NP-C problems & reductions
redux

Sides based on material by Kani, Erickson, Chekuri, et. al.

All mistakes are my own! - lvan Abraham (Fall 2024)

Image by ChatGPT (probably collaborated with DALL-E)



Reduction from 3SAT to Hamiltonian
cycle



Directed Hamiltonian cycle

Input: Given a directed graph G = (V, E)

with 7 vertices. /O

(g (O—(O
Goal: Does G have a Hamiltonian cycle?
@




Directed Hamiltonian cycle

Input: Given a directed graph G = (V, E)
with n vertices.

Goal: Does G have a Hamiltonian cycle?

A Hamiltonian cycle is a cycle in the

graph that visits every vertex in G exactly
once




Directed Hamiltonian cycle

Input: Given a directed graph G = (V, E)
with n vertices.

Goal: Does G have a Hamiltonian cycle?

A Hamiltonian cycle is a cycle In the

graph that visits every vertex in G exactly
once



Question

Is the following graph Hamiltonian?
Aamiitonian.
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Directed Hamiltonian cycle is NP-C

* Directed Hamiltonian Cycle is in NP: exercise

e Hardness: We will show

» 3-SAT <, Directed Hamiltonian Cycle ¢ o olwested MLL_
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Reduction

Given 3-SAT formula ¢ create a graph G, such that

o qu has a Hamiltonian cycle if and only if @ Is satisfiable
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Reduction

Given 3-SAT formula ¢ create a graph G, such that
o qu has a Hamiltonian cycle if and only if @ Is satisfiable

» G, should be constructible from ¢ by a polynomial time algorithm
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Reduction

Given 3-SAT formula ¢ create a graph G, such that
o G¢ has a Hamiltonian cycle if and only if @ Is satisfiable

» G, should be constructible from ¢ by a polynomial time algorithm

m"

@has n variables x, x,,...,x,and m clauses C, C,,...,C



Reduction

Encoding idea |

Need to create a graph from any arbitrary boolean 0 o o

assignment. Consider the expression:

9

JX) =1 o °

We create a cyclic graph that always has a

Hamiltonian cyle. o o




Reduction

Encoding idea |

Need to create a graph from any arbitrary boolean
assignment. Consider the expression:

f(X) =1

We create a cyclic graph that always has a
Hamiltonian cyle.

But how do we encode the variable?



Reduction

Encoding idea |

Need to create a graph
from any arbitrary boolean

assignment. Consider the
expression:

fX) =1

"
Maybe we can encode the

variable X, in terms of the
cycle direction.
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Reduction

Encoding idea I

How do we encode multiple
variables”?

(X, X, =1

Need to connect them so that
we have a single hamiltonian
path for each possible variable
assignment.




Reduction

Encoding idea I

How do we encode multiple
variables”?

(X, X, =1

Need to connect them so that
we have a single hamiltonian
path for each possible variable
assignment.




Reduction

Encoding idea I

How do we encode multiple

variables?

(X, X, =1

Would be nice to have a single
start/stop node.
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Reduction

Encoding idea I

How do we encode multiple

variables? Q O

f(XpXZ) = 1 /@ Q
Would be nice to have a single @ Q @
start/stop node. Q X, Q @ X,
O e ()
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Reduction

Encoding idea |l

Getting a bit messy. Let’s
reorganize:
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Reduction

Encoding idea |l

Getting a bit messy. Let’s
reorganize:
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Reduction

Encoding idea |l

Getting a bit messy. Let’s
reorganize:
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Reduction

Encoding idea lli

How do we handle clauses ?

Lets go back to our one variable
graph.
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Reduction
Encoding idea lli

How do we handle a clause ?

f(X1) — X1
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Reduction
Encoding idea lli

How do we handle a clause ?
O O
f(X1) — X1
Add node for clause. 5 (=)=~ - =

14



Reduction
Encoding idea lli

How do we handle a clause ?

f(X1) — X1

Add node for clause.

Enforces traversal in single

direction.
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Reduction
Encoding idea lli

How do we handle a clause ?

What do we do if the clause has

two literals? 10 (D))=
X, X)) = (X, VX,) O O-O-O— - O~
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Reduction
Encoding idea lli

How do we handle a clause ?

