Alghrimms &

NP-C problems & reductions redux

Sides based on material by Kani, Erickson, Chekuri, et. al.

& Models

ompusi

Flawchall

501

All mistakes are my own! - Ivan Abraham (Fall 2024)

Alghrinmis & Models of Computation

Alghninis & Models of Computation

Alghamams Computation

& Models & Models of of Compulation

Image by ChatGPT (probably collaborated with DALL-E)

Reduction from 3SAT to Hamiltonian cycle

Directed Hamiltonian cycle

Input: Given a directed graph G = (V, E)with *n* vertices.

Goal: Does *G* have a Hamiltonian cycle?

Directed Hamiltonian cycle

Input: Given a directed graph G = (V, E)with *n* vertices.

Goal: Does *G* have a Hamiltonian cycle?

A Hamiltonian cycle is a cycle in the graph that visits every vertex in G exactly once

Directed Hamiltonian cycle

Input: Given a directed graph G = (V, E)with *n* vertices.

Goal: Does *G* have a Hamiltonian cycle?

A Hamiltonian cycle is a cycle in the graph that visits every vertex in G exactly once

Question

Is the following graph Hamiltonian? Same as asking if the graph hay a cycle that insits each vertex exactly once. not ·Does

Directed Hamiltonian cycle is NP-C

- Directed Hamiltonian Cycle is in NP: exercise
- Hardness: We will show
- 3-SAT \leq_p Directed Hamiltonian Cycle

Reduction

Given 3-SAT formula φ create a graph G_{φ} such that

• G_{φ} has a Hamiltonian cycle if and only if φ is satisfiable

Reduction

Given 3-SAT formula φ create a graph G_{φ} such that

- G_{ρ} has a Hamiltonian cycle if and only if ρ is satisfiable
- G_{ρ} should be constructible from ρ by a polynomial time algorithm

Reduction

Given 3-SAT formula *p* create a graph

- G_{ρ} has a Hamiltonian cycle if and only if ρ is satisfiable
- G_{ρ} should be constructible from ρ by a polynomial time algorithm

q: psc

$$G_{\varphi}$$
 such that

Need to create a graph from any arbitrary boolean assignment. Consider the expression:

We create a cyclic graph that always has a Hamiltonian cyle.

Need to create a graph from any arbitrary boolean assignment. Consider the expression:

$f(X_1) = 1$

We create a cyclic graph that always has a Hamiltonian cyle.

But how do we encode the variable?

Need to create a graph from any arbitrary boolean assignment. Consider the expression:

Maybe we can encode the variable X_1 in terms of the cycle direction.

How do we encode multiple variables?

 $f(X_1, X_2) = 1$

Maybe two circles?

How do we encode multiple variables?

 $f(X_1, X_2) = 1$

Need to connect them so that we have a single hamiltonian path for each possible variable assignment.

How do we encode multiple variables?

 $f(X_1, X_2) = 1$

Need to connect them so that we have a single hamiltonian path for each possible variable assignment.

How do we encode multiple variables?

 $f(X_1, X_2) = 1$

Would be nice to have a single start/stop node.

How do we encode multiple variables?

 $f(X_1, X_2) = 1$

Would be nice to have a single start/stop node.

Getting a bit messy. Let's reorganize:

Getting a bit messy. Let's reorganize:

Getting a bit messy. Let's reorganize:

) CW > Left & right) CCW > Right & left

How do we handle clauses ?

Lets go back to our one variable graph.

How do we handle a clause ?

 $f(X_1) = X_1$

How do we handle a clause ?

 $f(X_1) = X_1$

Add node for clause.

How do we handle a clause ?

$f(X_1) = X_1$

Add node for clause.

Enforces traversal in single direction.

How do we handle a clause ?

What do we do if the clause has **two literals**?

 $f(X_1, X_2) = (X_1 \lor \overline{X_2})$

How do we handle a clause ?

What do we do if the clause has two literals?

Asprove X1 = Y2 = (

How do we handle clauses ?

What if the expression has **multiple** clauses?

 $f(X_1, X_2) = (X_1 \lor \overline{X_2}) \land (\overline{X_1} \lor X_2)$

How do we handle clauses ?

