, green and blue. Can the following graph be 
three colored in a valid way (assuming that some of the nodes are already 
colored as indicated).

￼38

A. Yes


B. No



3-color this gadget II

You are given three colors: red, green and blue. Can the following graph be 
three colored in a valid way (assuming that some of the nodes are already 
colored as indicated).

￼39

A. Yes


B. No



Clause satisfiability gadget
For each clause ￼ , create a small 
gadget graph 


• gadget graph connects to nodes corresponding 
to ￼  


• needs to implement OR 


OR-gadget-graph

Cj = (a ∨ b ∨ c)

a, b, c
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a

b

c

￼a ∨ b

￼a ∨ b ∨ c

If a, b, c are colored False 
in a 3-coloring then 
output node of OR-
gadget has to be colored 
False.

If one of a, b, c is colored 
True then OR-gadget can 
be 3-colored such that 
output node of OR-gadget 
is colored True.



Reduction Idea II
Literal assignment I

Next we need a gadget that assigns literals. 
Our previously constructed gadget 
assumes: 


• All literals are either red or green. 


• Need to limit graph so only ￼  or ￼  is 
green. Other must be red.

x1 x̄1
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￼vn

￼vn

￼v2
￼v2

￼v1

￼v1



Reduction idea
Start with 3SAT formula (i.e., 3CNF formula) ￼  with ￼  
variables ￼  and ￼ clauses ￼ . Create 
graph ￼  such that ￼  is 3-colorable iff ￼  is satisfiable 


• need to establish truth assignment for ￼  
via colors for some nodes in ￼  


• create triangle with nodes: True, False, Base 


• for each variable ￼  two nodes ￼  and ￼  connected 
in a triangle with common Base 


• If graph is 3-colored, either ￼  or ￼  gets the same 
color as True. Interpret this as a truth assignment 
to ￼  

φ n
X1, . . . , Xn m C1, . . . , Cm

Gφ Gφ φ

X1, . . . , Xn
Gφ

Xi vi v̄i

vi v̄i

vi
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T F

BASE
￼vn

￼vn

￼v2
￼v2

￼v1

￼v1



Reduction

• For each clause ￼ , add OR-gadget graph with input nodes 
￼  and connect output node of gadget to both False and Base.


• Claim: No legal 3-coloring of below graph (with coloring of nodes T, F, B fixed) 
in which a, b, c are colored False. If any of a, b, c are colored True then there 
is a legal 3-coloring of below graph.

Cj = (a ∨ b ∨ c)
a, b, c

￼43

a

b

c

￼a ∨ b

￼a ∨ b ∨ c

BASE

T

F



Reduction Outline

Example:  


￼φ = (u ∨ ¬v ∨ w) ∧ (v ∨ x ∨ ¬y)
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Palette

Variable and 
negation have 

complementary 
colors      

iterals get color 
T or F 



Correctness of reduction
￼  is satisfiable implies ￼  is 3-colorable 


•  if ￼  is assigned True, color ￼  True and ￼  False 


• for each clause ￼  at least one of ￼  is colored True. OR-gadget 
for ￼  can be 3-colored such that output is True.


￼  is 3-colorable implies ￼  is satisfiable 


•  if ￼  is colored True then set ￼  to be True, this is a legal truth assignment 


• consider any clause ￼ . it cannot be that all ￼  are False. If so, 
output of OR-gadget for ￼  has to be colored False but output is connected to 
Base and False

φ Gφ

xi vi v̄i

Cj = (a ∨ b ∨ c) a, b, c
Cj

Gφ φ

vi xi

Cj = (a ∨ b ∨ c) a, b, c
Cj
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