What do we do if the clause has
two literals?

X, X)) = (X, VX,




Reduction
Encoding idea lli

How do we handle clauses ?

What if the expression has multiple

clauses? 30 ‘G (D= o (O~
JR — _
(J=(~ OO - O-O=L

X, X%) =X, VX)AX VX)) *
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Reduction
Encoding idea lli

S o
How do we handle clauses ? \
What if the expression has multiple l
clauses? % (0 G“Q S . On O
L = [ [
f(Xla X2) — (Xl V Xz) N\ (Xl V X Q Q """ . @ @
|| VD) 7OV I5
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Reduction
Encoding idea lli

@ o =

R\ ]
What if the expression has multiple (|
OsiO

clauses? X () Q“Q (Y=o (5
é; Y — |
(X, X) = (X, V) AT VY, @O0~z -G

(0vi)a(ivo)
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How do we handle clauses ?

(—>
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The Reduction

Review |



The Reduction
Review | ‘(@ .

« Traverse path 1 from left to right
if and only if x; is set to true
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The Reduction

Review |

« Traverse path 1 from left to right

if and only if x; is set to true
@ .
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The Reduction

Review |

« Traverse path 1 from left to right
if and only if x; is set to true

» Each path has 3(m + 1) nodes
where m i1s number of clauses in
@; nodes numbered from left to

right (1 to 3m + 3)
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The Reduction

Review I

« Add vertex C; for clause C] .

. \ertex c; has edge from vertex 3.
] ] —)—O+—rQe—O—>Q+—>O+—— 'xl

and to vertex 3]- + | on path i if 6‘( — #
x. appears in clause C;, and 00 —0—0—0—0—0D x,

e ——

- é@—»@«—»@—»@—»@—»@—»@% x;
. Has edge from vertex 3. + 1 and —

B Ny
to vertex 3 if @ppears in C; . O 000000 Xy
— — '
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The Reduction

Review I

« Add vertex C; for clause C} .

» Vertex ¢; has edge from vertex 3]-

and to vertex 3]- + | on path i if
X; appears in clause C] , and

- Has edge from vertex 3; + | and
to vertex 3]- if —x. appears in C] .
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The Reduction

Review I
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The Reduction

Review I

« Add vertex C; for clause C} .
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The Reduction =

Review I

« Add vertex C; for clause C} .

« \Vertex C; has edge from vertex 3 ;

and to vertex 3.+ 1 on path i if
it ML

X; appears in clause C] , and
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The Reduction

Review I

« Add vertex C; for clause C} .

- Vertex ¢; has edge from vertex 3,

and to vertex 3]- + | on path i if
X; appears in clause C] , and

- Has edge from vertex 3, + 1 and
to vertex 3]- if =.x; appears in C; .
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The Reduction

Review I

« Add vertex C; for clause C} .

- Vertex ¢; has edge from vertex 3,

and to vertex 3]- + | on path i if
X; appears in clause C] , and

- Has edge from vertex 3, + 1 and
to vertex 3]- if =.x; appears in C; .
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The Reduction

Review I

« Add vertex C; for clause C} .

- Vertex ¢; has edge from vertex 3,

and to vertex 3]- + | on path i if
X; appears in clause C] , and

- Has edge from vertex 3, + 1 and
to vertex 3]- if =.x; appears in C; .
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The Reduction

Review I

« Add vertex C; for clause C} .

- Vertex ¢; has edge from vertex 3,

and to vertex 3]- + | on path i if
X; appears in clause C] , and

- Has edge from vertex 3, + 1 and
to vertex 3]- if =.x; appears in C; .

19




Correctness proof

« Theorem: ¢ has a satisfying assignm has a Hamiltonian cycle.

 Based on proving if and only if part seperately.
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Correctness proof

« Theorem: ¢ has a satisfying assignment Iff qu has a Hamiltonian cycle.
 Based on proving if and only if part seperately.
« Only if: If @ has a satisfying assignment then G(p has a Hamilton cycle.

* By construction (we just did it)
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Correctness proof

« Theorem: ¢ has a satisfying assignment Iff qu has a Hamiltonian cycle.
 Based on proving if and only if part seperately.