What if the expression has **multiple** clauses?

How do we handle clauses ?

What if the expression has **multiple** clauses?

 $f(X_1, X_2) = (X_1 \lor \overline{X_2}) \land (\overline{X_1} \lor X_2)$ $(O \lor \widehat{I}) \land (I \lor O)$ $\chi_1 = \circ$ $\chi_2 = O$

• Traverse path *i* from left to right if and only if x_i is set to true

$\gamma = 1$

• Traverse path *i* from left to right if and only if x_i is set to true

- Traverse path *i* from left to right if and only if x_i is set to true
- Each path has 3(m + 1) nodes where *m* is number of clauses in ϕ ; nodes numbered from left to right (1 to 3m + 3)

- Add vertex c_i for clause C_i .
- Vertex c_j has edge from vertex 3_j and to vertex $3_j + 1$ on path i if x_i appears in clause C_j , and
- Has edge from vertex $3_j + 1$ and to vertex 3_j if x_i appears in C_j .

- Add vertex c_i for clause C_i .
- Vertex c_j has edge from vertex 3_j and to vertex $3_j + 1$ on path *i* if x_i appears in clause C_j , and
- Has edge from vertex $3_j + 1$ and to vertex 3_j if $\neg x_i$ appears in C_j .

• Add vertex c_j for clause C_j .

- Add vertex c_i for clause C_i .
- Vertex c_j has edge from vertex 3_j and to vertex $3_j + 1$ on path *i* if x_i appears in clause C_i , and

- Add vertex c_i for clause C_i .
- Vertex c_j has edge *from* vertex 3_j and *to* vertex $3_j + 1$ on path *i* if x_i appears in clause C_i , and
- Has edge *from* vertex $3_j + 1$ and *to* vertex 3_j if $\neg x_i$ appears in C_j .

- Add vertex c_i for clause C_i .
- Vertex c_j has edge *from* vertex 3_j and *to* vertex $3_j + 1$ on path *i* if x_i appears in clause C_i , and
- Has edge *from* vertex $3_j + 1$ and *to* vertex 3_j if $\neg x_i$ appears in C_j .

- Add vertex c_i for clause C_i .
- Vertex c_j has edge *from* vertex 3_j and *to* vertex $3_j + 1$ on path *i* if x_i appears in clause C_i , and
- Has edge *from* vertex $3_j + 1$ and *to* vertex 3_j if $\neg x_i$ appears in C_j .

- Add vertex c_i for clause C_i .
- Vertex c_i has edge from vertex 3_i and **to** vertex $3_i + 1$ on path *i* if x_i appears in clause C_i , and
- Has edge *from* vertex $3_i + 1$ and **to** vertex 3_j if $\neg x_i$ appears in C_i .

Correctness proof

- - Based on proving if and only if part seperately.

• Theorem: φ has a satisfying assignment iff G has a Hamiltonian cycle.

Correctness proof

- - Based on proving if and only if part seperately.
- Only if: If φ has a satisfying assignment then G_{φ} has a Hamilton cycle.
 - By construction (we just did it)

• **Theorem:** φ has a satisfying assignment *iff* G_{φ} has a Hamiltonian cycle.

Correctness proof

- **Theorem:** φ has a satisfying assignment *iff* G_{φ} has a Hamiltonian cycle. Based on proving if and only if part seperately.
- Only if: If φ has a satisfying assignment then G_{φ} has a Hamilton cycle.
 - By construction (we just did it)
- If: If G_{ρ} has a Hamilton cycle then ρ has a satisfying assignment.
 - Far more involved ... we will skip (see Kani's archived slides).

Hamiltonian cycle in undirected graphs

Problem

Input: Given undirected graph G = (V, E)**Goal:** Does *G* have a Hamiltonian cycle?

Hamiltonian cycle in undirected graphs

Problem

end vertex)?

Input: Given undirected graph G = (V, E)**Goal:** Does G have a Hamiltonian cycle? That is, is there a cycle that visits every vertex exactly one (except start and

Proof

Theorem: *Hamiltonian cycle* problem for undirected graphs is NP-complete.

Proof

• The problem is in **NP**; proof left as exercise.

Theorem: *Hamiltonian cycle* problem for undirected graphs is NP-complete.

