
1

Pre-lecture brain teaser

Given ⌃ = {0, 1}, find the regular expression for the language containing all
binary strings with an odd number of 0’s

Formulate a language that describes the above problem.

1

ECE-374 B: Lecture 2 - DFAs

Lecturer: Nickvash Kani
September 03, 2024

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

Given ⌃ = {0, 1}, find the regular expression for the language containing all
binary strings with an odd number of 0’s

Formulate a language that describes the above problem.

2

00 1 0 00 1 01010

Mx 00 01 0 1 00 0 1 00 01 0 1 005
1 00 0107 0 1 00 0107

7849,109981

if 2 20,13 01 01 01 4

A simple program

Program to check if an input string w has odd number of 0’s
int n = 0
While input is not finished

read next character c
If (c ⌘'0')

n n+ 1
endWhile
If (n is odd) output YES
Else output NO

bit x = 0
While input is not finished

read next character c
If (c ⌘'0')

x flip(x)
endWhile
If (x = 1) output YES
Else output NO

3

A simple program

Program to check if an input string w has odd number of 0’s
int n = 0
While input is not finished

read next character c
If (c ⌘'0')

n n+ 1
endWhile
If (n is odd) output YES
Else output NO

bit x = 0
While input is not finished

read next character c
If (c ⌘'0')

x flip(x)
endWhile
If (x = 1) output YES
Else output NO

3
return

Another view

• Machine has input written on a read-only tape
• Start in specified start state
• Start at left, scan symbol, change state and move right
• Circled states are accepting
• Machine accepts input string if it is in an accepting state after scanning the
last symbol. 4

Deterministic-finite-automata (DFA)
Introduction

DFAs also called Finite State Machines (FSMs)

• The “simplest” model for computers?
• State machines that are common in practice.

• Vending machines
• Elevators
• Digital watches
• Simple network protocols

• Programs with fixed memory

5

Graphical representation of DFA

Graphical Representation/State Machine

q0start q1

1
0

1

0

• Directed graph with nodes representing states and edge/arcs representing
transitions labeled by symbols in ⌃

• For each state (vertex) q and symbol a 2 ⌃ there is exactly one outgoing edge
labeled by a

• Initial/start state has a pointer (or labeled as s, q0 or “start”)
• Some states with double circles labeled as accepting/final states

6

0.13

transitions
1Ʃ
Q1

evens odds

Graphical Representation

q0start q1

1
0

1

0

• Where does 001 lead?

• Where does 10010 lead?
• Which strings end up in accepting state?
• Every string w has a unique walk that it follows from a given state q by
reading one letter of w from left to right.

7

go

Graphical Representation

q0start q1

1
0

1

0

• Where does 001 lead?
• Where does 10010 lead?

• Which strings end up in accepting state?
• Every string w has a unique walk that it follows from a given state q by
reading one letter of w from left to right.

7

E

Graphical Representation

q0start q1

1
0

1

0

• Where does 001 lead?
• Where does 10010 lead?
• Which strings end up in accepting state?

• Every string w has a unique walk that it follows from a given state q by
reading one letter of w from left to right.

7

string with a odd of O's

Graphical Representation

q0start q1

1
0

1

0

• Where does 001 lead?
• Where does 10010 lead?
• Which strings end up in accepting state?
• Every string w has a unique walk that it follows from a given state q by
reading one letter of w from left to right.

7

Graphical Representation

q0start q1

1
0

1

0

Definition
A DFA M accepts a string w iff the unique walk starting at the start state and
spelling out w ends in an accepting state.

Definition
The language accepted (or recognized) by a DFA M is denote by L(M) and defined
as: L(M) = {w | M accepts w}.

8

Graphical Representation

q0start q1

1
0

1

0

Definition
A DFA M accepts a string w iff the unique walk starting at the start state and
spelling out w ends in an accepting state.

Definition
The language accepted (or recognized) by a DFA M is denote by L(M) and defined
as: L(M) = {w | M accepts w}.

8

regularexpression

41 1 1 FEET

Formal definition of DFA

Formal Tuple Notation

Definition
A deterministic finite automata (DFA) M = (Q,⌃, �, s,A) is a five tuple where

• Q is a finite set whose elements are called states,
• ⌃ is a finite set called the input alphabet,
• � : Q⇥ ⌃ ! Q is the transition function,
• s 2 Q is the start state,
• A ✓ Q is the set of accepting/final states.

Common alternate notation: q0 for start state, F for final states.