« Only if: If @ has a satisfying assignment then G(p has a Hamilton cycle.
* By construction (we just did it)

o If: If G(p has a Hamilton cycle then ¢ has a satisfying assignment.

 Far more involved ... we will skip (see Kani’s archived slides).
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Hamiltonian cycle in undirected graphs

Problem
Input: Given graph G = (V, E)

Goal: Does G have a Hamiltonian cycle?



Hamiltonian cycle in undirected graphs

Problem
Input: Given graph G = (V, E)

Goal: Does G have a Hamiltonian cycle?

That is, is there a cycle that visits every vertex exactly one (except start and
end vertex)?

21



NP-Completeness

Theorem: Hamiltonian cycle problem for undirected graphs is NP-complete.

Proof

22



NP-Completeness

Theorem: Hamiltonian cycle problem for undirected graphs is NP-complete.
Proof

 The problem is in NP; proof left as exercise.
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NP-Completeness

Theorem: Hamiltonian cycle problem for undirecte aphs is NP-complete.
Proof
 The problem is in NP; proof left as exercise.

 Hardness proved by reducing eriyole to this problem
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NP-Completeness

Theorem: Hamiltonian cycle problem for undirected graphs is NP-complete.
Proof

 The problem is in NP; proof left as exercise.

 Hardness proved by reducing directed Hamiltonian cycle to this problem

* Need to go from directed graph to undirected graph

\

22



Reduction sketch

Given directed graph G, need to construct undirected graph G’ such that G has
Hamiltonian cycle iff G’ has Hamiltonian cycle.
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Reduction sketch

Given directed graph G, need to construct undirected graph G’ such that G has
Hamiltonian cycle iff G’ has Hamiltonian cycle.

» Replace each vertex v by 3 vertices: v;, v, and v,
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Reduction sketch

Given directed graph G, need to construct undirected graph G’ such that G has
Hamiltonian cycle iff G’ has Hamiltonian cycle.

» Replace each vertex v by 3 vertices: v;, v, and v,



Reduction sketch

Given directed graph G, need to construct undirected graph G’ such that G has
Hamiltonian cycle iff G’ has Hamiltonian cycle.

» Replace each vertex v by 3 vertices: v;, v, and v,

A directed edge (a, b) is replaced by edge {ag, bl-}
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Reduction sketch

Given directed graph G, need to construct undirected graph G’ such that G has
Hamiltonian cycle iff G’ has Hamiltonian cycle.

» Replace each vertex v by 3 vertices: v;, v, and v,
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Reduction sketch

Given directed graph G, need to construct undirected graph G’ such that G has
Hamiltonian cycle iff G’ has Hamiltonian cycle.

» Replace each vertex v by 3 vertices: v;, v, and v,

A directed edge (a, b) is replaced by edge {ag, bl-}
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Hamiltonian cycle reduction

Directed to undirected

RN



Hamiltonian cycle reduction

Directed to undirected




Hamiltonian cycle reduction

Directed to undirected
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Hamiltonian paths

Input: Given a graph G = (V, E) with n vertices

Goal: Does (G have a ?
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Hamiltonian paths

Input: Given a graph G = (V, E) with n vertices
Goal: Does G have a ?

A is a path in the graph that visits every vertex in G
exactly once
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Hamiltonian paths

Input: Given a graph G = (V, E) with n vertices
Goal: Does G have a ?

A is a path in the graph that visits every vertex in G
exactly once

Theorem: Directed Hamiltonian Path and Undirected Hamiltonian Path are NP-
Complete.
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Hamiltonian paths

Input: Given a graph G = (V, E) with n vertices
Goal: Does G have a ?

A is a path in the graph that visits every vertex in G
exactly once

Theorem: Directed Hamiltonian Path and Undirected Hamiltonian Path are NP-
Complete.

Modify the reduction from 3-SAT to Hamiltonian Cycle or do a reduction from
Hamiltonian Cycle (homework?)

27



NP-completeness of graph coloring

Generic graph coloring

Instance: G = (V, E): Undirected graph, integer k.

Question: Can the vertices of the graph be colored using k colors so that
vertices connected by an edge do not get the same color?

28



NP-completeness of graph coloring
Graph 3-Coloring

Instance: G = (V, E): Undirected graph, integer k = 3.