Proof

- The problem is in NP; proof left as exercise.

Theorem: *Hamiltonian cycle* problem for undirected graphs is NP-complete.

Hardness proved by reducing directed Hamiltonian cycle to this problem

Theorem: *Hamiltonian cycle* problem Proof

- The problem is in NP; proof left as exercise.
- Hardness proved by reducing directed Hamiltonian cycle to this problem
 - Need to go from directed graph to undirected graph

Theorem: Hamiltonian cycle problem for undirected graphs is NP-complete.

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian cycle iff G' has Hamiltonian cycle.

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian cycle iff G' has Hamiltonian cycle.

• Replace each vertex v by 3 vertices: v_i , v, and v_o

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian cycle iff G' has Hamiltonian cycle.

• Replace each vertex v by 3 vertices: v_i , v, and v_o

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian cycle iff G' has Hamiltonian cycle.

- Replace each vertex v by 3 vertices: v_i , v, and v_o
- A directed edge (a, b) is replaced by edge $\{a_o, b_i\}$

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian cycle iff G' has Hamiltonian cycle.

• Replace each vertex v by 3 vertices: v_i , v, and v_o

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian cycle iff G' has Hamiltonian cycle.

- Replace each vertex v by 3 vertices: v_i , v, and v_o
- A directed edge (a, b) is replaced by edge $\{a_o, b_i\}$

Hamiltonian cycle reduction Directed to undirected

Hamiltonian cycle reduction Directed to undirected

Hamiltonian cycle reduction Directed to undirected

Input: Given a graph G = (V, E) with *n* vertices **Goal:** Does *G* have a Hamiltonian path?

Input: Given a graph G = (V, E) with *n* vertices

Goal: Does G have a Hamiltonian path?

exactly once

A Hamiltonian path is a path in the graph that visits every vertex in G

Input: Given a graph G = (V, E) with *n* vertices

Goal: Does G have a Hamiltonian path?

exactly once

Theorem: Directed Hamiltonian Path and Undirected Hamiltonian Path are NP-Complete.

A Hamiltonian path is a path in the graph that visits every vertex in G

Input: Given a graph G = (V, E) with *n* vertices

Goal: Does G have a Hamiltonian path?

exactly once

Complete.

Hamiltonian Cycle (homework?)

- A Hamiltonian path is a path in the graph that visits every vertex in G

- **Theorem:** Directed Hamiltonian Path and Undirected Hamiltonian Path are NP-
 - Modify the reduction from 3-SAT to Hamiltonian Cycle or do a reduction from

NP-completeness of graph coloring Generic graph coloring

Instance: G = (V, E): Undirected graph, integer k.

Question: Can the vertices of the graph be colored using k colors so that vertices connected by an edge **do not** get the same color?

NP-completeness of graph coloring Graph 3-Coloring

Instance: G = (V, E): Undirected graph, integer k = 3.

Question: Can the vertices of the graph be colored using 3 colors so that vertices connected by an edge **do not** get the same color?

NP-completeness of graph coloring Graph 3-Coloring

Instance: G = (V, E): Undirected graph, integer k = 3.

Question: Can the vertices of the graph be colored using 3 colors so that vertices connected by an edge **do not** get the same color?

Graph coloring Graph 2-Coloring

color) form an independent set in G. Thus, G can be partitioned into k independent sets *if and only if G* is *k*-colorable.

Graph 2-Coloring can be decided in polynomial time.

• G is 2-colorable iff G is bipartite! There is a linear time algorithm to check if G is bipartite using Breadth-First-Search.

 $G_{\tau} = (\mathcal{U}, \mathcal{V}, E)$ s.f $\mathcal{U} \cap \mathcal{V} = \phi$ and $e=(u,v) \in E$ v s-t NEM, VEV

- Observation: If G is colored with k colors then each color class (nodes of same

Problems related to graph coloring Graph coloring and register allocation

needed at the same time are not assigned to the same register

vertices, if the two variables are "live" at the same time.