9

S a q q

DFA Notation

M =
⇣ z}|{

Q , ⌃|{z} ,
z}|{
� , s|{z} ,

z}|{
A

⌘

10

stood mortgagor
item

states stateff

alphabet starfate

Example

q0start q1

1
0

1

0

• Q =

• ⌃ =

• � =

• s =
• A =

11

w
010

f 010
9

901913

0,13
0905 a

f 1,90 20

8 0,9 go91 90 91
f 1 g q

90
9

Extending the transition function to
strings

Extending the transition function to strings

Given DFA M = (Q,⌃, �, s,A), �(q,a) is the state that M goes to from q on reading
letter a

Useful to have notation to specify the unique state that M will reach from q on
reading string w

Transition function �⇤ : Q⇥ ⌃⇤ ! Q defined inductively as follows:

• �⇤(q,w) = q if w = ✏

• �⇤(q,w) = �⇤(�(q,a), x) if w = ax.

12

Extending the transition function to strings

Given DFA M = (Q,⌃, �, s,A), �(q,a) is the state that M goes to from q on reading
letter a

Useful to have notation to specify the unique state that M will reach from q on
reading string w

Transition function �⇤ : Q⇥ ⌃⇤ ! Q defined inductively as follows:

• �⇤(q,w) = q if w = ✏

• �⇤(q,w) = �⇤(�(q,a), x) if w = ax.

12

Formal definition of language accepted by M

Definition
The language L(M) accepted by a DFA M = (Q,⌃, �, s,A) is

{w 2 ⌃⇤ | �⇤(s,w) 2 A}.

13

Example

q0start q1

1
0

1

0

What is:

• �⇤(q1, ✏) =

• �⇤(q0, 1011) =
• �⇤(q1, 010) =

14

q

Example

q0start q1

1
0

1

0

What is:

• �⇤(q1, ✏) =
• �⇤(q0, 1011) =

• �⇤(q1, 010) =

14

qc

Example

q0start q1

1
0

1

0

What is:

• �⇤(q1, ✏) =
• �⇤(q0, 1011) =
• �⇤(q1, 010) =

14

E

Constructing DFAs: Examples

DFAs: State = Memory

How do we design a DFA M for a given language L? That is L(M) = L.

• DFA is a like a program that has fixed number of states regardless of its input
size.

• The state must capture enough information from the input seen so far that it
is sufficient for the suffix that is yet to be seen (note that DFA cannot go back)

15

DFA Construction: Example I: Basic languages

Assume ⌃ = {0, 1}.

1. L = ;

2. L = ⌃⇤

3. L = {✏}

4. L = {0}

16

480

DFA Construction: Example I: Basic languages

Assume ⌃ = {0, 1}.

1. L = ;

2. L = ⌃⇤

3. L = {✏}

4. L = {0}

16

480

DFA Construction: Example I: Basic languages

Assume ⌃ = {0, 1}.

1. L = ;

2. L = ⌃⇤

3. L = {✏}

4. L = {0}

16

IT

DFA Construction: Example I: Basic languages

Assume ⌃ = {0, 1}.

1. L = ;

2. L = ⌃⇤

3. L = {✏}

4. L = {0}

16

DFA Construction: Example II: Length divisible by 5

Assume ⌃ = {0, 1}.

L = {w 2 {0, 1}⇤ | |w| is divisible by 5}

17

Ʃ

DFA Construction: Example III: Ends with 01

Assume ⌃ = {0, 1}.

L = {w 2 {0, 1}⇤ | w ends with 01}

18

O

F A

Ñy
p

Complement language

Complement

Question: If M is a DFA, is there a DFA M0 such that L(M0) = ⌃⇤ \ L(M)? That is, are
languages recognized by DFAs closed under complement?

q0start q1

1
0

1

0

19

Complement

Just flip the state of the states!

q0start q1

1
0

1

0

q0start q1

1
0

1

0

20

A Q A

Complement

Theorem
Languages accepted by DFAs are closed under complement.

Proof.
Let M = (Q,⌃, �, s,A) such that L = L(M).
Let M0 = (Q,⌃, �, s,Q \ A). Claim: L(M0) = L̄. Why?
�⇤M = �⇤M0 . Thus, for every string w, �⇤M(s,w) = �⇤M0(s,w).
�⇤M(s,w) 2 A) �⇤M0(s,w) 62 Q \ A. �⇤M(s,w) 62 A) �⇤M0(s,w) 2 Q \ A.

21

Complement

Theorem
Languages accepted by DFAs are closed under complement.

Proof.
Let M = (Q,⌃, �, s,A) such that L = L(M).
Let M0 = (Q,⌃, �, s,Q \ A). Claim: L(M0) = L̄. Why?
�⇤M = �⇤M0 . Thus, for every string w, �⇤M(s,w) = �⇤M0(s,w).
�⇤M(s,w) 2 A) �⇤M0(s,w) 62 Q \ A. �⇤M(s,w) 62 A) �⇤M0(s,w) 2 Q \ A.