Question: Can the vertices of the graph be colored using 3 colors so that
vertices connected by an edge do not get the same color?

29



NP-completeness of graph coloring
Graph 3-Coloring

Instance: G = (V, E): Undirected graph, integer k = 3.

Question: Can the vertices of the graph be colored using 3 colors so that
vertices connected by an edge do not get the same color?

29



| G=0LY, E) s& MOY=¢
Graph coloring wad o= E E B 5
Graph 2-Coloring nE M , N &~

If & is colored with k colors then each color class (nodes of same
color) form an independent set in . Thus, G can be partitioned into k&
independent sets if and only if G is k-colorable.

Graph 2-Coloring can be decided in polynomial time.

« (5 is 2-colorable iff & is bipartite! There is a linear time algorithm to check if G
IS bipartite using Breadth-First-Search.

30



[Chatin] https://dl.acm.org/doi/10.1145/989393.989403

Problems related to graph coloring

Graph coloring and register allocation

Register Allocation: Assign variables to (at most) k registers such that variables
needed at the same time are not assigned to the same register

Interference Graph: Vertices are variables, and there is an edge between two
vertices, If the two variables are “live” at the same time.

Observations

. Register allocation problem is equivalent to coloring the
interference graph with k colors

» Moreover, 3-COLOR <, k - Register Allocation, for any kK > 3

el

31



Problems related to graph coloring

Frequency assignments In cellular networks

Cellular telephone systems that use Frequency Division Multiple Access (FDMA)
(example: GSM in Europe and Asia and AT&T in USA)

» Breakup a FCC given frequency range |a, b| into disjoint bands of frequencies

[Cl(), b()]a [ala b1]9 ¢ e [aka bk]

 Each cell phone tower (simplifying) gets one band

33



Problems related to graph coloring

Frequency assignments In cellular networks

Cellular telephone systems that use Frequency Division Multiple Access (FDMA)
(example: GSM in Europe and Asia and AT&T in USA)

» Breakup a FCC given frequency range |a, b| into disjoint bands of frequencies

[Cl(), b()]a [ala b1]9 ¢ e [aka bk]

 Each cell phone tower (simplifying) gets one band

* Constraint: nearby towers cannot get same band, otherwise signals will interfere
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Problems related to graph coloring

Frequency assignments In cellular networks

Cellular telephone systems that use Frequency Division Multiple Access (FDMA)
(example: GSM in Europe and Asia and AT&T in USA)

» Breakup a FCC given frequency range |a, b| into disjoint bands of frequencies

[Cl(), b()]a [ala b1]9 IR [aka bk]
W—_\_-——
7

 Each cell phone tower (simplifying) gets one band

* Constraint: nearby towers cannot get same band, otherwise signals will interfere

given k bands and some region with 7 towers, is there a way to assign the
bands to avoid interference?

33



Problems related to graph coloring

Frequency assignments In cellular networks

Cellular telephone systems that use Frequency Division Multiple Access (FDMA)
(example: GSM in Europe and Asia and AT&T in USA)

» Breakup a FCC given frequency range |a, b| into disjoint bands of frequencies

[Cl(), b()]a [ala b1]9 ¢ e [aka bk]

 Each cell phone tower (simplifying) gets one band

* Constraint: nearby towers cannot get same band, otherwise signals will interfere

given k bands and some region with 7 towers, is there a way to assign the
bands to avoid interference?

Can reduce to k-coloring by creating interference/conflict graph on towers.

33



Showing hardness of 3-COLORING

3-Coloring is NP-Complete

e 3-Coloring isin NP
* Non-deterministically guess a 3-coloring for each node

» Check if for each edge (u, v), the color of u is different from that of v

. We will shov@ SE 3-Coloring.