Observations

- [Chaitin] Register allocation problem is equivalent to coloring the interference graph with k colors
- Moreover, 3-COLOR $\leq_P k$ Register Allocation, for any $k \geq 3$

- **Register Allocation:** Assign variables to (at most) k registers such that variables
- **Interference Graph:** Vertices are variables, and there is an edge between two

Problems related to graph coloring Frequency assignments in cellular networks

Cellular telephone systems that use *Frequency Division Multiple Access* (FDMA) (example: GSM in Europe and Asia and AT&T in USA)

- Breakup a FCC given frequency range [a, b] into disjoint <u>bands</u> of frequencies $[a_0, b_0], [a_1, b_1], \ldots, [a_k, b_k]$
- Each cell phone tower (simplifying) gets one band

Problems related to graph coloring Frequency assignments in cellular networks

Cellular telephone systems that use *Frequency Division Multiple Access* (FDMA) (example: GSM in Europe and Asia and AT&T in USA)

- Breakup a FCC given frequency range [a, b] into disjoint <u>bands</u> of frequencies $[a_0, b_0], [a_1, b_1], \ldots, [a_k, b_k]$
- Each cell phone tower (simplifying) gets one band
- **Constraint**: nearby towers cannot get same band, otherwise signals will interfere
Problems related to graph coloring Frequency assignments in cellular networks

(example: GSM in Europe and Asia and AT&T in USA)

- Breakup a FCC given frequency range [a, b] into disjoint <u>bands</u> of frequencies $[a_0, b_0], [a_1, b_1], \dots, [a_k, b_k]$
- Each cell phone tower (simplifying) gets one band
- **Constraint**: nearby towers cannot get same band, otherwise signals will interfere

bands to avoid interference?

Cellular telephone systems that use *Frequency Division Multiple Access* (FDMA)

Problem: given k bands and some region with n towers, is there a way to assign the

Problems related to graph coloring Frequency assignments in cellular networks

(example: GSM in Europe and Asia and AT&T in USA)

- Breakup a FCC given frequency range [a, b] into disjoint <u>bands</u> of frequencies $[a_0, b_0], [a_1, b_1], \ldots, [a_k, b_k]$
- Each cell phone tower (simplifying) gets one band
- **Constraint**: nearby towers cannot get same band, otherwise signals will interfere

bands to avoid interference?

Can reduce to k-coloring by creating interference/conflict graph on towers.

Cellular telephone systems that use *Frequency Division Multiple Access* (FDMA)

- Problem: given k bands and some region with n towers, is there a way to assign the

Showing hardness of 3-COLORING 3-Coloring is NP-Complete

- **3-Coloring** is in **NP**
 - Non-deterministically guess a 3-coloring for each node
 - Check if for each edge (u, v), the color of u is different from that of v
- Hardness: We will show 3-SAT \leq_P 3-Coloring.

We want to create a *gadget¹* that:

- Is 3 colorable if at least one of the literals is true
- Not 3-colorable if none of the literals are true

<u>1: https://en.wikipedia.org/wiki/Gadget (computer_science)</u>

We want to create a *gadget¹* that:

- Is 3 colorable if at least one of the literals is true
- Not 3-colorable if none of the literals are true

Let's start off with the simplest SAT we can think of:

1: https://en.wikipedia.org/wiki/Gadget_(computer_science)

We want to create a **gadget¹** that:

- Is 3 colorable if at least one of the literals is true
- Not 3-colorable if none of the literals are true

Let's start off with the simplest SAT we can think of:

<u>1: https://en.wikipedia.org/wiki/Gadget_(computer_science)</u>

- $f(X_1, X_2) = (X_1 \lor X_2)$

We want to create a **gadget¹** that:

- Is 3 colorable if at least one of the literals is true
- Not 3-colorable if none of the literals are true

Let's start off with the simplest SAT we can think of:

Assume green=true and red=false, essentially need to create an OR-gate with graph coloring.

1: https://en.wikipedia.org/wiki/Gadget_(computer_science)

- $f(X_1, X_2) = (X_1 \lor X_2)$

- $f(X_1, X_2) = (X_1 \lor X_2)$
- Is 3-colorable if at least one of the literals is true
- Not 3-colorable if none of the literals are true

Reduction Idea I - Simple 3-color gadget Zad colou à Lue.