21

Product Construction

Union and Intersection

Are languages accepted by DFAs closed under union? That is, given DFAs M1 and
M2 is there a DFA that accepts L(M1) [L(M2)?

How about intersection L(M1) \ L(M2)?

Idea from programming: on input string w

• Simulate M1 on w
• Simulate M2 on w
• If both accept than w 2 L(M1) \ L(M2). If at least one accepts then
w 2 L(M1) [L(M2).

• Catch: We want a single DFA M that can only read w once.
• Solution: Simulate M1 and M2 in parallel by keeping track of states of both
machines

22

Union and Intersection

Are languages accepted by DFAs closed under union? That is, given DFAs M1 and
M2 is there a DFA that accepts L(M1) [L(M2)?

How about intersection L(M1) \ L(M2)?

Idea from programming: on input string w

• Simulate M1 on w
• Simulate M2 on w
• If both accept than w 2 L(M1) \ L(M2). If at least one accepts then
w 2 L(M1) [L(M2).

• Catch: We want a single DFA M that can only read w once.
• Solution: Simulate M1 and M2 in parallel by keeping track of states of both
machines

22

e

e

Union and Intersection

Are languages accepted by DFAs closed under union? That is, given DFAs M1 and
M2 is there a DFA that accepts L(M1) [L(M2)?

How about intersection L(M1) \ L(M2)?

Idea from programming: on input string w

• Simulate M1 on w
• Simulate M2 on w
• If both accept than w 2 L(M1) \ L(M2). If at least one accepts then
w 2 L(M1) [L(M2).

• Catch: We want a single DFA M that can only read w once.

• Solution: Simulate M1 and M2 in parallel by keeping track of states of both
machines

22

Union and Intersection

Are languages accepted by DFAs closed under union? That is, given DFAs M1 and
M2 is there a DFA that accepts L(M1) [L(M2)?

How about intersection L(M1) \ L(M2)?

Idea from programming: on input string w

• Simulate M1 on w
• Simulate M2 on w
• If both accept than w 2 L(M1) \ L(M2). If at least one accepts then
w 2 L(M1) [L(M2).

• Catch: We want a single DFA M that can only read w once.
• Solution: Simulate M1 and M2 in parallel by keeping track of states of both
machines

22

Cross-Product Example

q0start

q1

1 1

0

0
M
2
ac
ce
pt
s

#
1
=
od
d

q0start q1
0

0

1 1

M1 accepts
#0 = odd

23

Cross-Product Example

q0start

q1

1 1

0

0
M
2
ac
ce
pt
s

#
1
=
od
d

q0start q1
0

0

1 1

M1 accepts
#0 = odd

q00

q01

q10

q11

0

0

1 1

0

0
1 1

23

01

Cross-Product Example

q0start

q1

1 1

0

0
M
2
ac
ce
pt
s

#
1
=
od
d

q0start q1
0

0

1 1

M1 accepts
#0 = odd

q00

q01

q10

q11

0

0

1 1

0

0
1 1

What language does
M12 accept?

23

Product construction for intersection

M1 = (Q1,⌃, �1, s1,A1) and M2 = (Q2,⌃, �2, s2,A2)

Theorem
L(M) = L(M1) \ L(M2).

Create M = (Q,⌃, �, s,A) where

• Q =

• s =
• � :

• A =

24

Product construction for intersection

M1 = (Q1,⌃, �1, s1,A1) and M2 = (Q2,⌃, �2, s2,A2)

Theorem
L(M) = L(M1) \ L(M2).

Create M = (Q,⌃, �, s,A) where

• Q =

• s =
• � :

• A =

24

qi qi

Q Q2
s se

S1 q.iq a f q a S qe a

a a 19 C A 92 Az

Intersection vs Union

M1:
q0start q1

1
0

1

0 M2 :
q0start q1

0
1

0

1

M1 \M2 M1 [M2

q(0,0)start

q(0,1)

q(1,0)

q(1,1)

11

0

0

0

0

11

q(0,0)start

q(0,1)

q(1,0)

q(1,1)

11

0

0

0

0

11

25

Product construction for union

M1 = (Q1,⌃, �1, s1,A1) and M2 = (Q2,⌃, �2, s2,A2)
Theorem
L(M) = L(M1) [L(M2).

Create M = (Q,⌃, �, s,A) where

• Q = Q1 ⇥ Q2 = {(q1,q2) | q1 2 Q1,q2 2 Q2}
• s = (s1, s2)
• � : Q⇥ ⌃ ! Q where

�((q1,q2),a) = (�1(q1,a), �2(q2,a))

• A =

26

ax ax

q q g EA or go the

The End

Wonder why we had to specify deterministic finite automata? That’s for next time.

27