34



Reduction Idea | - Simple 3-color gadget

We want to create a gadget! that:

e |s 3 colorable Iif at least one of the literals Is true

**

e Not 3-colorable if none of the literals are true
/———A

1: https://en.wikipedia.org/wiki/Gadget (computer science)

35



Reduction Idea | - Simple 3-color gadget

We want to create a gadget! that:
e |s 3 colorable if at least one of the literals Is true
e Not 3-colorable if none of the literals are true

Let’s start off with the simplest SAT we can think of:

1: https://en.wikipedia.org/wiki/Gadget (computer science)
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Reduction Idea | - Simple 3-color gadget

We want to create a gadget! that:
e |s 3 colorable if at least one of the literals Is true
e Not 3-colorable if none of the literals are true

Let’s start off with the simplest SAT we can think of:

X, X,) = (X; VX,

1: https://en.wikipedia.org/wiki/Gadget (computer science)
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Reduction Idea | - Simple 3-color gadget

We want to create a gadget! that:
e |s 3 colorable if at least one of the literals Is true
e Not 3-colorable if none of the literals are true

Let’s start off with the simplest SAT we can think of:
f(X, X5) = (X, VX,)

Assume green=true and red=false, essentially need to create an OR-gate with
graph coloring.

1: https://en.wikipedia.org/wiki/Gadget (computer science)
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Reduction Idea | - Simple 3-color gadget

f(Xsz) — (X1 Vv Xz)
e |s 3-colorable if at least one of the literals Is true

e Not 3-colorable if none of the literals are true

36 Fix output to be green



Reduction Idea | - Simple 3-color gadget
Zq& Ca(ou, c L\ue .

f(Xsz) — (X1 Vv Xz)
e |s 3-colorable if at least one of the literals Is true

e Not 3-colorable if none of the literals are true

ol

Fix output to be green



Reduction Idea | - Simple 3-color gadget

We want to create a gadget that:
e |s 3-colorable if at least one of the literals Is true
e Not 3-colorable if none of the literals are true
How do we do the same thing for 3 variables?:

Assume green=true and red=false.

37



3-color this gadget |

You are given three colors: red, green and blue. Can the following graph be
three colored in a valid way (assuming that some of the nodes are already

colored as indicated).

skt 08 o OB

A. Yes

38



Clause Satisfiability gadget

For each clause C; = (a V b V ¢), create a small
gadget graph

* gadget graph connects to nodes
corresponding to a, b, ¢

* needs to implement OR




If a, b, ¢ are all colored
False In a 3-coloring then
output node of OR-

For each clause C; = (a V b V ¢), create a small ggg%_et has to be colored

gadget graph

Clause Satisfiability gadget

* gadget graph connects to nodes
corresponding to a, b, ¢

* needs to implement OR

avV b

y =

aVbVc

—
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If a, b, ¢ are all colored
False In a 3-coloring then
output node of OR-
gadget has to be colored

Clause Satisfiability gadget

For each clause C] = (aV bV c), create a small E lse
gadget graph
If one of a, b, c Is colored
* gadget graph connects to nodes True then OR-gadget can
corresponding to a, b, c be 3-colored such that

output node of OR-gadget
IS colored True.

—

* needs to implement OR

avV b

y =

aVbVc

42



Reduction Ildea li

Literal assignment |

Next we need a gadget that assigns literals.
Our previously constructed gadget
assumes:

» All literals are either red or green.

« Need to limit graph so o

green. Other must be red.

43




Reduction idea

Start with 3SAT formula (i.e., 3CNF formula) ¢ with 7
variables X, ..., X and mclauses Cy, ..., C, . Create

graph G, such that G, is 3-colorable iff ¢ is satisfiable

44



Reduction idea

Start with 3SAT formula (i.e., 3 formula) @ with n
variables X, ..., X and mclauses Cy, ..., C, . Create

graph G, such that G, is 3-colorable iff ¢ is satisfiable

» need to establish truth assignment for X, ..., X,

via colors for some nodes in G¢
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Reduction idea

Start with 3SAT formula (i.e., 3 formula) @ with n
variables X, ..., X and mclauses Cy, ..., C, . Create

graph G, such that G, is 3-colorable iff ¢ is sati

» need to establish truth assignment for X, ..

via colors for some nodes in G¢

» create triangle with nodes: True, False, Bas

» for each variable X; two nodes v; and v; con
INn a triangle with common Base

44
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Reduction idea

Start with 3SAT formula (i.e., 3 formula) @ with n
variables X, ..., X and mclauses Cy, ..., C, . Create

graph G, such that G, is 3-colorable iff ¢ is satisfiable

» need to establish truth assignment for X, ..., X,
via colors for some nodes in G¢

» create triangle with nodes: True, False, Base

» for each variable X; two nodes v; and v; connected
INn a triangle with common Base

« If graph is 3-colored, either v, or v; gets the same
color as True. Interpret this as a truth assignment

to v,

44



Reduction

» Foreach clause C; = (a V b V ¢), add OR-gadget graph with input nodes
a, b, ¢ and connect output node of gadget to both False and Base.