- $f(X_1, X_2) = (X_1 \lor X_2)$
- Is 3-colorable if at least one of the literals is true
- Not 3-colorable if none of the literals are true

Fix output to be green

We want to create a gadget that:

- Is 3-colorable if at least one of the literals is true
- Not 3-colorable if none of the literals are true

How do we do the same thing for 3 variables?:

Assume green=true and red=false.

- $f(X_1, X_2, X_3) = (X_1 \lor X_2 \lor X_3)$

3-color this gadget I

You are given three colors: red, green and blue. Can the following graph be three colored in a valid way (assuming that some of the nodes are already colored as indicated).

Clause Satisfiability gadget

For each clause $C_i = (a \lor b \lor c)$, create a small gadget graph

- gadget graph connects to nodes corresponding to *a*, *b*, *c*
- needs to implement OR

Clause Satisfiability gadget

For each clause $C_i = (a \lor b \lor c)$, create a small gadget graph

- gadget graph connects to nodes corresponding to *a*, *b*, *c*
- needs to implement OR

If a, b, c are all colored False in a 3-coloring then output node of ORgadget has to be colored False.

Clause Satisfiability gadget

For each clause $C_i = (a \lor b \lor c)$, create a small gadget graph

- gadget graph connects to nodes corresponding to *a*, *b*, *c*
- needs to implement OR

If a, b, c are all colored False in a 3-coloring then output node of ORgadget has to be colored False.

If one of a, b, c is colored True then OR-gadget can be 3-colored such that output node of OR-gadget is colored True.

Reduction Idea II Literal assignment I

Next we need a gadget that assigns literals. Our previously constructed gadget assumes:

- All literals are either red or green.
- Need to limit graph so only x_1 or $\overline{x_1}$ is green. Other must be red.

Start with **3SAT** formula (i.e., 3CNF formula) φ with <u>n</u> variables X_1, \ldots, X_n and mclauses C_1, \ldots, C_m . Create graph G_{φ} such that G_{φ} is 3-colorable iff φ is satisfiable

Start with **3SAT** formula (i.e., 3CNF formula) φ with *n* variables X_1, \ldots, X_n and *m*clauses C_1, \ldots, C_m . Create graph G_{φ} such that G_{φ} is 3-colorable iff φ is satisfiable

• need to establish truth assignment for X_1, \ldots, X_n via colors for some nodes in G_{o}

Start with **3SAT** formula (i.e., **3CNF** formula) φ with *n* variables X_1, \ldots, X_n and *m*clauses C_1, \ldots, C_m . Create graph G_{φ} such that G_{φ} is **3**-colorable iff φ is satisfiable

- need to establish truth assignment for X_1, \ldots, X_n via colors for some nodes in G_{φ}
- create triangle with nodes: True, False, Base
- for each variable X_i two nodes v_i and \bar{v}_i connected in a triangle with common Base

Start with **3SAT** formula (i.e., 3CNF formula) φ with *n* variables X_1, \ldots, X_n and *m*clauses C_1, \ldots, C_m . Create graph G_{φ} such that G_{φ} is 3-colorable iff φ is satisfiable

- need to establish truth assignment for X_1, \ldots, X_n via colors for some nodes in G_{o}
- create triangle with nodes: True, False, Base
- for each variable X_i two nodes v_i and $\overline{v_i}$ connected in a triangle with common Base
- If graph is 3-colored, either v_i or $\overline{v_i}$ gets the same color as True. Interpret this as a truth assignment to v_i

Reduction

a, b, c and connect output node of gadget to both False and Base.

• For each clause $C_i = (a \lor b \lor c)$, add OR-gadget graph with input nodes

Reduction

- For each clause $C_i = (a \lor b \lor c)$, add OR-gadget graph with input nodes a, b, c and connect output node of gadget to both False and Base.
- Claim: No legal 3-coloring of below graph (with coloring of nodes T, F, B fixed) in which a, b, c are colored False. If any of a, b, c are colored True then there is a legal 3-coloring of below graph.

3SAT 4 3-COLOR

Reduction Outline

Example:

Reduction Outline

Example:

 $\varphi = (u \lor \neg v \lor w) \land (v \lor x \lor \neg y)$

Correctness of reduction

 φ is satisfiable implies G_{φ} is 3-colorable

- if x_i is assigned True, color v_i True and $\overline{v_i}$ False
- for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.

 G_{ϕ} is 3-colorable implies ϕ is satisfiable

- if v_i is colored True then set x_i to be True, this is a legal truth assignment
- consider any clause $C_j = (a \lor b \lor c)$. it cannot be that all a, b, c are False. If so, output of OR-gadget for C_j has to be colored False but output is connected to Base and False

A circuit is a *directed acyclic graph* with

A circuit is a *directed acyclic graph* with

- Input vertices (without incoming edges) labeled with 0,1 or a distinct variable.

A circuit is a *directed acyclic graph* with

- Input vertices (without incoming edges) labeled with 0,1 or a distinct variable.

(?) (0)Inputs (1) (?) (?)

A circuit is a *directed acyclic graph* with

- Input vertices (without incoming edges)
 labeled with 0,1 or a distinct variable.
- Every other vertex is labeled \lor , \land or \neg .

A circuit is a *directed acyclic graph* with

- Input vertices (without incoming edges)
 labeled with 0,1 or a distinct variable.
- Every other vertex is labeled \lor , \land or \neg .
- Single node output vertex with no outgoing edges.

A circuit is a *directed acyclic graph* with

- Input vertices (without incoming edges)
 labeled with 0,1 or a distinct variable.
- Every other vertex is labeled \lor , \land or \neg .
- Single node output vertex with no outgoing edges.

Given a circuit as input, is there an assignment to the input variables that causes the output to get value 1?

input variables that causes the output to get value 1?

Lemma: CSAT is in NP

- Certificate: Assignment to input variables.
- check the output gate value.
- Can show: $3SAT \leq_P CSAT$

Problem definition (CSAT): Given a *circuit* as is there an assignment to the

Certifier: Evaluate the value of each gate in a topological sort of DAG and

Circuit SAT vs SAT

- CNF formulas are a rather restricted form of Boolean formulas.
- Circuits are a much more powerful (and hence easier) way to express Boolean formulas.
- However they are equivalent in terms of polynomial-time solvability

Circuit SAT vs SAT

- CNF formulas are a rather restricted form of Boolean formulas.
- Circuits are a much more powerful (and hence easier) way to express Boolean formulas.
- However they are equivalent in terms of polynomial-time solvability

Theorem

SAT \leq_P 3SAT \leq_P CSAT.

Circuit SAT vs SAT

- CNF formulas are a rather restricted form of Boolean formulas.
- Circuits are a much more powerful (and hence easier) way to express Boolean formulas.
- However they are equivalent in terms of polynomial-time solvability

Theorem

SAT \leq_P 3SAT \leq_P CSAT.

Theorem

 $\mathsf{CSAT} \leq_P \mathsf{SAT} \leq_P \mathsf{3SAT}.$

Converting a CNF formula into a Circuit

Given 3CNF formula φ with *n* variables and *m* clauses, create a Circuit C.

• Inputs to C are the *n* boolean variables x_1, x_2, \ldots, x_n

Converting a CNF formula into a Circuit

Given 3CNF formula ϕ with *n* variables and *m* clauses, create a Circuit C.

- Inputs to C are the *n* boolean variables x_1, x_2, \ldots, x_n
- Use NOT gate to generate literal $\neg x_i$ for each variable x_i
Converting a CNF formula into a Circuit

Given 3CNF formula ϕ with *n* variables and *m* clauses, create a Circuit C.

- Inputs to C are the *n* boolean variables x_1, x_2, \ldots, x_n
- Use NOT gate to generate literal $\neg x_i$ for each variable x_i
- For each clause $(l_1 \lor l_2 \lor l_3)$ use two OR gates to mimic formula

Converting a CNF formula into a Circuit

Given 3CNF formula ϕ with *n* variables and *m* clauses, create a Circuit C.

- Inputs to C are the *n* boolean variables x_1, x_2, \ldots, x_n
- Use NOT gate to generate literal $\neg x_i$ for each variable x_i
- For each clause $(l_1 \lor l_2 \lor l_3)$ use two OR gates to mimic formula
- Combine the outputs for the clauses using AND gates to obtain the final output