BAT 4 3—ColoR.

Reduction

» Foreach clause C; = (a V b V ¢), add OR-gadget graph with input nodes
a, b, ¢ and connect output node of gadget to both False and Base.

* Claim: No legal 3-coloring of below graph (with coloring of nodes 1, F, B fixed)

iIn which a, b, c are colored False. If any of a, b, ¢ are colored rue then there
IS a legal 3-coloring of below graph.

avV b

y =




Reduction Outline

Variable and
Example: negation have

complementary Fixes palette
colors and literals

get color (T or F)
S =

46




Reduction Outline

Variable and
Example: negation have (’dﬂf/tc ﬁme~
complementary Fixes palette
colors and literals

=WV vVwALVXV-Y) get color (T or )
S &

46



Correctness of reduction

@ is satisfiable implies G, is 3-colorable

o if x; is assigned True, color v; True and v; False

« for each clause C] = (a V bV c) at least one of a, b, c is colored True. OR-gadget
for C} can be 3-colored such that output is True.

G, is 3-colorable implies ¢ is satisfiable

 if v, is colored True then set x; to be True, this is a legal truth assignment

. consider any clause C, = (a V b V c¢). it cannot be that all a, b, ¢ are False. If so,

output of OR-gadget for C} has to be colored False but output is connected to
Base and False

47



Circuit-SAT Problem

Circuits

A circult Is a directed acyclic graph with



Circuit-SAT Problem

Circuits

A circult Is a directed acyclic graph with

. vertices (without incoming edges)
labeled with 0,1 or a distinct variable.
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Circuit-SAT Problem

Circuits

A circult Is a directed acyclic graph with

. vertices (without incoming edges)
labeled with 0,1 or a distinct variable.
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Circuit-SAT Problem

Circuits

A circult Is a directed acyclic graph with

. vertices (without incoming edges)
labeled with 0,1 or a distinct variable.

 Every other vertex is labeled V, A or —.

48
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Circuit-SAT Problem

Circuits

A circult Is a directed acyclic graph with

. vertices (without incoming edges)
labeled with 0,1 or a distinct variable.

 Every other vertex is labeled V, A or —.

e Single node vertex with no
outgoing edges.

48



Circuit-SAT Problem

Circuits

A circuit is a directed acyclic graph with Output @

. vertices (without incoming edges) a ”
labeled with 0,1 or a distinct variable.

« Every other vertex is labeled V, A or . (A (v, (v)

* Single node vertex with no

outgoing edges. Inputs G ° a Q G

Given a circuit as input, is there an assignment to the input variables that
causes the output to get value 1?

48



Circuit-SAT Problem

Circuits

Problem definition (CSAT): Given a circuit as is there an assignment to the
input variables that causes the output to get value 1?

Lemma: CSAT isin NP
. Assignment to input variables.

. Evaluate the value of each gate in a topological sort of and
check the output gate value.

e Can show: 3SAT CSAT

49



Circuit SAT vs SAT

e CNF formulas are a rather restricted form of Boolean formulas.

» Circuits are a much more powerful (and hence easier) way to express Boolean
formulas.

« However they are equivalent in terms of polynomial-time solvability

50



Circuit SAT vs SAT

e CNF formulas are a rather restricted form of Boolean formulas.

» Circuits are a much more powerful (and hence easier) way to express Boolean
formulas.

« However they are equivalent in terms of polynomial-time solvability

Theorem

SAT <p 3SAT <, CSAT.
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Circuit SAT vs SAT

e CNF formulas are a rather restricted form of Boolean formulas.
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Converting a CNF formula into a Circuit

Given formula ¢ with n variables and m clauses, create a Circuit C.

» Inputs to C are the n boolean variables x;, x,, ..., x,

« Use NOT gate to generate literal —.x; for each variable x;

» For each clause (/; V [, V [5) use two OR gates to mimic formula

 Combine the outputs for the clauses using AND gates to obtain the final
output
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